用户名: 密码: 验证码:
黄河宁蒙河段四大沙漠粒度和元素特征对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄河宁蒙河段的腾格里沙漠、河东沙地、乌兰布和沙漠和库布齐沙漠是我国最重要的风沙活动区,其风沙活动不仅对我国沙尘天气有直接的推动作用,而且由于风沙活动导致风沙入黄,其中粒径大于0.1mm的沙粒在黄河中难以形成悬浮物质,多沉积于河道造成河道淤积。因此,对于黄河宁蒙河段四大沙漠的研究,长期以来受到国内外学者的广泛关注,但这些研究工作主要集中在单个沙漠,而对于沙漠间粒度特征的对比研究所进行的工作较少。本文就是在前人研究的基础上选取黄河宁蒙河段四大沙漠为研究对象,对其粒度和元素特征进行对比研究。
     通过对四大沙漠间地表沉积物的机械组成、众数、粒度参数及分形维数特征的研究,我们发现黄河宁蒙段四大沙漠地表沉积物从上游到下游粗颗粒组分(>0.1mm)含量呈现增大趋势,细颗粒组分(<0.1mm)呈现减小趋势;粒度参数特征表现为从上游到下游平均粒径、众数逐渐增大,分选性逐渐变好,粒度频率分布曲线分布属于中等峰态或窄峰态的正偏;地表沉积物的分形维数与沉积物的样品质地关系明确,即样品中粗颗粒组分含量越高或细颗粒组分含量越低,其分形维数值越小,反之亦然。
     通过对四大沙漠元素丰度、风化指标(Na/K、CIA、CPA)、富集因子(EF)、示踪元素与特征元素比值的研究,我们发现,黄河宁蒙河段四大沙漠常量元素氧化物、微量元素含量变化趋势具有很好相似性且变异系数都较低;常量元素氧化物中,除CaO在腾格里沙漠和河东沙地表现为相对富集,在另外两个沙漠表现为相对亏损,其余氧化物均表现为富Si02贫Fe2O3、Al2O3、MgO、Na2O和K20的特点;四大沙漠与洛川黄土和陆源页岩相比,均表现出富SiO2、CaO、Na2O贫Fe2O3、Al2O3、MgO、K2O的特征;微量元素中Ce元素表现为相对富集,Ba、Mn、Nb、Rb、Sr、Ti和V均表现为相对亏损;La元素除在腾格里沙漠相对富集外,其他三大沙漠均相对亏损,Nd元素则在腾格里沙漠和河东沙地相对富集,而在其他两个沙漠相对亏损。
     四大沙漠的风化趋势基本一致,即斜长石最先风化分解,Ca、Na流失,而钾长石较为稳定,其风化程度表现为腾格里沙漠>乌兰布和沙漠>河东沙地>库布齐沙漠;与洛川黄土、陆源页岩相比较,黄河宁蒙河段四大沙漠基本处于弱风化状态;沉积物Na/K比值与CPA变化有明显的负相关关系,而与CIA关系不明显。
     四大沙漠具有相同的地表沉积物来源,但其沉积环境、沉积过程和搬运动力存在差异。其中乌兰布和沙漠与库布齐沙漠最为相似,而与腾格里沙漠差异较大,河东沙地为腾格里沙漠与乌兰布和沙漠和库布齐沙漠的过渡区域。
The Tengger Desert, Hedong sandy land, Ulan Buh Desert and Kubuqi Desert are the most important sand drifting areas in China, where the sand drifting activities not only directly improve the dusty wind weather, but also bring sand into the Yellow River. Sand with grain size>0.1mm can hardly form suspended solids, but mostly deposit in the watercourse to form the sedimentations of the waterways. Therefore, researches on the four deserts in Ningxia-Inner Mongolia section of the Yellow River have long attracted the attentions of scholars in China and foreign countries. There are extensive researches on the four deserts in Ningxia-Inner Mongolia section of the Yellow River, however, they are concentrated in the single desert, few comparative works on the characteristics of these four deserts were conducted. Based on the former researches, by studying the four deserts in Ningxia-Inner Mongolia section of the Yellow River, comparative researches on the features of grain sizes and elements were conducted in this paper.
