用户名: 密码: 验证码:
热解炭与活化炭理化特性及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热解炭具有一定的吸附能力,含碳量高、稳定性好,在环境系统和农业领域有广阔的应用前景。研究热解炭理化特性及其利用方式对于提高热解产物利用率、提升其环境效益和经济效益具有重要的意义。本文采用柳枝稷、栎木和落叶松为原料,分别通过快速热解和慢速热解制取热解炭,利用多种检测手段分析热解炭的理化特性、表征其结构特点;利用高温水蒸气进行活化制备了活化炭,考察了热解炭原料种类及制备工艺对活化炭理化特性的影响;利用热解炭/活化炭进行苯酚吸附试验,考察了比表面积和表面化学特性对苯酚吸附性能的影响,并借助傅立叶红外光谱分析探索了反应机理;利用热解炭/活化炭进行水溶液中铜锌离子的吸附试验,考察了比表面积和表面化学特性对铜锌离子吸附行为的影响;最后通过盆栽试验,研究了热解炭/活化炭与丛枝状菌根真菌之间的相互作用及对韭菜生长情况和吸收土壤中铜锌离子的影响。
     本论文主要研究结论及创新点如下:
     (1)与木质材料制备的热解炭相比,以柳枝稷为原料制备的热解炭比表面积较低,但表面官能团种类及含量较高;快速热解不利于热解炭孔隙结构的形成,比表面积通常<10m2/g,慢速热解的反应温度对热解炭理化特性的影响显著;
     (2)热解炭水蒸气活化可提高其比表面积,尤其是微孔表面积,但会导致表面官能团含量显著降低;快速热解炭经过活化,吸附能力显著提高,对苯酚的最大吸附量高于28.50mg/g,可与低温(<700℃)慢速热解炭媲美;
     (3)研究首次发现,快速热解炭对苯酚的吸附过程会产生化学吸附,该过程稳定而不可逆;慢速热解炭和活化炭对苯酚的吸附属于物理吸附,不稳定并且可逆;
     (4)在一定范围内,热解炭/活化炭对重金属离子的吸附能力随溶液pH值的升高而逐渐降低;在铜锌离子的混合溶液中,热解炭/活化炭对两种重金属离子的吸附能力均降低,两种金属离子之间存在吸附竞争关系,铜离子浓度升高对锌离子吸附能力的抑制作用明显,而锌离子浓度的升高对铜离子的吸附能力影响不显著;
     (5)研究首次发现,在土壤中单独添加热解炭/活化炭或丛枝状菌根真菌能够减少重金属离子对韭菜的毒害,促进韭菜生长;但当热解炭/活化炭与丛枝状菌根真菌共存时,对韭菜生长的促进作用降低,甚至会产生不利影响;热解炭/活化炭会抑制丛枝状菌根真菌生长,降低其对韭菜根系的侵染率,其中快速热解炭的抑制作用最为显著,侵染率低于3%。
Biochar has an expansive application prospect in environmental system and agriculture due to the high carbon content, stability and adsorption capacities. The research on physicochemical properties and application of biochar is very important for increasing utilization ratio of pyrolysis products, promoting environmental and economic benefits. In this research, biochars were created from switchgrass, oak and larch using both fast pyrolysis and slow pyrolysis, various methods were selected for characterization of biochars; then activated with steam to obtained activated carbon and the impact of feedstock and conditios on physicochemical properties of biochar was studied; focused on the influence of specific surface area, surface chemical properties on phenol and heavy metal (copper and zinc) adsorption properties, and explored the mechanism of reaction via FTIR; finally, studied on the interaction between biochar/activated carbon and arbuscular mycorrhizal fungi with heavy metal ions together, and the effect on leeks growth and heavy metal ions absorbed from soil.
     The main conclusion and innovation points are as follows:
     (1) Compared to biochar obtained from woody material, the biochar generated from switchgrass was with lower surface area but higher concentration of surface functional groups; fast pyrolysis was not suitable for creating biochar with developed pore structure, the specific surface area usually lower than10m2/g, the temperature had more severe influence on physicochemical properties of biochar;
     (2) Steam activation was helpful in increasing surface area, especially the micro-pore surface area, but with reduction of concentrion of surface function groups; after activation, the adsorption capacities of fast pyrolysis biochar was greatly increased to more than28.50mg/g which was almost the same as slow pyrolysis biochar (<700℃);
     (3) First investigated that phenol adsorption onto fast pyrolysis biochar was accompanied with chemical reaction, which was stable and nonreversible, whereas for slow pyrolysis biochar and activated carbon it was physical process, which was unstable and reversible;
     (4) In the particular range, heavy metal adsorption properties of biochar was reduced as pH increasing; copper and zinc adsorption properties was restricted due to the competition between two kind of metal ions, increasing concentration of copper resulted in great reduction of zinc adsorption capacity, however, increasing concentration of zinc had less influence on copper adsorptioin;
     (5) First investigated biochar/activated carbon or arbuscular mycorrhizal fungi existed could reduce the toxicity of heavy metal ions, and promoted growth of leeks; while if biochar/activated carbon and arbuscular mycorrhizal fungi existed together, resulted in reduction of leeks growth; exist of biochar/activated carbon reduced the population and colonization of fungi and fast pyrolysis biochars were accompanied with the most serious inbibitional effect, which were lower than3%.
引文
[1]曹青.生物质常规与非常规条件下的热解行为及升值利用研究[D].太原理工大学,2005
    [2]曹文根,段红.我国生物质能资源及其利用技术现状[J].安徽农业科学,2008,36(14):6001-6003
    [31陈冠益.生物质热解试验与机理研究[D].浙江大学,1998
    [4]陈健,李庭琛,颜涌捷,任铮伟,张素平.生物质裂解残炭制备活化炭[J].华东理工大学学报,2005,31(6):821-824
    [5]耿敏,丁开宇,陈正行.低碳稻壳灰碱法活化制备活化炭的研究[J].中国粮油学报,2009,24(2):139-144
    [6]丁文川,朱庆祥,曾晓岚,吴丹,田秀美.不同热解温度生物炭改良铅和镉污染土壤的研究[J].科技导报,2011,29(4):22-25
    [7]窦建芝,刘金芝,王慧,张春荣,申大忠.花生壳活化炭吸附苯酚及对硝基苯酚[J].常熟理工学院学报,2011,25(2):47-51.
