用户名: 密码: 验证码:
陆地棉种子品质性状遗传及其QTL定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是最重要的经济作物之一。棉花生产中纤维是主要的收获对象,而棉花种子是棉花生产的副产品。棉花种子的用途十分广泛,它是棉花生产的基本生产资料,也是重要的食用油和蛋白质资源。棉花种子品质性状的遗传及其QTL定位研究对于棉花种子品质的遗传改良具有重要的理论和实践意义。本研究选用49份不同蛋白质和棉酚含量的陆地棉种质资源和188份陆地棉重组近交系材料,以多年份、多地点种植收获的种子材料组成原始样品集,建立了近红外反射光谱(NIRS)定标模型,研究应用近红外反射光谱法测定棉仁粉蛋白质含量和棉酚含量的可行性;同时采用包括基因型和基因型×环境互作的双子叶植物二倍体种子数量性状遗传模型,按完全双列杂交设计,研究了陆地棉种子品质性状的遗传效应、遗传率、遗传相关性、遗传效应预测和杂种优势表现等。此外,以陆地棉品种间重组自交系为材料,采用随机交配技术,获得了188个系间交配的“永久F2”群体,并运用本实验室构建的该群体的分子连锁图谱,应用QTLNetwork 2.0软件对“永久F2”群体在两个环境下测得的种子品质性状进行QTL定位研究,确定单个基因的位置及效应。主要研究如下:
     1.采用改进的偏最小二乘法(Modified PLS)和(2,4,4,1)的数学转换的方法建立了棉仁粉蛋白质和棉酚含量的近红外反射光谱(NIRS)定标模型。该定标模型的蛋白质含量定标决定系数(RSQ)为0.93和交叉检验决定系数(1-VR)为0.93,定标标准误差(SEC)和交互校验标准误差(SECV)分别为0.62和0.64,预测模型的建模效果优良,可替代化学分析。棉酚含量预测模型的RSQ、1-VR、SEC和SECV分别为0.84、0.81、0.07和0.08,模型预测效果略差于蛋白质模型,但仍可用于棉仁粉中棉酚含量的测定.
     2.采用基因型和基因型×环境互作的二倍体种子数量性状遗传模型和统计分析方法,分析了陆地棉12个亲本及其双列杂交组合种子品质性状的遗传效应、遗传率和遗传相关,结果表明:
     ①遗传主效应和环境互作效应分析表明,种仁率、蛋白质含量和油分含量以遗传主效应为主,而籽指、仁指、仁壳比和棉酚含量则是以基因型×环境互作效应为主.所有研究的性状几乎都以母体植株遗传效应为主,其次为细胞质效应。四个种子物理性状均受环境影响大,其中籽指、仁指、仁壳比的母体植株遗传是以显性效应为主,种仁率以细胞质效应为主。蛋白质和油分含量以母体加性效应为主、母体植株普通遗传率较高,而棉酚含量以母体显性×环境互作效应以及细胞质效应为主,细胞质遗传率较高。
     ②棉花种子物理与营养品质性状间的相关性分析表明,籽指与蛋白质含量、油分含量间以胚加性相关为主,籽指与棉酚含量的相关受环境影响大,母体加性与环境互作负相关较为重要;仁指与三个营养品质性状的相关受环境影响较大,分别以胚显性互作负相关、胚加性互作正相关、细胞质和母体显性互作负相关为主;种仁率与蛋白质、油分和棉酚含量分别以母体加性正相关、母体加性负相关和细胞质负相关为主;仁壳比与三个营养品质性状分别以母体加性正相关、胚×环境互作正相关和细胞质负相关为主。营养品质性状间相关性分析结果表明,蛋白质含量与油分含量呈极显著的负相关;蛋白质与棉酚含量以胚显性负相关为主;油分含量与棉酚含量以极显著的胚显性正相关为主。因此,在棉花种子品质性状的改良中,可利用这些性状的相关进行性状间的间接选择。
     ③7个棉花种子品质性状存在着不同程度的杂种优势,但杂种优势的表现程度和方向存在着较大的差异,其中籽指、仁指和仁壳比以母体优势为主,种仁率以细胞质优势为主,蛋白质含量以母体优势为主,油分含量以胚优势和母体优势为主,棉酚含量以母体优势为主。籽指、仁指和种仁率还存在着较大的环境互作优势;仁壳比、蛋白质含量、油分含量和棉酚含量这几个性状的互作优势不明显,它们主要受遗传主效应杂种优势的影响。
     ④不同亲本在棉花种子品质性状的改良中具有特定的利用价值,其中SGK 3可以明显增加棉花种子的籽指;H 556可明显增加杂种后代的仁指;SGK 3、中棉所44、浙905、鲁2015和H 556会增加后代的种仁率;126系9、AY-4、浙1793、鲁2015和H 556能明显增加后代的仁壳比;AY-4、浙905和Z1138会增加杂种后代的蛋白质含量;126系9、浙1793、、R808、H 556和J 220在棉花高油分育种中具有较好的种用价值;而中棉所44、AY-4、浙905、R 808和鲁2015可以明显降低后代的棉酚含量。
     3.创建了一套陆地棉品种间“永久F2”群体。选用陆地棉品种间杂交组合(HS46×MARCABUCAG8US-1-88) 188个近交系为材料,对其进行重组近交系间的随机交配,获得188个重组近交系系间交配的“永久F2”群体。采用本实验室构建的重组自交系分子连锁图谱,应用QTLNetwork 2.0软件对“永久F2”群体在两个环境下测得的种子品质性状进行QTL定位。共检测到17个与种子品质性状相关的主效QTLs和15对上位性QTLs,控制籽指的主效QTL和上位性位点各2个,共解释籽指性状总变异的.22.27%;控制仁指主效QTL2个和4对上位性位点,共解释仁指性状总变异的23.04%;控制种仁率的主效QTL4个和2对上位性位点,共解释种仁率性状总变异的19.70%;此外,本研究将控制仁壳比的主效QTL和上位性位点定位于第.15号染色体上。对棉花种子营养品质性状定位结果表明,共检测到与蛋白质含量相关的主效QTL3个和1对上位性位点,共解释总遗传变异的12.13%;与种子油分含量相关的QTL和上位性位点各3个,但受环境影响大;与棉酚含量相关的QTL 4个,上位性位点2对,能解释棉酚含量变异仅为2.42%。