     By studying mechanical composition, mode, grain size parameters and fractal dimension of the surface sediments in the four deserts, we found that the mechanical compositions of these samples were mainly fine sand and silt. From upstream to downstream, there is an increasing tendency in the contents of coarse particles(>0.1mm) of the four deserts, but a decreasing tend in fine particles(<0.1mm). Among the grain size parameters, mean grain size and mode are gradually increasing, sorting becomes better and granularity distribution frequency curves show a positive skewness and middle or narrow kurtosis. There is a very clear relationship between fractal dimension and sample texture of surface sediments in the four deserts, that is, the more the coarse particle content or the less the fine particle content, the smaller the fractal dimension values, and vice versa.
     By studying the element abundances, weathering indices(Na/K、CIA、CPA), enrichment factor(EF), tracer element and the ratio of the feature element, We found that the variation tendency of the common element oxides and the trace elements is similar, and both of their variable coefficients are relatively small. Among the common element oxides, CaO is relatively enriched in the Tengger Desert and the Hedong sandy land, but relatively less in the other two deserts. The rest of the oxides are characterized by being rich in SiO2, but less in Fe2O3, Al2O3, MgO, Na2O and K2O. Besides, compared with Luochuan Loess and terrigenous shale, the four deserts are all characterized by being rich in SiO2, CaO and Na2O, but less in Fe2O3, Al2O3, MgO and K2O. In these four deserts, the trace element Ce is relatively rich, but Ba, Mn. Nb, Rb, Sr, Ti and V are relatively less; La is enriched in the Tengger Desert, but less in the other three deserts. Nd is relatively enriched in the Tengger Desert and the Hedong sandy land, but less in the other two deserts.
     In these four deserts, the weathering trends are similar, namely plagioclase is firstly weathered and decomposed, with Ca and Na are quickly losing. Potash feldspar is better stable, its weathering degrees in these four deserts are:the Tengger Desert> the Ulan Buh Desert> the Hedong sandy land> the Kubuqi Desert. Compared with Luochuan Loess and terrigenous shale, the four deserts in Ningxia-Inner Mongolia section of the Yellow River are basically slightly weathered. There is obvious negative correlation between the values of Na/K in the sediment and CPA, but unobvious relationship between the values of Na/K in the sediment and CIA.
     There are similar surface sediment sources, but differernt sedimentary environment, deposition processes and handling process in the four deserts. The Ulan Buh Desert is similar with the Kubuqi Desert, but different from the Tengger Desert, the Hedong sandy land in the transition region of the Tengger Desert and the Ulan Buh Desert.
引文
Alexandra, K., Zhang, R.D. Estimating the soil water retention from particle-size distribution:a fractal approach[J]. Soil Science.1998,163(3):171-179.
    An, Z.S. The history and variability of the East Asian Paleomonsoon climate[J]. Quaternary Science Reviews.2000,19(1):171-187.
    Beadnell, H.J.L. The sand-dunes of the Libyan Desert[J]. Geographical Journal.1910:367-368.
    Bird, N.R.A., Bartoli, F., Dexyer, A.R. Water retention models for fractal soil structure[J]. European journal of soil science.1996,47(1):1-6.
    Buggle, B., Glaser, B., Hambach, U., et al. An evaluation of geochemical weathering indices in loess-paleosol studies[J]. Quaternary International.2011,240(1):12-21.
    Cane, M.A., Molnar, P. Closing of the Indonesia seaway as a precursor to east African aridification around 3-4 million years ago[J]. Nature.2001,411(6834):157-162.
    Clemens, S.C., Prell, W.L. Late Pleistocene variability of Arabian sea summer monsoon winds and continental aridity:Eolian records from lithogenic component or deep-sea sediments[J]. Paleoceanography.1990,5(2):109-145.
    Cornish, V. Limits of form and magnitude of desert dunes[J]. Nature.1928,121:620-622.
    DeMenocal, P.B. Plio-Pleistocene African climate[J]. Science(New York, NY).1995,270(5233): 53-59.