    [8]范东斌.尿素、生物油-苯酚-甲醛共缩聚树脂的合成、结构与性能研究[D].北京林业大学,2009
    [9]韩彬,薛罡,荣达,周美华.稻草秸秆基活化炭对苯酚和亚甲基蓝的吸附性能研究[J].安徽农业科学,2009,37(7):3196-3199
    [10]何娇,孔火良,韩进,高彦征.秸秆生物质环境材料的制备及对水中多环芳烃的处理性能[J].环境科学,2011,32(1):135-139
    [11]胡志杰,李淳.水蒸气活化法制备稻壳活化炭的研究[J].生物质化学工程,2007,41(5):21-27
    [12]黄彪,高尚愚.木质炭化物高效开发利用研究综述[J].世界林业研究,2004,17(2):31-33
    [13]何绪生,耿增超,余雕,张保健,高海英.生物炭生产与农用的意义及国内外动态[J].农业工程学报,2011 a,27(2):45-49
    [14]何绪生,张树清,余雕,耿增超,高海英.生物炭对土壤肥料的作用及未来研究[J].中国农学通报,2011b,27(15):16-25
    [15]蒋剑春.生物质能源应用研究现状与发展前景[J].林产化学与工业,2002,22(2):75-80
    [16]江茂生,黄彪,陈学榕,唐兴平.木材炭化机理的FTIR光谱分析研究[J].林产化学与工业,2005,25(2):16-21
    [17]赖艳华,吕明新,马春元,施明恒.秸秆类生物质热解特性及其动力学研究[J].2002,23(2):203-206
    [18]李国希,胡乐辉.活化炭纤维吸附酚类化合物的影响因素[J].湖南大学学报,2008,35(9):73-75
    [19]黎国兰,李松,李桂英,罗丽珠,胡常伟,陈娅兰.活化炭表面含氧基团对苯酚吸附平衡及动力学的影响[J].化学研究与应用,2009,21(10):1427-1436
    [20]李海英,张书廷,赵新华.城市污水污泥热解温度对产物分布的影响[J].太阳能学报,2006,27(8):835-840
    [21]李力,刘娅,陆宇超,梁中邀,张鹏,孙红文.生物炭的环境效应及其应用的研究进展[J].环境科学,2011,30(8):1411-1421
    [22]李水清,李爱民,任远,严建华,李晓东,池涌,谷月玲,岑可法.生物质废弃物在回转窑内热解研究-Ⅱ.热解终温对产物性质的影响[J].太阳能学报,2000,21(4):341-348
    [23]李月清.物理活化法制备活化炭的研究[D].福建农林大学,2008
    [24]刘春华,曾经,夏畅斌,何湘柱.城市污水厂污泥改性物对Hg(Ⅱ)吸附的研究[J].材料保护,2007,40(5):39-42
    [25]刘洪波:张红波;伍恢,刘明俊,常俊玲.竹节制备高比表面积活化炭的研究[C].18届炭-墨材料学术会论文集,2000(62):338-344
    [261刘荣厚.生物质快速热裂解制取生物油技术的研究进展[J].沈阳农业大学学报,2007,38(1):3-7
    [27]刘玉学,刘微,吴伟祥,钟哲科,陈英旭.土壤生物质炭环境行为与环境效应[J].应用生态学报,2009,20(4):977-982
    [28]刘月蓉.氢氧化钾法制备竹活化炭[J].生物质化学工程,2006,40(4):42-48
    [29]罗凯,陈汉平,王贤华,杨海平,张世红.生物质焦及其特性[J].可再生能源,2007,25(1):17-20
    [30]马柏辉,叶李艺,张会平.活化炭的生产及发展趋[J].福建化工,2002,(4):65-68
    [31]史权,赵锁奇,徐春明,侯读杰.傅立叶变换离子回旋共振质谱仪在石油组成分析中的应用[J].质谱学报,2008,29(6):367-378
    [32]孙艳丽.水溶液中有毒有机污染物的吸附[D].山东大学,2010
    [33]孙振钧.中国生物质产业及发展取向[J].农业工程学报,2004,20(5):1-5
    [34]孙振钧,孙永明.生物质能源与农村生物质能源利用的现状与发[J].可再生能源,2006,8(1):6-13
    [35]孙新元,吴光前,张齐生.竹炭对微污染水中有机污染物的吸附[J].环境科技,2010,23(1):15-18
    [36]谭洪,张磊,韩玉阎.不同种类生物质热解炭的特性实验研究[J].生物质化学工程.2009,43(1):31-38
    [37]王鹏起.新型喷动循环流化床木材快速热解关键技术研究[D].北京林业大学,2009
    [38]王宁,侯艳伟,彭静静,戴九兰,蔡超.生物炭吸附有机污染物的研究进展[J].环境化学,2012,31(3):1228-1232
    [39]王琼,严建华,池涌,文世恩,张志霄,马增益,岑可法.废轮胎热解炭的分析及其活化特性的研究[J].燃料化学学报,2004(32):301-306
    [40]王秀芳,张会平,肖新颜,陈焕钦.苯酚在竹炭上的吸附平衡和动力学研究[J].功能材料,2005,5(36):743-746.