Cotton (Gossypium spp.) is the most important fibre crop in the world. As a main by-product of cotton, cottonseed is an important source of edible oil and protein meals. Due to its important economic value, there was an increasing interest for cotton breeders in improving cottonseed quality. One of the most important aspects for cottonseed quality improvement is to understand its genetic mechanism and develop fast testing methods for seed quality. Thus, the aims of present study are (1)to investigate the feasibility of quality measuring method with near-infrared reflectance spectroscopy, using 49 upland cotton (Gossypium hirsutum L.) germplasms and 188 recombinant inbred lines (RILs), which were harvested from different cotton growing regions in different years; (2)to determine genetic effect, heritability, correlation, the exploitation of F2 heterosis of cottonseed quality traits through the genetic models of diploid plant seed quantitative traits and corresponding statistical approaches with two years data under two kinds of environment, using twelve transgenic upland cotton parents with a diallel mating design; (3)to construct an "immortalized F2" (IF2) population including 188 single crosses; and (4)to analyze the frequency of molecular marker loci in IF2 population, using a molecular map with 388 different markers. The main results were summarized as follows:
     (1) Protein and gossypol NIRS calibration equations of cottonseed were obtained with modified partial least squares (MPLS) through analyzing the scanning data with ISI software. The multiple correlation coefficients (RSQ) and statistic 1-variance ratio (1-VR) for the protein content NIRS calibration in cottonseed kernels were 0.93 and 0.93, respectively, and its standard error of calibration (SEC) and standard error of cross validation (SECV) were 0.62 and 0.64, respectively. The results indicated that NIRS could be used as a substitute for chemical methods in determination of protein content in cottonseed kernels. Also, the RSQ, SEC,1-VR and SECV for gossypol content determination of NIRS were 0.84,0.81,0.07 and 0.08, respectively. It showed a good fitting with chemical method although it was weaker than that of protein content NIRS.