    Duzgoren-Aydin, N.S., Aydin, A., Malpas, J. Re-assessment of chemical weathering indices:case study on pyroclastic rocks of Hong Kong[J]. Engineering Geology.2002,63(1):99-119.
    Folk, R.L., Ward, W.C. Brazos River bar:a study in the significance of grain size parameters[J]. Journal of Sedimentary Research.1957,27(1):3-26.
    Gaillardet, J., Millot, R., Dupre, B. Chemical denudation rates of the western Canadian orogenic belt:the Stikine terrane[J]. Chemical Geology.2003,201(3):257-279.
    Grantham, J.H., Velbel, M.A. The influence of climate and topography on rock-fragment abundance in modern fluvial sands of the southern Blue Ridge Mountains, North Carolina[J]. Journal of Sedimentary Petrology.1988,58(2):219-227.
    Hogbom, I. Ancient inland dunes of northern and middle Europe[J]. Geographical Annaler.1923: 113-243.
    Honda, M., Shimizu, H. Geochemical,mineralogical and sedimentological studies on the Taklimakan Desert sands[J]. Sedimentology.1998,45(6):1125-1143.
    Huang, G.H., Zhang, R.D., Huang, Q.Z. Modeling soil water retention curve with a fractal method[J]. Pedosphere.2006,16(2):137-146.
    Krumbein, W.C., Pettijiohn, F.J. Manual of sedimentary petrology:New York [J]. Appleton-Century-Crofts.1938:549.
    Krumbein, W.C., Sloss, L.L., Dapples, E.C. Sedimentary tectonics and sedimentary environments[J]. AAPG Bulletin.1949,33(11):1859-1891.
    Lancaster, N. The role of field experiments in studies of dune dynamics and morphology[J]. Annals of Arid Zone.1996,35:171-186.
    Li, C., Yang, S.Y. Is chemical index of alteration (CIA) a reliable proxy for chemical weathering in global drainage basins? [J]. American Journal of Science.2010,310:111-127.
    Livingstone, I., Warren, A. Aeolian Geomorphology:an introduction[M]. Landon:Addison Wesley Longman Limited.1996:64-101.
    Mandelbrot, B.B. How long is the coast of Britain? Statistical self-similarity and fractional dimension[J]. Science.1967,156:636-638.
    Mandelbrot, B.B. The fractal geometry of nature[M]. Times Books.1982.
    McLennan, S.M., Hemming, S., McDaniel, D.K., et al. Geochemical approaches to sedimentation, provenance and tectonics[J]. Geological Society of America Special Paper.1993,284:21-40.
    McLennan, S.M. Weathering and global denudation[J]. The Journal of Geology.1993,101: 295-303.
    Melton, F.A. A tentative classification of sand dunes its application to dune history in the southern High Plains[J]. The Journal of Geology.1940:113-174.
    Morse, D.R., Lawton, J.H., Dodson, M.M., et al. Williamson, M.H. Fractal dimension of vegetation and the distribution of arthropod body lengths[J]. Nature.1985,341(25):731-733.
    Nesbitt, H.W., Markovics, G., Price, R.C. Chemical processes affecting alkalis and alkaline earths during continental weathering[J]. Geochimica et Cosmochimca Acta.1980,44(11): 1659-1666.
    Nesbitt, H.W., Young, G.M. Early Proterozoic climates and Plate motions inferred from major element chemistry of lutites[J]. Nature.1982,299(21):715-717.
    Niemeyer, L., Pietronero, L., Wiesmann, H.J. Fractal Dimension of Dielectric Breakdown[J]. Physical review letters.1984,52(12):1033-1037.
    Pachepsky, Y.A., Shcherbakov, R.A., Korsunskaya, L.P. Scaling of soil water retention using a fractal model[J]. Soil Science.1995,159(2):99-104.
    Passega, R. Grain size representation by CM patterns as a geological tool[J]. Journal of Sedimentary Research.1964,34(4):830-847.
    Price. J.R., Velbel, M.A. Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks[J]. Chemical Geology.2003,202(3): 397-416.
    Pye, K., The nature, origin and accumulation of loess[J].Quaternary Science Reviews.1995,14(7): 653-667.