    [41]解立平,林伟刚,杨学民.废弃物基活化炭吸附性能的影响因素[J].新型炭材料,2006,21(1):156-160
    [42]行念东,王玥露,杨杰,韩润平.麦秸秆热解炭对水溶液中亚甲基蓝的吸附研究[J].遵义师范学院学报,2011,13(6):97-100
    [43]闰大海,严建华,池涌,裴宜星,岑可法.废轮胎回转窑中试热解炭的重金属离子吸附特性[J].燃料化学学报,2006,34(3):462-469
    [44]闫大海,严建华,池涌,徐文胜,岑可法.废轮胎回转窑中试热解炭表面组分XPS分析[J].燃料化学学报,2005,33(4):487-491
    [45]杨颖,李磊,孙振亚,杜露.活化炭表面官能团的氧化改性及其吸附机理的研究[J].科学技术与工程,2012,24(8):6132-6138
    [46]叶桂足,陈清松,赖寿莲.竹炭对水溶液中苯酚的吸附性能研究[J].林产化学与工业,2005,25(增刊):139-142
    [47]易四勇,王先友,李娜,魏建良,戴春岭.活化炭活化处理技术的研究进展[J].材料导报,2008,22(3):72-75
    [48]余少英,游东宏,陈家越,林少芳,有茶果壳活化炭那对苯酚的吸附动力学研究[J].化工时刊,2010,24(4):25-28
    [49]袁金华,徐仁扣.稻壳制备的生物质炭对红壤和黄棕壤酸度的改良效果[J].生态与农村环境学报,2010,26(5):472-476
    [50]张阿凤,潘根兴,李恋卿.生物黑炭及其增汇减排与改良土壤意义[J].农业环境科学学报,2009,28(12):2459-2463.
    [51]张维燕,张睿,谢应波,张传祥,成果,凌立成.炭化温度对活化炭孔结构及电化学性能的影响[J].炭素,2009(1):28-36
    [52]赵增立.生物质等离子体热解研究[D].中国科技大学,2005
    [53]张国春,艾翠玲,王书民.含铬重金属废水处理的实验研究[J].湖南大学学报(自然科学版),2005,32(5):100-105
    [54]张立塔.喷动流化床快速热解关键技术及产物应用研究[D].北京林业大学,2010
    [55]张立塔,常建民,任学勇,韩彦雪,苟进胜,许守强.落叶松木屑快速热解炭制备活化炭工艺及结构表征[J].东北林业大学学报,2011,39(4):96-98
    [56]章圣祥,吴邦信,杨光,蒋秀娅,李树霞,宋立.氯化锌活化污水污泥制备活化炭研究[J].环保科技,2009(4):14-17
    [57]张淑琴,童仕唐.活化炭对重金属离子铅镉铜的吸附研究[J].环境科学与管理,2008,33(4):91-94.
    [58]张巍巍,曾国勇,傅海燕,陈雪莉,于尊宏.稻秆热解固体产物的性能[J].华东理工大学学报,2007,33(2):219-222
    [59]张维燕,张睿,谢应波,张传祥,成果.凌立成炭化温度对活化炭孔结构及电化学性能的影响[J].炭素,2009,6(1):28-36
    [60]《中国统计年鉴2008》 [M].北京,中国统计出版社,2008
    [61]张志霄,池勇,严建华,文世恩,岑可法.利用废轮胎热解炭制取活化炭的试验研究[J].浙江大学学报,2004,38(6):775-779
    [62]张兴华,马隆龙,王铁军等.废轮胎真空热解炭活化制取多空活化炭研究[J].武汉理工大学学报,2007,29(4):36-38
    [63]张再利,况群,贾晓珊.花生壳吸附Pb2+、Cu2+、Cr3+、Cd2+、Ni2+的动力学和热力学研究[J].生态环境学报,2010,19(12):2973-2977
    [64]周建斌,邓丛静,陈金林,张齐生.棉秆炭对镉污染土壤的修复效果[J].生态环境,2008,17(5):1875-1860.
    [65]周建斌,张齐生.油菜壳制活化炭[J].林业科技开发,2003,2(5):54-55
    [66]朱江涛,黄正宏,康飞宇,傅金和,岳永德.活性竹炭对苯酚的吸附动力学[J].新型炭材料,2008,23(4):58-62
    [67]庄颖.水中有机污染物对人体的潜在危害及预防对策[J].环境与健康杂志,2001,18(3):187-189
    [68]Alumaa P, Kirso U, Petersell V,Steinnes E. Sorption of toxic heavy metals to soil[J]. Int. J. Hyg. Environ. Health,2002,204:375-376
    [69]Antal M.Gronli M, The art, science, and technology of charcoal production. Industrial [J]. ngineering chemistry research,2003,42:1619-1640
    [70]Arias M, Perez-Novo C, Lopez E, Soto EL, Competitive adsorption and desorption of copper and zinc in acid soils[J]. Geoderma,2006,133:151-159
    [71]Atkinson CJ, Fitzgerald JD, Hipps NA. Potential mecha-nisms for achieving agricultural benefits from biochar application to temperate soils:a review[J]. Plant and Soil,2010,337:1-18
    [72]Azargohar R. Production Of Activated Carbon And Its Catalytic Application For Oxidation Of Hydrogen Sulphide. Department of Chemical Engineering[D]. University of Saskatchewan Saskatoon,Saskatchewan,2009.
    [73]Azargohar R, Dalai AK. Biochar As a Precursor of Activated Carbon[J]. Applied Biochemistry and Biotechnology,2006,129-132,:762-774
    [74]Banat FA, Al-Bashir B, Al-Asheh S, Hayajneh O. Adsorption of phenol by bentonite[J]. Environ. Pollut,2000,107:391-398
    [75]Barrett EP, Joyner LG, Halenda PP. The determination of pore volume and area distributions in porous substances. Ⅰ. Computations from nitrogen isotherms[J]. J. Am. Chem. Soc.,1951,73:373-380
    [76]Beesley L, Moreno J, Gomez-Eyles JL. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil[J]. Environmental Pollution,2010,158:2282-2287
    [77]Beesley L, Dickinson N. Carbon and trace element fluxes in the pore water of an urban soil following greenwaste compost, woody and biochar amendments, inoculated with the earthworm Lumbricus terrestris[J]. Soil Biology and Biochemistry,2011,43,:188-196
    [78]Beesley L, Jimenez EM,Gomez-Eyles JL, Harris E, Robinson B, Sizmur T. A review of biochars potential role in the remediation, revegetation and restoration of contaminated soils[J]. Environ Pollut,2011,159:3269-3282
    [79]Boateng AA. Characterization and thermal conversion of charcoal derived from fluidized-bed fast pyrolysis oil production of switchgrass[J]. Ind. Eng. Chem. Res.,2007a,46:8857-8862.