     (2)The genetic effect, heritability and genetic correlation of cottonseed quality traits including seed index (SI), kernel index (KI), kernel percentage (KP), kernel/hull (K/H), protein content (PC), oil content (OC) and gossypol content (GC) in twelve parents and their diallel mating were analyzed through the genetic models of diploid seed quantitative traits. The results showed that
     ①KP, PC and OC were mainly affected by genetic effect, and SI, KI, K/H and GC were mainly controlled by genetic×environmental interaction effect. In addition, all seed quality traits in this experiment were mainly controlled by maternal effects, followed by cytoplasmic effects. Four physical traits including SI, KI and K/H were dominantly controlled by environment effects. For cottonseed nutrient quality traits, PC and OC were mainly controlled by maternal additive effects. And the total narrow-sense heritabilities for PC and OC were high. GC was controlled by maternal dominance×environment interaction and cytoplasmic effects and having a high cytoplasm heritability. The results may supply some useful information for the improvement of seed quality by the genetic and breeding method.
     ②The phenotypic correlation and genotypic correlation components for quality traits indicated that genetic main correlations and GE interaction correlations from different genetic systems including diploid embryo, cytoplasm and diploid maternal plant were mostly significant for the pairwise quality traits excepted for K/H. The relationship for SI and GC, KI and PC, KI and OC, KI and GC were influenced by the environment conditions. A negative correlation between PC and OC, PC and GC was observed. However, the correlation between OC and GC was positive. Therefore, some cottonseed quality traits could be indirectly improved by the selection based on other traits effectively.
     ③Heterosis including the general heterosis and the GE interaction heterosis could be detected in the cottonseed quality traits, but the performance and main effect varied with the traits. The most important general heterosis of SI, KI, K/H, PC, OC and GC were maternal heterosis, while KP was mainly affected by cytoplasmic heterosis. In addition, SI, KI and KP were also controlled by interaction heterosis, but the interaction heterosis was not important for K/H, PC, OC and GC.
     ④The predicted values of genetic effects for 12 parents were also analyzed in this study. It showed that testing parents could play different role in cottonseed quality improvement breeding. For example, SGK 3 and H 556 have the effect to increase SI and KI in these offsprings; SGK 3, ZMS 44, ZHE 905, LU 2015 and H 556 could increase KP significantly; 126XI 9, AY-4, ZHE 1793, LU 2015 and H 556 could increase K/H in the following progenies; AY-4, ZHE 905 and Z 1138 were better than other for increasing PC; 126XI 9, ZHE 1793, R 808, H 556 and J 220 were important in the improvement of OC in seeds; and ZMS 44, AY-4, ZHE 905、R 808 and LU 2015 were the good germplasm to decrease GC in cottonseeds.
     (3) An "immortalized F2" (IF2) population including 188 single crosses was constructed by using a set of recombinant inbred line (RIL) derived from the hybrid of HS46×MARCABUCAG8US-1-88. With this IF2 population, the frequency of molecular marker loci, QTL mapping and effect of single loci for seed quality traits were analyzed using a molecular map with 388 markers by software of QTL Network. Seventeen main effects and fifteen epistasis in QTLs were identified for cottonseed quality traits including SI, KI, KP, K/H, PC, OC and GC. Two of main QTL and epistasis were found closely correlated with SI, and the total variation explained was 22.27%; And two main QTL and four epistasis attribute to KI, and explained 23.04% variation; and four main QTL and 2 epistasis could explain 19.70% total variation of KP. Further, present study located the main QTL of K/H in the 15 chromosome. Also, the number of closely related main QTL and epistasis for protein, oil, gossypol content are 3-1,3-3, and 4-2, respectively. And the variation explained are 2.42%~23.04%. These QTLs detected for seed quality traits in cotton are expected to be useful in the breeding program for cottonseed nutrient quality.