    Qiao, Y.S., Guo, Z.T., Hao, Q.Z., et al. Grain-size features of a Miocene loess-soil sequence at Qinan:Implications on its origin[J]. Science in China:Series D Earth Sciences.2006, 49(7):731-738.
    Rea, D.K., Snoeckx, H., Joseph, L.H. Late Cenozoic eolian deposition in the North Pacific:Asian drying, Tibetan uplift, and cooling of the northern hemisphere[J]. Paleoceanography.1998, 13(3):215-224.
    Rieu, M., Sposito, G. Fractal fragmentation, soil porosity, and soil water properties:Ⅰ. theory[J]. Soil Science Society of American Journal.1991,55(5):1231-1238.
    Rudge, J.F, Kleine, T., Bourdon, B. Broad bounds on Earth's accretions and core formation constrained by geochemical models[J]. Nature Geoscience.2010.3(6):439-443.
    Shao, J.Q., Yang, S.Y., Chao, Li, c. Chemical indices (CIA and WIP) as proxies for integrated chemical weathering in China:Inferences from analysis of fluvial sediments[J]. Sedimentary Geology.2012,265:110-120.
    Sharp, R.P. Kelso dunes, Mojave Desert, California[J]. Geological Society of America Bulletin. 1966,77(10):1045-1074.
    Taylor, S.R. Abundance of chemical elements in the continental crust:a new table[J]. Geochimicaet Cosmochimica Acta.1964,28:1273-1285.
    Taylor, S.R., McLennan, S.M. The Continental Crust:Its Composition and Evolution[M]. London: Blackwell Scientific Publications.1985.
    Tennekoon, L., Bonfadel, M.C., Lavallee, D., et al Multifractal anisotropic scaling of the hydraulic conductivity[J]. Water Resource Research.2003,39(7):1193-1205.
    Turcotte, D.L. Fractals and fragmentation[J]. Journal of Geophysical Research.1986,91 (B2): 1921-1926.
    Udden, J.A. Mechanical composition of clastic sediments[J]. Geological Society of America. Bulletin.1914,25:655-744.
    Von Eynatten, H., Barcelo-Vidal, C., Pawlowsky-Glahn, V. Modeling compositional change:the example of chemical weathering of granitoid rocks[J]. Mathematical Geology.2003,35(3): 231-251.
    Wei, S. Fractal invariable distribution and its application in large-sized and super large-sized mineral deposits[J]. Geoscience Frontiers.2011,2(1):87-91.
    Weitz, D.A., Huang, J.S., Lin, M.Y., et al. Limits of the Fractal Dimension for Irreversible Kinetic Aggregation of Gold Colloids[J]. Physical Review Letters.1985,54(13):1416-1419.
    White, B.R. Laboratory simulation of aeolian sand transport and physical modeling of flow around dunes[J]. Annals of Arid Zone.1996:1-33.
    Yang, S.Y., Jung, H.S., Li, C.X. Two unique weathering regimes in the Changjiang and Huanghe drainage basins:geochemical evidence from river sediments[J]. Sedimentary Geology. 2004,164(1):19-34.
    Young, G.M., Nesbitt, H.W. Paleoclimatology and provenance of the glaciogenic Gowganda Formation (Paleoproterozoic), Ontario,Canada:A chemostratigraphic approach[J]. Geological Society of America Bulletin.1999,111(2):264-274.
    Zhang, H.Y., Lu, H.Y., Jiang, S.Y., et al. Provenance of loess deposits in the Eastern Qinling Mountains (central China) and their implications for the paleoenvironment[J]. Quaternary Science Reviews.2012,43(8):94-102.
    Zhang, X.Y., Shen, Z.B., Zhang, G.Y., et al. Remote mineral aerosols in Westerlies and their contributions to the Chinese loess[J]. Science in China (Series D).1996,39(2):134-143.
    安芷生.亚洲季风演化,北半球大冰期的发展与喜马拉雅-青藏高原隆升[J].中国基础科学.2001(8):9-11.
    安芷生,魏兰英.淀积铁质粘粒胶膜及其成因意义[J].科学通报.1979,24(8):356-359.