    [80]Boateng AA, Daugaard DE, Goldberg NM, Hicks KB. Bench-scale fluidized-bed pyrolysis of switchgrass for bio-oil production[J]. Ind Eng Chem Res,2007b,46:1891-1897
    [81]Boateng AA, Mullen CA, Goldberg NM, Hicks KB, Jung H-JG, Lamb JFS. Production of bio-oil from alfalfa stems by fluidized-bed fast pyrolysis[J]. Ind Eng Chem Res,2008,47:4115-4122
    [82]Boehm HP. Some aspects of the surface chemistry of carbon blacks and other carbons[J]. Carbon,1994,32:759-769.
    [83]Bornemann IC, Kookana RS, Welp G. Differential sorption behavior of aromatic hydrocarbon on charcoals prepared at different temperatures from grass and wood[J]. Chemosphere,2007,67: 1033-1042
    [84]Bradl HB. Adsorption of heavy metal ions on soils and soils constituents[J]. J. Colloid Interface Sci.,2004,277:1-18.
    [85]Bradley R, Burt AJ, Read DJ. The biology of mycorrhiza in the Ericaceae.Ⅷ. The role of mycorrhizal infection in heavy metal resistance[J]. New Phyto,1982,191:97-209.
    [86]Brewer CE, Unger R, Schmidt-Rohr K, Brown RC. Criteria to Select Biochars for Field Studies based on Biochar Chemical Properties[J]. Bioenerg. Res,,2011,4:312-323.
    [87]Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers[J]. J. Am. Chem. Soc.,1938,60:309-319.
    [88]Bruun EW. Application of Fast Pyrolysis Biochar to a Loamy soil-Effects on carbon and nitrogen dynamics and potential for carbon sequestration[D].National labarary for sustainable energy,2011
    [89]Busscher WJ, Schomberg H. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand[J]. Ann Environ Sci,2009,3:195-206
    [90]Campo BG, Brown RC, Laird D, Jarboe LR. Production of Activated Carbon From Fast Pyrolysis Biochar[C]. AIChE Annual meeting,Pittsburgh,PA,2012
    [91]Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar[J]. Bioresource Technology,2012,107: 419-428.
    [92]Cao X, Harris W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation[J]. Bioresour. Technol,2010,101:5222-5228
    [93]Chan KY, Zwieten VL, Meszaros I, Downie A, Joseph S. Agronomic values of green waste biochar as a soil amendmen[J]. Aust. J. Soil Res.,2007,45:629-634
    [94]Chan K.Y., Zwieten VL, Meszaros I, Downie A, Joseph S. Using poultry litter biochars as soil amendments[J]. Australian Journal of Soil Research,2008,46:437-444
    [95]Chen XC, Chen GC, Chen LG, Chen YX, Lehmann J, McBride MB, Hay AG. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour[J]. Technol.,2011,102:8877-8884
    [96]Chun Y, Sheng GY, Chiou CT, Xing BS. Compositions and sorptive properties of crop residue-derived chars[J]. Environ. Sci. Technol.,2004,38:4649-4655
    [97]Cichy W, Szymanowski J. Recovery of phenol from aqueous streams in hollow fiber modules[J]. Environ. Sci. Technol.,2002,36:2088-2093
    [98]Cornelissen G. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils:Mechanisms and consequences for distribution, bioaccumulation, and biodegradation[J]. Environmental Science and Technology,2005,39:6881-6895.
    [99]Covelo EF, Andrade ML, Vega FA. Heavy metal adsorption by humic umbrisols:selectivity sequences and competitive sorption kinetics[J]. Journal of Colloid and Interface Science,2004,280: 1-8
    [100]Day D, Evans RJ, Lee JW, Reicosky D. Economical CO2, SOx, and NOx capture from fossil fuel utilization with combined renewable hydrogen production and large-scale carbon sequestration[J]. Energy,2005,30:2558-2579
    [101]Deenik JL, McClellan AT, Uehara G. Biochar volatile matter content effects on plant growth and nitrogen and nitrogen transformations in atropical soil [C]. Western Nutrient Management Conference, Salt Lake City,UT,USA,2009,8:26-31
    [102]Demirbas A. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues[J]. J Anal Appl Pyrolysis,2004,72:243-248
    [103]Diaz G, Azcon-Aguilar C, Honrubia M. Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthyllis cytisoides[J]. Plant Soil,1996,180: 241-249
    [104]Dogan M, Alkan M. Removal of methyl violet from aqueous sollutoin by perlite[J]. J. Colloid Interface Sci.,2003,267:32-41
    [105]Doner LW, Becard G. Solubilization of gellan gels by chelation of cations[J]. Biotechnology Techniques,1991,5:25-29
    [106]Douds DD, Nagahashi G, Pfeffer PE, KayserWM, Reider C. On-farm production and utilization of arbuscular mycorrhizal fungus inoculum[J]. Canadian Journal of Plant Science,2005,85:15-21
    [107]Elad Y, David DR, Harel YM, Borenshtein M, Kalifa HB, Silber A, Graber ER. Induction of systemic resistance in plants by biochar,a soil-applied carbon sequestering agent[J]. Disease Control and Pest Management.,2010,100:913-921.