引文
1 鲍文奎.机会与风险—40年育种研究的思考.植物杂志,1990,4:4~5
    2 包劲松,包志毅,何平,朱立煌.在两个环境中检测控制水稻抽穗期的QTL.浙江大学学报(农业与生命科学版),2002,28(1):27~32
    3 陈布圣.棉花栽培生理.北京:中国农业出版社,1994,153~174
    4 陈锋,何中虎,崔党群,赵武善,张艳,王德森.利用近红外透射光谱技术测定小麦品质性状的研究.麦类作物学报,2003,23(3):1~4
    5 陈仲方,张治伟,承泓良.陆地棉品种棉子品质分析研究.作物学报,1986,12(3):195~199
    6 雕鸿荪,华聘聘.丙酮水释工艺法制取醋酸棉酚.(中国专利),85108568,1987
    7 丁丽敏,计成,杨彩霞,戎易,刘向阳,范凌,王明仙.近红外光谱技术快速测定棉籽粕、菜籽粕真可利用氨基酸含量的研究.动物营养学报,2000,12(1):21~25
    8 董合忠,李维江,张晓洁.棉花种子学.北京:科学出版社,2004,46~64
    9 杜尔宾等(袁妙葆等译).植物细胞质雄性不育系的遗传学原理.北京:农业出版社,1980
    10董承光,邓福军,陈红,王长彪,李保成.棉花重要性状基因定位研究进展.作物杂志,2008,3:5~9
    11段民孝,邢锦丰,郭景伦,王元东,赵久然.近红外光谱(NIRS)分析技术及其在农业中的应用.北京农业科学,2002,1:11~14
    12甘莉,孙秀丽,金良,王高全,徐久伟,魏泽兰,傅廷栋.NIRS定量分析油菜种子含油量、蛋白质含量数学模型的创建.中国农业科学,2003,36(12):1609~1613
    13高丹丹,李海星,吴丽萍,曹郁生,陈燕,王腊梅.不同的测定方法在棉花中的应用.棉籽蛋白提取工艺研究.食品工业科技,2009,30(52):267~269
    14高海燕,赵镭,尹京苑,周晓慧.棉籽分离蛋白功能性质的研究.食品科学,2008,29(11): 72~76
    15高用明,朱军,宋佑胜,何慈信,石春海,邢永忠.水稻永久F2群体抽穗期QTL的上位性及其与环境互作效应的分析.作物学报,2004,30:849~854
    16高玉千,聂以春,张献龙.棉花抗黄萎病基因的QTL定位.棉花学报,2003,15(2):73~78
    17高振川,李建凡,姜云侠.无腺体棉花是优质的蛋白质资源.中国棉花,1984,6:19~21
    18郭龙彪,罗利军,邢永忠,徐才国,梅捍卫,王一平,钟代彬,钱前,应存山,石春海.水稻重要农艺性状的两年QTL剖析.中国水稻科学,2003,17(3):211~218
    19韩菊,王春芳,徐荣旗.转Bt基因棉籽仁中脂肪酸的分析.河北工业科技,2000,17(2): 27~29
    20何小红,徐辰武,蒯建敏.数量性状基因作图精度的主要影响因子.作物学报,2001,4:469~475
    21 何照范.粮油籽粒品质及其分析技术.北京:农业出版社,1985
    22黄永林,阮俊,杨雄辉,黄贤清.棉籽中游离棉酚的含量测定.广西植物,2001,21(4)371~373
    23 鲁黄均,马家璋.不同环境条件下生产的棉花种子品质的差异及对后代的影响.种子,1990,6:17~21
    24惠大丰,姜长鉴,莫惠栋.数量性状基因图谱构建方法的比较.作物学报,1997,23(2):129~136
    25 季道藩,曾广文,朱军.四个栽培棉种的种仁油分和氨基酸成分的分析.浙江农业大学学报,1985,11(3):257~262
    26 季道藩,曾广文,朱军.四个栽培种的种仁油分和氨基酸成分的分析.中国棉花学会第二次代表大会暨学术交流会会议文件和论文汇编,1984,193~197
    27季道藩,朱军.陆地棉品种间杂种的种仁油分和氨基酸成分的遗传分析.作物学报,1988,14(1):1~6
    28季道藩.棉花知识百科.北京:中国农业出版社,2001
    29季道藩.棉花种子油分和蛋白质的遗传育种.中国棉花学会第六次学术讨论会论文汇编,1986,77~80
    30蒋江虹,革丽亚,麦琦.全自动凯氏定氮仪测定食品中蛋白质.光谱仪器与分析,2006,258~260
    31 李大庆,钱大顺,倪金柱.棉铃发育研究Ⅳ.伏桃、晚秋桃棉籽质量的鉴定.江苏农业科学,1982,3:21~24
    32李文炳.山东棉花.济南:山东科学技术出版社,2001,114~162