    安芷生,张培震,王二七,等.中新世以来我国季风-干旱环境演化与青藏高原的生长[J].第四纪研究.2006,26(5):678-693.
    包岩峰,丁国栋,吴斌,等.毛乌素沙地风沙流结构的研究[j].干旱区资源与环境.2013,27(2):118-123.
    陈骏,安芷生,刘连文,等.最近2.5Ma以来黄土高原风尘化学组成的变化与亚洲内陆的化学风化[J].中国科学(D辑).2001,31(2):136-145.
    陈渭南.雷加强.塔克拉玛干沙漠新月形沙丘不同部位的粒度特征兴[J].干旱区资源与环境.1992,6(2):101-110.
    陈曦.干旱区自然地理[M].北京:科学出版社.2010:119-207.
    陈雅琳,常学礼,崔步礼,等.库布齐沙漠典型地区沙漠化动态分析[J].中国沙漠.2008, 28(1):27-34.
    陈肠,陈骏,刘连文.甘肃西峰晚第三纪红黏土的化学组成与风化特征[J].地质力学学报.2001,7(2):167-175.
    陈祝春,张继贤,李定淑.腾格里沙漠东南缘不同类型沙丘的微生物学特性[J].中国沙漠.1983,3(1):20-26.
    成都地质学院陕北队编.沉积岩(物)粒度分析及其应用[M].北京:地质出版社.1978:44-54.
    春喜,陈发虎,范育新,等.乌兰布和沙漠的形成与环境变化[J].中国沙漠.2007,27(6):927-931.
    党亚爱,李世清,王国栋,等.黄土高原典型土壤剖面土壤颗粒组成分形特征[J].农业工程学报.2009,25(9):74-78.
    董光荣,陈惠忠,王贵勇,等.150ka以来中国北方沙漠、沙地演化和气候变化[J].中国科学(B辑).1995,25(12):1303-1312.
    董光荣,靳鹤龄,陈惠忠.末次间冰期以来沙漠-黄土边界带移动与气候变化[J].第四纪研究.1997,2:158-166.
    董光荣,李森,李保生,等.中国沙漠形成演化的初步研究[J].中国沙漠,1991,11(4):23-32.
    董巨峰,杨小平,马志邦.腾格里沙漠丘间地风沙沉积210Pb初探[J].第四纪研究.2008,28(1):184-185.
    董莉丽,郑粉莉.陕北黄土丘陵沟壑区土壤粒径分形特征[J].中国水土保持科学.2009,7(4):35-41.
    董玉祥.“荒漠化”与“沙漠化”[J].科技术语研究.2000,2(4):18-21.
    董治宝.中国风沙物理研究五十年(Ⅰ)[J].中国沙漠.2005,25(3):293-305.
    杜鹤强,薛娴,孙家欢.乌兰布和沙漠沿黄河区域下垫面特征及风沙活动观测[J].农业工程学报.2012,28(22):156-165.
    范冬冬,李生宇,雷加强,等.塔克拉玛干沙漠腹地高大复杂纵向沙垄区沙丘分形特征[J].干旱区地理.2009,32(6):941-947.
    范冬冬,李生宇,雷加强,等.塔克拉玛干沙漠腹地高大复杂纵向沙垄区简单横向沙丘形态特征的空间变异[J].干旱区研究.2009,26(5):755-762.
    范天来,范育新.频率分布曲线和概率累积曲线在沉积物粒度数据分析中应用的对比[J].甘肃地质.2010,19(2):32-37.
    冯连君,储雪蕾,张启锐,等.化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用[J].地学前缘.2003,10(4):539-544.
    冯增昭.沉积岩石学[M].石油工业出版社.1993.
    符超峰,梅凡民,赵景波.毛乌素沙地东南缘沙丘水分垂直变化规律及风蚀意义[J].水土保持学报.2010,24(6):105-111.
    符超峰,赵景波.毛乌素沙地东南缘不同类型沙丘土壤水分分布特征[J].干旱区研究.2011,28(3):377-383.
    伏耀龙,张兴昌,王金贵.岷江上游干旱河谷土壤粒径分布分形维数特征[J].农业工程学报.2012,28(5):120-125.