    [108]El-Kherbawy M, Angle JS, Heggo A, Chaney RL. Soil pH,rhizobia and vesicular mycorrhizas inoculation effects on growth and heavy metal uptake of alfalfa (Medicago sativa L.) [J]. Biol. Fertil. Soils,1989,8:61-65
    [109]Elmer WH, Pignatello JJ. Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of asparagus in replant soils[J]. Plant Disease,2011,95:960-967
    [110]Fan M, Marshall W, Daugaard D, Brown RC,. Steam activation of chars produced from oat hulls and corn stover[J]. Bioresour Technol,2004,93:103-107
    [111]Faria PCC, Orfao JJM, Pereira MFR. Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries[J]. Water Res.,2004,38:2043-2052
    [112]Farooq RL, Leveque JM, Papaiconomou N, Irfan N, Duclaux L. Adsorption of ionic liquids onto activated carbons:Effect of pH and temperature[J]. Microporous and Mesoporous Materials,2012, 158:55-63
    [113]Fu D, Zhang YH, Lv FZ, Chu PK, Shang JW. Removal of organic materials from TNT red water by Bamboo Charcoal adsorption[J]. Chemical Engineering Journal 2012,193-194:39-49
    [114]Gamalero E, Lingua G, Berta G, Glick BR. Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress[J]. Can. J. Microbiol., 2009,55:501-514.
    [115]Gaskin JW, Steiner C, Harris K, Das K C, Bibens B. Effect of low-temperature pyrolysis conditions on biochar for agricultural use[J]. Trans ASABE,2008,51:2061-2069
    [116]Gaur A, Adholeya A. Effects of the particle size of soilless substrates upon AM fungus inoculum production[J]. Mycorrhiza,2000,10:43-48
    [117]Giovannetti M, Sbrana C, Avio L. Arbuscular mycorrhizal fungal mycelium:from germlings to hyphal networks. In Mycorrhizal technology in agricuIture[C]. Basel, Boston, Berlin,2002,49-58
    [118]Glaser B, Haumaier L, Guggenberger G, Zech W. The 'Terra Preta' phenomenon:a model for sustainable agriculture in the humid tropics[J]. Die Naturwissenschaften,2001,88:37-41
    [119]Gonzalez-Chavez MC, Carrillo-Gonzalez R, Wright SF, Nichols KA. The role of glomalin,a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements[J]. Environ. Pollut.,2004,130:317-323.
    [120]Graber ER, Harel YM, Kolton M, Cytryn E, Silber A, David DR, Tsechansky L, Borenshtein M, Elad Y. Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media[J]. Plant Soil,2010,337:481-496
    [121]Guerrero M, Ruiz MP, Millera A, Alzueta MU, Bilbao R. Characterization of biomass chars formed under different devolatilization conditions:differences between rice husk and eucalyptus[J]. Energy Fuels,2008,22:1275-1284
    [122]Guerrero M, Ruiz MP, Alzueta MU, Bilbao R, Millera A. Pyrolysis of eucalyptus at different heating rates:studies of char characterization and oxidative reactivity[J]. J. Anal. Appl. Pyrolysis, 2005,74:307-314
    [123]Gundale MJ, DeLuca TH. Temperature and source material influence ecological attributes of Ponderosa pine and Douglas-fir charcoal[J]. For. Ecol.Manage.,2006,231:86-93.
    [124]Guo Y, George E, Marschner H. Contribution of an arbuscular mycorrhizal fungus to the uptake of cadmium and nickel in bean and maize plants[J]. Plant Soil,1996,184:195-205.
    [125]Guo J, Lua AC. Effect of heating temperature on the properties of chars and activated carbons prepared from oil palmstons[J]. Journal of Thermal Analysis and Calorimetry,200060:417-425
    [126]Hameed BH, Ahmad AL, Latiff K.NA. Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust[J]. Dyes and Pigments,2007,75:143-149
    [127]Han YX, Boateng AA, Qi PX, Lima IM, Chang JM. Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties[J]. J of Environmental Management,2013,118:196-204
    [128]Harris P. On charcoal[C],. Interdisciplinary Science Reviews,1999,24:301-306.
    [129]Harel YM, Kolton M, Elad Y, Rav-David D, Cytryn E, Borenshtein M, Shulchani R, Graber ER. Biochar impact on plant development and disease resistance in pot trials[C]. IOBC/WPRS Bulletin, 2012,78:141-147.
    [130]Hoagland DR, Arnon DI. The water-culture method for growing plants without soil. University of California College of Agriculture[J]. Agriculture Exp. Sta. Circular,Berkeley,CA,1939,347.
    [131]Hossain MK, Strezov VK, Chan Y, Ziolkowski A, Nelson PF. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar[J]. J Environ Manage,2011,92: 223-228.
    [132]Hossain MK, Strezov VK, Chan Y, Nelson PF. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum) [J]. Chemosphere,2010,78:1167-1171.
    [133]Hsieh M. Application of bamboo charcoal particles in blood purification:Cytotoxicity and absorption capability assessments[J]. Journal of Medical and Biological Engineering,2007, 27:47-51.
    [134]Ishii T, Kadoya K. Effects of charcoal as a soil conditioner on citrus growth and vesicular-arbuscular mycorrhizal development[J]. J Jpn Soc Hortic Sci,1994,63:529-535.
    [135]Jarvis MC. The proportion of calcium bound pectin in plant cell walls [J]. Planta,1982,154: 344-340.
    [136]Jasper DA, Robson AD, Abbott LK. Phosphorus and the formation of vesicular-arbuscular mycorrhizas[J]. Soil Biology and Biochemistry,1979,11:501-505.
    [137]Jung MW, Ahn KH, Lee Y, Kim KP, Rhee JS, Park JT, Paeng KJ. Adsorption characteristics of phenol and chlorophenols on granular activated carbons (GAC) [J]. Microchem.,2001,70:123-131.