    33李心宽,史玉轩,王淳洪,张囡.棉籽仁游离棉酚含量测定方法试验.辽宁农业科学,1984,6:53~55
    34李泽福,周彤,郑天清,罗林广,夏加发,翟虎渠,万建民.水稻抽穗期QTL与环境互作分析.作物学报,2002,28(6):771~776
    35 梁璐,汪森明.棉酚抗肿瘤作用的研究进展.广东医学,2007,28(9):1535~1537
    36刘冬青,庞居勤,葛逢珠.棉花不同品种棉子仁蛋白、粗脂肪含量在不同地点差异的分析.江西棉花,1995,4:11~12
    37刘巷禄,袁钧,李永山,潘转霞,樊立强.棉花种子质量对棉花生长发育及产量效应的影响.山西农业科学,1997,25(4):40~43
    38骆霞虹,卢正中,刘鹏渊,吴吉祥,朱军.陆地棉棉籽不同发育期容重和种仁率的遗 传分析.浙江农业学报,1998,10(5):225~229
    39毛传澡,程式华.水稻农艺性状QTL定位精确性及其影响因素的分析.农业生物技术学报,1999,4:386~395
    40梅拥军,郭伟锋,熊仁次.陆地棉产量组分对皮棉产量的遗传贡献分析.棉花学报,2007,19(2):114~118
    41邱新棉,俞碧霞.低酚棉品种浙棉9号和10号的主要性状分析.作物品种资源,1999,1: 15~16
    42瞿鹏,孔晓朵.蛋白质测定的研究进展.商丘师范学院学报,2002,18(2):107~110
    43 任立华,郭旺珍,张天真.利用置换系检测棉花第16染色体的产量、纤维品质QTLs.植物学报,2002,44(7):815~820
    44阮成江,何祯祥,钦佩.我国农作物QTL定位研究的现状和进展.植物学通报,2003,20:10~22
    45沈乃愚,陈铭狄,叶惠珍.不同成熟度棉种的素质及其育苗效果研究简报.中国棉花学会论文集,1981,35~36
    46孙善康.棉花种子营养品质研究.中国农业科学,1987,20(5):12~16
    47孙济中,刘金兰,张金发.棉花杂种优势的研究和利用.棉花学报,1994,6(3):135~139
    48 汪旭升,陆燕.近红外光谱分析法(NIRS)测定棉籽粉中油分含量的研究.浙江农业学报,2001,13(4):218~222
    49王国建,朱军,藏荣春,许馥华,季道藩.陆地棉种子品质性状与棉花产量性状的遗传相关分析.棉花学报,1996,8(6):295~300
    50 王国印,李蒙恩.棉子品质性状的遗传研究.华北农学报,1991,6(2):20~25
    51 王国印.陆地棉数量性状遗传研究与进展.中国棉花,1994,21(3):5~7
    52王海莲,万向元,胡培松,翟虎渠,万建民.稻米脂肪含量近红外光谱分析技术研究.中国农业科学,2005,38(8):1540~1546
    53王岚,叶惟三,刘霄,郭燕,薛社普.低剂量棉酚与甾体激素联合用药对大鼠生精细胞凋亡的影响.基础医学与临床,2002,22(4):358~362
    54王林生,宋忠利,李毓珍,马晓玉.植物数量性状的QTL定位分析.安徽农业科学,2006,34:4527~4529
    55王敏.双缩脲法快速测定大豆分离蛋白粉中的粗蛋白.大豆通报,2003,3:32
    56王秀荣,廖红,严小龙.应用近红外光谱分析法测定大豆种子蛋白质和脂肪含量的研究.大豆科学,2005,24(3):199~201
    57王学德,俞碧霞,夏如冰,王洁.低酚棉产量、纤维品质和棉仁营养品质的表现及其相关性.浙江农业科学,1989(3):118~120
    58王延琴,杨伟华,周大云,许红霞,冯新爱,夏俊英.不同生态区及收获期对棉子营养品质的影响.中国棉花,2003,30(2):7~10
    59王延琴,杨伟华,周大云,许红霞,冯新爱,夏俊英.棉子营养成分与发芽率及出苗率的关系.棉花学报,2003,15(2):109~112
    60王志忠,王兆晓,崔瑞敏,张香云.种间杂交与陆地棉品种间杂交杂种优势利用研究.棉花学报,1998,10(3):162~166
    61 吴吉祥,朱军,许馥华,季道藩.陆地棉F2纤维品质性状杂种优势的遗传分析.棉花学报,1995,7(4):217~222
    62吴建国,石春海,张海珍.构建整粒油菜籽脂肪酸成分近红外反射光谱分析模型的研究.光谱学与光谱分析,2006,26(2):259~262.