    管清玉,潘保田,徐树建,等.腾格里沙漠南部(河西走廊东段)沙尘暴代用指标初探[J].自然科学进展.2009,19(1):69-74.
    郭正堂,刘东生,安芷生.渭南黄土沉积中十五万年来的古土壤及其形成时的古环境[J].第四纪研究.1994,3:256-269.
    哈斯.腾格里沙漠东南缘格状沙丘粒度特征与成因探讨[J].地理研究.1998,17(2):178-184.
    哈斯.腾格里沙漠东南缘沙丘表面风沙流结构变异的初步研究[J].科学通报.2004,49(11):1099-1104.
    哈斯.腾格里沙漠东南缘沙丘形态示量特征及其影响因素[J].中国沙漠.1995,15(2):135-141.
    哈斯,董光荣,王贵勇.腾格里沙漠东南缘格状沙丘的形态-动力学研究[J].中国科学(D辑).1999,29(5):466-471.
    哈斯,王贵勇,董光荣.腾格里沙漠东南缘格状沙丘表面气流及其地貌学意义[J].中国沙漠.2000,20(1):30-34.
    何彤慧,王乃昂,黄银洲,等.宁夏河东沙地历史时期沙漠化过程新探[J].宁夏社会科学.2008,2:108-111.
    侯春梅,刘小伟,李明,等.甘肃黄土的粒度分维特征及意义[J].地质科学,2005,40(4):539-546.
    黄冠华,詹卫华.土壤颗粒的分形特征及其应用[J].土壤学报.2002,39(4):490-497.
    贾铁飞,银山,何雨,等.乌兰布和沙漠东海子湖全新世湖相沉积结构分析及其环境意义[J].中国沙漠.2003,23(2):165-170.
    贾晓红,李新荣,李元寿.干旱沙区植被恢复过程中土壤颗粒分形特征[J].地理研究.2007,26(3):518-525.
    金强,曾怡.储集性砂岩粒度组成的分形结构[J].石油大学学报(自然科学版),1995,19(3):12-16.
    李恩菊.巴丹吉林沙漠与腾格里沙漠沉积物特征的对比研究[博士论文].陕西师范大学.2011.
    李北罡,郭博书.库布齐沙漠颗粒物中磷的化学形态分析[J].岩矿测试.2007,26(1):9-12.
    李清河,包耀贤,王志刚,等.乌兰布和沙漠风沙运动规律研究[J].水土保持学报.2003,17(4):86-89.
    李琼,潘保田,高红山,等.腾格里沙漠南缘末次冰盛期以来沙漠演化与气候变化[J].中国沙漠.2006,26(6):875-879.
    李徐生,韩志勇,杨守业,等.镇江下蜀土剖面的化学风化强度与元素迁移特征[J].地理学报.2007,62(11):1174-1184.
    李占宏.内蒙古沙化土地表土粒度特征及其可蚀性颗粒研究[硕士论文].内蒙古:内蒙古师范大学.2007.
    李占宏,海春兴,丛艳静.毛乌素沙地表土粒度特征及其空间变异[J].中国水土保持科学.2009,7(2):74-79.
    李智佩,岳乐平,薛祥煦,等.毛乌素沙地沉积物粒度特征与土地沙漠化[J].吉林大学学报(地球科学版).2007,37(3):578-586.
    梁士楚,董鸣,王伯荪,等.英罗港红树林土壤粒径分布的分形特征[J].应用生态学报.2003,14(1):11-14.
    凌侠.宁夏河东沙地荒漠化态势评价研究-以盐池县为例[博士论文].北京:北京林业大学.2007.
    刘宝.沉积岩石学[M].地质出版社.1980.
    刘东生.黄土与环境[M].科学出版社.1985.
    刘陶,杨小平,董巨峰,等.巴丹吉林沙漠沙丘形态与风动力关系的初步研究[J].中国沙漠.2010,30(6):1285-1291.
    刘钟龄,李政海.乌兰布和沙漠区绿洲草业工程持续发展方略[J].干旱区资源与环境.1995, 9(4):161-172.