    [138]Karhu K, Mattila T, Bergstrom I, Regina K. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity-Results from a short-term pilot field study[J]. Agric Ecosyst Environ,2011,140:309-313
    [139]Keiluweit M, Nico PS, Johnson MG, Kleber M. Dynamic molecular structure of plant biomass-derived black carbon (biochar) [J]. Environ Sci Technol,2010,44:1247-1253
    [140]Khalid M, Joly G, Renaud A, Magnoux P. Removal of phenol from water by adsorption using zeolites[J]. Ind. Eng. Chem. Res.,2004,43:5275-5280
    [141]Killham K, Firestone MK. Vesicular arbuscular mycorrhizal mediation of grass response to acidic and heavy metal depositions[J]. Plant Soil,1983,72:39-48
    [142]KimJ, Sparovek G, Longo RM, De Melo WJ, Crowley D. Bacterial diversity of terra preta and pristine forest soil from the Western Amazon[J]. Soil Biology and Biochemistry,2007,2(39): 684-690
    [143]Kloss S, Zehetner F, Dellantonio A, Hamid R, Ottner F, Liedtke V, Schwanninger M, Gerzabek MH, Soja G. Characterization of Slow Pyrolysis Biochars:Effects of Feedstocks and Pyrolysis Temperature on Biochar Properties[J].Journal of Environmental Quality,2011(4):990-1000
    [144]Kujawski W, Warszawski A, Ratajczak W, Porebski T, Capala W, Ostrowska I. Removal of phenol from wastewater by different separation techniques[J]. Desalination,2004,163:287-296
    [145]Kumar S. Hydrothermal treatment for biofuels:lignocellulosic biomass to bioethanol,biocrude and biochar[D]. A dissertation submitted to the Graduate Faculty of Auburn University,2010.
    [146]Kumar SN, Subbaiah VM, Reddy SA, Krishnaiah A. Biosorption of phenolic compounds from aqueous solutions onto chitosan-abrus precatorius blended beads[J]. J. Chem. Technol. Biotechnol, 2009,84:972-981
    [147]Kwon S, Pignatello JJ. Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char):Pseudo pore blockage by model lipid components and its implications for N-probed surface properties of natural sorbents[J]. Environmental Science and Technology,2005,39:7932-7939.
    [148]Laird DA. The charcoal vision:a win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality[J]. Agron J.,2008,100: 178-181.
    [149]Lam M.K.,Zakaria R.,Production of activated carbon from sawdust using fluidized bed reactor[C]. International Conference on Environment,2008
    [150]Lehmann J. Bio-energy in the black[J]. Front Ecol Environ,2007,5:381-387.
    [151]Lehmann J, Silva JP, Steiner C, Nehls T, Zech W, Glaser B. Nutrient availability and leaching in an archaeological Anthrosol and a Ferrasol of the Central Amazon basin:fertilizer, manure and charcoal amendments[J]. Plant Soil.2003,249:343-357.
    [152]Lehmann J, Joseph S. Biochar for environmental management[J]. Earthscan publishers Ltd,London,2009.
    [153]Lehmann J, Gaunt J, Rondon M. Bio-char sequestration in terrestrial ecosystems-a review[J]. Mitig Adapt Strat Glob Chang,2006,1:403-427.
    [154]Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D. Biochar effects on soil biota -A review[J]. Soil Biology & Biochemistry,2011,43:1812-1836.
    [155]Leyval C, Turnau K, Haselwandter K. Effect of heavy metal pollution on mycorrhizal colonization and function:physiological[J]. Ecological and applied aspect. Mycorrhiza,1997,7: 139-153.
    [156]Li AM, Zhang QX, Zhang GC, Chen JL, Fei ZH, Liu FQ. Adsorption of phenolic compounds from aqueous solutions by a water-compatible hypercrosslinked polymeric adsorbent[J]. Chemosphere,2002,47:981-989.
    [157]Lima IM, Boateng A A, Klasson K. Physicochemical and adsorptive properties of fast-pyrolysis bio-chars and their steam activated counterparts[J]. J Chern Technol Biotechnol,2010,85:1515-1521.
    [158]Lima IM, McAloon A, Boateng AA. Activated carbon from broiler litter:Process description and cost of production[J]. Biomass Bioenergy,2008,32:568-572
    [159]Lima IM, Marshall WE. Utilization of turkey manure as granular activated carbon:Physical, chemical and adsorptive properties[J]. Waste Manag,2005,25:726-732
    [160]Lippens BC, Boer JH. Studies on pore systems in catalysts:V. The t method[J]. J. Catal.,1965,4: 319-323
    [161]Li P, Su YJ, Wang Y, Liu B, Sun LM. Bioadsorption of methyl violet from aqueous solution onto Pu-erh tea powder[J]. J. Hazard. Mater,2010,179:43-48
    [162]Liu Z, Zhang FS. Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass[J]. J Hazard Mat,2009,167:933-939.
    [163]Liu ZG, Zhang FS. Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass[J]. Journal of Hazardous Materials,2009,167:933-939.
    [164]Lowthera JR. Use of a single sulphuric acid-hydrogen peroxide digest for the analysis of pinus radiata needles[J]. Communications in Soil Science and Plant Analysis,1980,11:175-188.
    [165]Mall ID, Srivastava VC, Agarwal NK. Removal of orange-G and methyl violet dyes by adsorption onto bagasse fly ash-kinetic study and equilibrium isotherm analyses[J]. Dyes Pigments, 2006,69:210-223
    [166]Mahinpey N, Murugan P, Mani T, Raina R. Analysis of bio-Oil, biogas, and biochar from pressurized pyrolysis of wheat straw using a tubular reactor[J]. Energy Fuels,2009,23:2736-2742.
    [167]Major J, Rondon M, Molina D, Susan J. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol Riha & Johannes Lehmann [J]. Plant Soil,2010,333: 117-128.
    [168]Matovic D. Biochar as a viable carbon sequestration option:global and Canadian perspective [J]. Energy,2010,36:2011-2016
    [169]Matsubara YI, Hasegawa N, Fukui H. Incidence of Fusarium root rot in asparagus seedlings infected with arbuscular mycorrhizal fungus as affected by several soil amendments[J]. J. Jpn. Soc. Hortic. Sci.,2002,71:370-374.
    [170]Meharg AA, Cairney J WG. Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminated environments[J]. Adv Ecol Res,2000,30:69-112.
    [171]Meng G, Li A, Zhang Q. Studies on the oxygen-containing groups of activated carbon and their effects on the adsorption character[J]. Ion Exchange and Adsorption,2004,1:88-94.
    [172]Meyer D. Biochar-a survey [D]. Tempere University of technology,2009.