    63 吴茂清,张献龙,聂以春,贺道华.四倍体栽培棉种产量和纤维品质性状的QTL定位.遗传学报,2003,30(5):443~452
    64项时康,孙善康.陆地棉种子蛋白质脂肪含量与子指、衣分的关系.中国棉花,1982,3:27
    65邢永忠,徐才国.作物数量性状基因研究进展.遗传,2001,5:498~502
    66邢朝柱,喻树迅.棉花杂种优势表达机理研究进展.棉花学报,2004,16(6):379~382
    67邢朝柱,靖深蓉,郭立平,袁有禄,王海林.转Bt基因棉杂种优势及性状配合力研究.棉花学报,2000,12(1):6~11
    68徐建龙,薛庆中,梅捍卫.水稻数量性状位点(QTL)定位研究进展.浙江农业学报,2001,13: 315~321
    69谢雪玉,陈全斌.文献计量分析中国棉子研究现状及发展趋势.江西棉花,2008,30(3):12~15
    70徐云碧,朱立煌.分子数量遗传学.北京:中国农业出版社,1994
    71 杨奎华.陆地棉种仁脂肪含量及蛋白质等几种性状相关性的研究.棉花学报,1985,1:48~53
    72杨柳桦,孙成均.双缩脲光度法快速测定乳品中的蛋白质.现代预防医学,2005,32(8):984~985
    73 叶子弘,卢正中,朱军.陆地棉种子物理性状的发育遗传研究.棉花学报,2001,13(6):323~329
    74叶常丰,戴心维.种子学.北京:中国农业出版社,1994
    75 叶世柏.化学性食品中毒与检验.北京:北京大学出版社,1989,182
    76殷剑美,武耀廷,张军,张天真,郭旺珍,朱协飞.陆地棉产量性状QTL的分子标记及定位.生物工程学报,2002,18(2):162~166
    77余冰宾.基础生物化学实验指导.北京:清华大学出版社,2004,131~141
    78于雯,吕玉琼.用全自动凯氏定氮仪测定食品中蛋白质.中国卫生检验杂志,2001,11(5): 610
    79俞一夫.国内外粮食、油料脂肪测定方法评析.西部粮油科技,2000,25(1):46~49
    80袁爱平,曹立勇,庄杰云,李润植,郑康乐,朱军,程式华.水稻株高、抽穗期和有效穗数的QTL与环境的互作分析.遗传学报,2003,30(10):899~906
    81 张焦平,江良荣,黄建勋,张凯,王侯聪,黄育民.水稻抽穗期上位效应和QE互作效应的分析.分子植物育种,2006,4(3):351~357
    82张晓芳,俞信,阎吉祥,倪勇.近红外反射技术开放式检测棉籽中水分和油含量的研究.光谱学与光谱分析,2007,27(3):473~476
    83张正圣,李先碧,刘大军,黄顺礼,张凤鑫.陆地棉高品质系的杂种优势利用研究.棉花学报,2002,14(5):264~268
    84 张桂寅,刘立峰,马峙英.转Bt基因抗虫棉杂种优势利用研究.棉花学报,2001,13(5):264~267
    85章元明.作物QTL定位方法研究进展.科学通报,2006,19:2223~2231
    86赵书景.粮食、饲料中蛋白质含量测定方法的研究.扬州大学,2008
    87中国农业科学院棉花研究所.中国棉花遗传育种学.济南:山东科学技术出版社,2003
    88周雁声,粱诗锦,彭习亮.陆地棉丰产优质育种选择方法的遗传基础.湖北农业科学(增刊),1989,1:24~28
    89周有耀.陆地棉产量及纤维品质性状的遗传分析.北京农业大学学报,1988,14(2):135~141
    90周有耀.棉子营养品质与纤维品质的关系.中国棉花,1993,2:13~14
    91周治国,许玉璋,许萱.棉籽品质与纤维品质及其铃期温度的相关性研究.陕西农业科学,1992,3:3~5
    92朱军.数量性状基因定位的混合线性模型分析方法.遗传,1998,20(增刊):137~138
    93 朱军.遗传模型分析方法.中国农业出版社,1994
    94朱军.作物杂种后代基因型值和杂种优势的预测方法.生物数学学报,1993,8(1):32~44
    95 朱乾浩,俞碧霞,许馥华.低酚棉棉子品质性状遗传分析.棉花学报,1995,7(2):94~99
    96朱青竹,赵国忠,苏丽君,张艳丽,冯恒文.棉花杂种优势与亲本表现的关系研究.棉花学报,2007,19(4):312~314
    97朱乾浩,俞碧霞,许馥华.陆地棉品种间杂种优势利用研究进展.棉花学报,1995,7(1): 8~11
    98、朱四元,陈金湘.低酚棉育种研究进展.江西农业学报,2006,18(4):18~23
    99祝水金,季道藩.澳洲野生棉种子叶色素腺体延缓形成性状的遗传研究.科学通报,2001,46(2):132~137
    100 GB/T 13086-1991.饲料中游离棉酚的测定方法
    101 GB/T 5009.148-2003.植物性食品中游离棉酚的测定
    102 GB 5512-85.粮食、油料检验粗脂肪测定法
    103 GB/T 6433-2006/ISO 6492:1999.饲料中粗脂肪的测定
    104 GB 1537-2003.棉籽油
    105 GB/T 14771-93.食品中蛋白质的测定方法
    106 Bell AA, Stipanovic RD. The chemical composition, biological activity and genetics of pigment glands in cotton. Proceedings Beltwide Cotton Production Research Conferences, 1977,244-258
    107 Bertrand JA, Sudduth TQ, Condon A, Jenkins TC, Calhoun MC. Nutrient content of whole cottonseed. Journal of Dairy Science,2005,88:1470-1477