    隆浩,马海州,王乃昂,等.毛乌素沙地北缘5.8-4.5cal kaBP的沉积旋回[J].兰州大学学报(自然科学版).2007a,43(2):1-6.
    隆浩,王乃昂,李育,等.毛乌素沙地北缘泊江海子剖面粒度特征及环境意义[J].中国沙漠.2007b,27(2):187-193.
    鲁瑞洁,夏虹,强明瑞,等.近130a来毛乌素沙漠北部泊江海子湖泊沉积记录的气候环境变化[J].中国沙漠.2008,28(1):44-49.
    吕萍,董治宝,张正偲,等.腾格里沙漠近地面层风、气温、湿度特征[J].中国沙漠.2009,29(5):977-981.
    马晓宇,,王培鹏,周新革,等.内蒙古西部沙漠颗粒物和黄河沉积物对磷的输运[J].干旱区资源与环境.2010,24(2):200-203.
    钱广强,董治宝,罗万银,等.巴丹吉林沙漠地表沉积物粒度特征及区域差异[J].中国沙漠.2011,31(6):1357-1364.
    强明瑞,李森,金明,等.60ka来腾格里沙漠东南缘风成沉积与沙漠演化[J].中国沙漠.2000,20(3):256-259.
    任雪,褚贵新,王国栋,等.准噶尔盆地南缘绿洲-沙漠过渡带“肥岛”形成过程中土壤颗粒的分形研究[J].中国沙漠.2009,29(2):298-304.
    史培军.地理环境演变研究的理论与实践:鄂尔多斯地区晚第四纪以来地理环境演变研[M].北京:科学出版社.1991.
    宋菲,马国青,张煜星.乌兰布和沙漠东北部流动沙地危害及防治对策分析[J].内蒙古农业大学学报.2004,25(3):33-35.
    苏里坦,宋郁东,陶辉.不同风沙土壤颗粒的分形特征[J].土壤通报.2008,39(2):244-248.
    苏永中,赵哈林.科尔沁沙地农田沙漠化演变中土壤颗粒分形特征[J].生态学报.2004,24(1):71-74.
    唐艳,刘连友,杨志鹏,等.毛乌素沙地南缘灌丛沙丘土壤水分与粒度特征研究[J].水土保持研究.2009,16(2):6-9.
    王北辰.库布齐沙漠历史地理研究[J].中国沙漠.1991,11(4):33-41.
    王国梁,周生路,赵其国.土壤颗粒的体积分形维数及其在土地利用中的应用[J].土壤学报.2005,42(4):545-550.
    王乃昂,张虎才,曹继秀,等.腾格里沙漠南缘武威黄土剖面磁性地层年代初步研究[J].兰州大学学报(自然科学版).1997,33(4):144-146.
    王涛.中国沙漠与沙漠化[M].河北科学技术出版社.2003.
    王涛,吴薇,赵哈林,等.沙漠化过程中生物量损失的初步评估-以内蒙古科尔沁地区为例[J].中国沙漠.2005,25(4):453-456.
    王文彪,肖巍.从沙物质粒度分析结果研讨沙生植物的固沙作用[J].干旱区资源与环境.2011,25(9):132-137.
    王晓军,王仲祥,谢自楚.从乌鲁木齐河源1号冰川二十八年来的变化看天山地区近期气候变化趋势[J].科学通报.1988,9:693-696.
    王自强,尹崇玉,高林志,等.黔南-桂北地区南华系化学地层特征[J].地球学报.2009,30(4):465-474.
    温小浩,李保生David Dian Zhang,等.萨拉乌苏河流域米浪沟湾剖面主元素记录的末次间冰阶气候波动[J].中国沙漠.2009,29(5):835-844.
    吴霞,哈斯,杜会石,等.库布齐沙漠南缘抛物线形沙丘表面粒度特征[J].沉积学报.2012, 30(5):937-944.
    吴正.风沙地貌学[M].科学出版社.1987.
    肖洪浪,张继贤,李金贵.腾格里沙漠东南缘降尘粒度特征和沉积速率[J].中国沙漠.1997,17(2):127-132.