    [173]Michel R,Mischler N,Azambre B,Finqueneisel G,Machnikowski J,Rutkowski P,Zimnv T and Weber JV.,Miscanthus x Giganteus straw and pellets as sustainable fuels and raw material for activated carbon [J]. Environ Chem Lett,2006,4:185-189.
    [174]Mohan D, Biswas MN..Preparation and characterization of activated carbons from Sterculia alata nutshell by chemical activation with zinc chloride to remove phenol from wastewater[J], Adsorption,2006,12:119-132.
    [175]Mohan D, Pittman CU, Bricka M, Smith F, Yancey B, Mohammad J, Steele PH, Alexandre-Franco MF, Gomez-Serrano V, Gong H. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production[J]. J. Colloid Interface Sci,2007,310:57-73.
    [176]Mohanty KDD, Biswas MN. Preparation and characterization of activated carbons from Sterculia alata nutshell by chemical activation with zinc chloride to remove phenol from wastewater[J]. Adsorption,2006,12:119-132.
    [177]Monser L, Adhoum N. Modified activated carbon for the removal of copper, zinc, chromium and cyanide from wastewater[J]. Separation Purification Technol,2002,26:137-146.
    [178]Mullen CA, Boateng AA, Goldberg NM, Lima IM, Laird DA, Hicks KB. Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis[J]. Biomass Bioenergy,2010,34:67-74.
    [179]Naidu R, Sumner ME, Harter RD. Sorption of heavy metals in strongly weathered soils:an overview. Environ[J]. Geochem. Health,1998,20:5-9.
    [180]Newman El. A method of estimating the total length of root in a sample[J]. Journal of Applied Ecology,1966,3:139-145.
    [181]Novak JM, Lima IM, Xing BS, Gaskin JW, Steiner C, Das KC, Ahmedna M, Rehrah D, Watts DW, Busscher WJ, Schomberg H. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand[J]. Ann Environ Sci,2009,3:195-206.
    [182]Nurlaeny N, Marschner H, George E. Effects of liming and mycorrhizal colonization on soil phosphate depletion and phosphate uptake by maize (Zea mays L.) and soybean (Glycine max L.) grown in two tropical acid soils[J]. Plant Soil,1996,181:275-285.
    [183]Oh TK, Choi BS, Shinogi Y, Chikushi J. Characterization of biochar derived from three types of biomass[J]. J. Fac. Agr.,Kyushu Univ.,2012,57 (1):61-66.
    [184]Paradelo R, Barral MT. Evaluation of the potential capacity as biosorbents of two MSW composts with different Cu,Pb and Zn concentrations. Bioresour[J]. Technol.,2012,104:810-813.
    [185]Park JH, Choppala GK, Bolan NS, Chung JW, Chuasavathi T. Biochar reduces the bioavailability and phytotoxicity of heavy metals[J]. Plant Soil,2011,348:439-451.
    [186]Park SJ, Kim YM. Adsorption behaviors of heavy metal ions onto electrochemically oxidized activated carbon fibers[J]. Materias science and engineering,2005,391:121-123.
    [187]Peacocke C, Joseph S. Notes on Terminology and Technology in Thermal Conversion. s.l[C]. International Biochar Initiative,2009.
    [188]Pellera FM, Giannis A, Kalderis D, Anastasiadou K, Stegmann R, Wang JY, Gidarako E. Adsorption of Cu(Ⅱ) ions from aqueous solutions on biochars prepared from agricultural by-products[J]. Journal of Environmental Management,2012,96:35-42.
    [189]Perdigoto MLN, Martins RC, Rocha N, Quina MJ, Gando-Ferreira L, Patricio R, Duraes L. Application of hydrophobic silica based aerogels and xerogels for removal of toxic organic compounds from aqueous solutions[J]. J. Colloid Interface Sci.2012,380,:134-140.
    [190]Perez-Marin AB, Meseguer ZV, Ortuno JF, Aguilar M, Saez J, Llorens M. Removal of cadmium from aqueous solutions by adsorption onto orange waste[J]. J. Hazard. Mater,2007,139:122-131.
    [191]Peric J, Trgo M, Vukojevic MN. Removal of zinc, copper and lead by natural zeolite-A comparison of adsorption isotherms[J]. Water Res.,2004,38:1893-1899.
    [192]Phillips JM, Hayman DS. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection[J]. Trans. Br. Mycol. Soc.,1970,55:158-160.
    [193]Pietikainen J, Kiikkila O, Fritze H. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus[J]. OIKOS,2000,89:231-242.
    [194]Qi J, Li Z, Guo Y, Xu H. Adsorption of phenolic compounds on micro-and mesoporous rice husk-based active carbons[J]. Mater. Chem. Phys,2004,87:96-101.
    [195]Rabie GH. Contribution of arbuscular mycorrhizal fungus to red kidney and wheat plants tolerance grown in heavy metal-polluted soil[J]. African Journal of Biotechnology,2005,4:332-345.
    [196]Regmi P, Garcia-Moscoso JL, Kumar S, Cao X, Mao J, Schafran G. Removal of copper and cadmium from aqueous solution using switehgrass biochar produced via hydrothermal carbonization process[J]. J. Environ. Manage,2012,109:61-69.
    [197]Rillig MC, Mummey DL. Mycorrhizas and soil structure[J]. New Phytol,2006,171:41-53.
    [198]Rio S, Faur-Brasquet L, Coq L, Le-Cloirec P. Production and Characterization of Adsorbent Materials from an IndustrialWaste[J]. Adsorption,2005,11:793-798.
    [199]Rocca DAD, Horowitz GL, Boneli PR. Olive stones pyrolysis:chemical,; textural and kinetic characterization in:D.G.B. Boocock (Ed), Development in Thermo-chemical biomass conversion [M]. London, Blackie Press,1997.
    [200]Rodriguez-Reinoso F, Marsh H, Heintz EA. Introduction to carbon technologies[J]. Secretariado de publicaciones,Spain,1997:35-101.