    108 Benbouza H, Lognay G, Palm R, Baudoin JP, Mergeai G. Development of a visual method to quantify the gossypol content in cotton seeds. Crop Science,2002,42:1937-1942
    109 Burr B, Burr FA, Thompson KH, Albertson MC, Stuber CW. Gene mapping with recombinant inbreds in maize. Genetic,1998,118:519-526
    110 Burr B, Burr FA. Recombinant inbreds for molecular mapping in maize theoretical and practical consideration. Trends Genet,1991,7:55-60
    111 Bushr A. Low cost protein from cottonseed. Economic Botany,1973,27:137-140
    112 Cockerham CC. Random and fixed effects in plant genetics. Theoretical Applied Genetics, 1980,56:119-131
    113 Crow JF. Alternative hypotheses of hybrid vigor. Genetics,1948,33(5):477-487
    114 Cowen NM. The use of replication progenies in marker-based mapping of QTLs. Theoretical Applied Genetics,1988,75:857-862
    115 Dani RG, Kohel RJ. Maternal effects and generation mean analysis of seed oil content in cotton (Gossypium hirsutum L.). Theoretical Applied Genetics,1989,77:569-575
    116 Dani RG. Heterosis and combining ability for oil content and other economic traits in cotton (Gossypium hirsutum L.). Indian Journal of Genetics,1989,49(1):47-51
    117 Dani RG. Genotype × environment interactions for seed-oil and protein content in cotton (Gossypium hirsutum L.). Indian Journal of Genetics and Plant Breeding,1990,49(2):237-240
    118 David LP, Arthur SK, James HO. Analysis of amino and fatty acid composition in soybean seed, using near infrared reflectance spectroscopy. Agronomy Journal,1997,89:679-685
    119 Dodou K, Erson RJ, Small DA, et al. Investigations on gossypol:past and present developments. Expert Opinion on Investigational Drugs,2005,14 (11):1419-1434
    120 Dowd MK, Pelitire SM. Recovery of gossypol acetic acid from cottonseed. Soapstock Industrial Crops and Products,2001,14:113~123
    121 Dowd MK, Pelitire SM. HPLC preparation of the chiral forms of 6-methoxy-gossypol and 6, 6'-dimethoxy-gossypol. Journal of Chromatography B,2008,867:69~77
    122 Erickson EA, Wilcox JR, Cavins JF. Inheritance of altered palmitic acid percentages in two soybean mutants. Journal of Heredity,1988,79:465~468
    123 Khan FA, Azhar FM, Irfan A, Saeed R. Effect of nitrogen regimes on combining ability variation in oil and protein contents in cottonseed (Gossypium hirsutum L.). Plant Production Science,2007,10 (3):367~371
    124 Harden ML, Yang SP. Protein quality and supplementary value of cottonseed flour. Journal of Food Science,1975,40:75~77