    谢远云,何葵,周嘉,等.哈尔滨沙尘暴的化学特征及其物质源探讨[J].地理研究.2006,25(2):255-261.
    阎满存,董光荣,李保生,等.腾格里沙漠东南缘沙漠演化的初步研究[J].中国沙漠.1998,18(2):111-117.
    杨东,方小敏,董光荣,等.早更新世以来腾格里沙漠形成与演化的风成沉积证据[J].海洋地质与第四纪地质.2006,26(1):93-100.
    杨根生.黄河石嘴山-河口镇段河道淤积泥沙来源分析及治理对策[M].北京:海洋出版社.2002.
    .杨梅焕,朱志梅,曹明明,等.毛乌素沙地东南缘不同沙漠化阶段土壤-植被关系研究[J].西北农林科技大学学报(自然科学版).2010,38(5):181-188.
    杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报.1993,38(20):1896-1899.
    杨萍,邹学勇,哈斯,等.巴丹吉林沙漠北部风沙地貌形态类型的分区研究[J].中国沙漠.1999,19(3):210-213.
    杨婷婷,丁国栋,郝玉光,等.乌兰布和沙漠新月形沙丘迎风坡风速变化的初步研究[J].水土保持研究.2006,13(3):218-220.
    杨忠敏,任宏斌.黄河水沙浅析及宁蒙河段冲淤与水沙关系初步研究[J].西北水电.2004,3:50-55.
    叶冬梅,秦佳琪,韩胜利,等.乌兰布和沙漠流动沙地土壤水分动态、土壤水势特征的研[J].干旱区资源与环境.2005,19(3):126-130.
    曾宪勤,刘和平,路炳军,等.北京山区土壤粒径分布分形维数特征[J].山地学报.2008,26(1):65-70.
    张虎才.腾格里沙漠南缘武威黄土稀土元素及黄土沉积模式[J].兰州大学学报(自然科学版).1998,34(4):157-164.
    张虎才.元素表生地球化学特征及理论基础[M].兰州大学出版社.1997.
    张虎才,李吉均,马玉贞,等.腾格里沙漠南缘武威黄土沉积元素地球化学特征[J].沉积学报.1997,15(4):152-159.
    张虎才,马玉贞,李吉均,等.腾格里沙漠南缘全新世古气候变化初步研究[J].科学通报.1998,43(12):1252-1258.
    张虎才,马玉贞,彭金兰,等.距今42-18ka腾格里沙漠古湖泊及古环境[J].科学通报.2002,47(24):1847-1857.
    张君弟.腾格里沙漠南部表土粒度与现代沙漠南界关系探讨[硕士论文].甘肃:兰州大学2012.
    张正偲,董治宝.腾格里沙漠东南缘春季降尘量和粒度特征[J].中国环境科学.2011,31(11):1789-1794.
    张志,周瑞清,郭博书.乌兰布和沙漠与黄河沉积物磷的形态分析[J].内蒙古石油化工2007,1:1-5.
    赵文智,刘志民,程国栋.土地沙质荒漠化过程的土壤分形特征fJ].七壤学报.2002,39(5):877-881.
    朱金峰,王乃昂,陈红宝,等.基于遥感的巴丹吉林沙漠范围与面积分析[J].地理科学进展.2010,29(9):1087-1094.
    朱震达,刘恕,邸醒民.中国的沙漠化及其治理[M].北京:科学出版社.1989.
    朱震达,王涛.以若干典型地区的研究对近十余年来中国土地沙漠化演变趋势的分析[J].地理学报,1990,45(4):430-440.
    朱震达,吴正,刘恕,等.中国沙漠概论[M].科学出版社.1980:1-107.
    朱祖祥.土壤学(下册)[M].北京:农业出版社.1983.
    庄国顺,郭敬华,袁蕙,等.2000年我国沙尘暴的组成、来源、粒径分布及其对全球环境的影响[J].科学通报.2001,46(3):19-197.
    俎瑞平,张克存,屈建军,等.塔克拉玛干沙漠地面风场特征及周边地区沙丘排列关系分[J].应用气象学报.2005,16(4):468-455.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700