    [201]Rodriguez-Reinoso F, Schuth F, Sing KSW. Handbook of porous solids[M]. Wiley-VCH Verlag GmbH,Weinheim,Gennany,2002.
    [202]Saito M. Charcoal as a micro-habitat for VA mycorrhizal fungi, and its practical implication. Agriculture[J]. Ecosystems and Environment,1989,29:341-344.
    [203]Sharma RK,Wooten JB,Baliga VL,Pamela AM-S and Hajaligol MR. Characterization of char from the pyrolysis of tobacco[J]. J Agric Food Chem,2011,50:771-783.
    [204]Spokas KA,Novak JM, Venterea RT. Biochar's role as an alternative N-fertilizer:Ammonia capture[J], Plant soil,2012,350:35-42.
    [205]Sricharoenchaikul V, Pechyen C, Ahtong D. Preparation and Characterization of Activated Carbon from the Pyrolysis of Physic Nut (Jatropha curcas L.) Waste[C]. VInternational Conference on Bioenergy Outlook,Singapore,April 26-27,2007.
    [206]Srivastava VC, Swamy MN, Mall ID, Prasad B, Mishra IM. Adsorptive removal of phenol by bagassefly ash and activated carbon:equilibrium, kinetics and thermodynamics, Colloids[J]. Surf. A: Physicochem. Eng. Aspects,2006,272:89-104.
    [207]St-Arnaud MC, Hamel C, Vimard B, Caron M, Fortin JA. Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots[J]. Mycological Research,1996,100,:328-332.
    [208]Tan IAW, Hameed BH. Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon[J]. Ahmad Chemical Engineering Journal,2007,127:111-119.
    [209]Tonin C, Vandenkoornhuyse P, Joner EJ, Straczek J, Leyval C. Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Viola calaminaria and effect of these fungi on heavy metal uptake by clover[J]. Mycorrhiza,2001,10:161-168.
    [210]Uchimiya M, Chang SC, Klasson KT. Screening biochars for heavy metal retention in soil:Role of oxygen functional groups[J]. Journal of Hazardous Materials,2001,190:432-441.
    [211]Uchimiya M, Lima IM, Klasson KT, Chang S, Wartelle LH, Rodgers JE. Immobilization of heavy metal ions (CuⅡ,CdⅡ,NiⅡ,and PbⅡ) by broiler litter-derived biochars in water and soil[J]. J. Agric. Food. Chem.,2010,58:5538-5544.
    [212]Uchimiya M, Klasson KT, Wartelle LH, Lima IM. Influence of soil properties on heavy metal sequestration by biochar amendment:1. Copper sorption isotherms and the release of cations[J]. Chemosphere,2011a,82:1431-1437.
    [213]Uchimiya M, Wartelle LH, Klasson KT, Fortier CA, Lima IM. Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil[J]. J Agric Food Chem,2011b,59: 2501-2510.
    [214]Veeresh H, Tripathy S, Chaudhuri D, Hart BR, Powell MA. Competitive adsorption behavior of selected heavy metals in three soil types of India amended with fly ash and sewage sludge[J]. Environ. Geol.,2003,44:363-370.
    [215]Wallstedt A, Coughlan A, Munson AD, Nilsson MC, Margolis HA. Mechanisms of interaction between Kalmia angustifolia cover and Picea mariana seedlings[J]. Can J For Res,2002,32: 2022-2031.
    [216]Warnock DD, Lehmann J, Kuyper TW, Rillig MC. Mycorrhizal responses to biochar in soil-concepts and mechanisms[J]. Plant Soil,2007,300:9-20.
    [217]Warnock DD, Mummey DL, McBride B, Major J, Lehmann J, Rillig MC. Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils:Results from growth-chamber and field experiments[J]. Applied Soil Ecology,2010,46:450-456.
    [218]Weissenhorn I, Leyval C, Berthelin J. Cd-tolerant arbuscular mycorrhizal (AM) fungi from heavy-metal polluted soils[J]. Plant Soil,1993,157:247-256.
    [219]Xu RK, Xiao SC, Yuan JH, Zhao AZ. Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues[J]. Bioresour. Technol.,2011,102:10293-10298.
    [220]Yang WJ. Investigation of Extractable Materials from Biochar [D]. the University of Waikato, 2012.
    [221]Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose,cellulose and lignin pyrolysis[J]. Fuel,2007,86:1781-1788.
    [222]Yagmur E, Ozmak M, Aktas Z. A novel method for production of activated carbon from waste tea by chemical activation with microwave energy[J]. Fuel,2008,87:3278-3285.
    [223]Yang W.J. Investigation of extractable materials from biochar [D].The University of Waikato, 2012.
    [224]Yanik J, Kommayer C, Saglam M, Yuksel M. Fast pyrolysis of agricultural wastes: Characterization of pyrolysis products[J]. Fuel Processing Technology,2007,88:942-947.
    [225]Ye S, Wang CF, Ding LZ, Cheng YX. Research about calcium exist in plant (review) [J]. Journal of Anhui Agricultural University,2000,27:417-421.
    [226]Yuan JH, Xu RK, Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresour. Technol,2011,102:3488-3497.
    [227]Yu B, Zhang Y, Shukla A, Shukla SS, Dorris KL. The removal of heavy metal from aqueous solutions by sawdust adsorption-Removal of copper[J]. J. Hazard. Mater,2000,80:33-42.
    [228]Yu B, Zhang Y, Shukla A, Shukla SS, Dorris K.L. The removal of heavy metals from aqueous solutions by sawdust adsorption--removal of lead and comparison of its adsorption with copper[J]. J. Hazard. Mater,2001,84:83-94.
    [229]Zanzi R. Pyrolysis of biomass [D]. London:Royal institute of technology department of chemical engineering and technology,2001.
    [230]Zhu DQ, Kwon S, Oiguatello JJ. Adsorption of single-ring organic compounds to wood charcoals prepared under different thermochemical conditions[J]. Environ. Sci. Technol.,2005,39: 3990-3998.
    [231]Zwieten VZ, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J]. Plant Soil,2010,327:235-246.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700