    125 Henderson CR. Estimation of variance and covariance components. Biometrics,1965,9: 226~252
    126 Hossain MN. Heritability of oil content of seed, its correlation to seed protein, fibre qualities and yield in cotton (G. hirsutum L.). Dissertation Abstracts International. B (1983)44(3) (PI. Br. Abst,54(2~3):1466; 1984)
    127 Hua JP, Xing YZ, Xu CG, Sun XL, Yu SB, Zhang QF. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics, 2002,162:1885~1995
    128 Jansen RC, Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics,1994,136:1447~1455
    129 Jiang CX, Wright RJ. Polyploid form created unique avenues for response to selection in Gossypium (cotton). Proc NatAcadSci USA,1998,95(8):4419~4424
    130 Kashalear PD, Dani RG, Wegiwar DG, Heterosis and maternal effects for seed oil content in upland cotton.1989. (PI, Br Absts,60(12):12278,1990)
    131 Kearsey MJ, Hyne V. QTL analysis:a simple'marker-regression'approach. Theoretical Applied Genetics,1994,89:698~702
    132 Khan MA, Myers GO, Stewart JM, Zhang J, Cantrell RG. Addition of new markers to the transpacific cotton map. Proceedings Beltwide Cotton Production Research Conferences, 1999,439
    133 Kohel RJ. Genetic studies of seed oil in cotton. Crop Science,1980,20:784~788
    134 Kohel RJ, Yu J, Deeani L, Dong J, Zhang H. Cottonseed quality and creation of glanding plants with glandless seed. Proceedings of Genetic Control of Cotton Fiber and Seed Quality Workshop,2000,271~277
    135 Kohel RJ. Evaluation of near infrared reflectance for oil content of cottonseed. The Journal of Cotton Science,1998,2:23~26
    136 Lander ES, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics,1989,1:185~199
    137 Lawhon JT, Cater CM, Mattil, KF. Evaluation of the food use potential of sixteen varieties of cottonseed. Journal of the American Oil Chemists' Society,1976,54:75~80
    138 Lee JA. The inheritance of gossypol, level in Gossypium I. Additive, dominance, epistatic and maternal effects associated with seed gossypol in two varieties of G. hirutum L. Genetics, 1968,59:285~298
    139 Li ZK, Yu SB, Lafitte HR, Huang N, Courtois B, et al. QTL × environment interactions in rice,1. Heading date and plant height. Theoretical Applied Genetics,2003,108:141~153
    140 Liang HZ, Wang SF, Wang TF, Zhang HY, Zhao SJ, Zhang MC. Genetic analysis of embryo, cytoplasm and maternal effects and their environment interactions for isoflavone content in soybean [Glycine max (L.) Merr.]. Agricultural Sciences in China,2007,6 (9):1051~1059
    141 Lin JR, Shi CH, Wu MG, Wu JG. Analysis of genetic effects for cooking quality traits of japonica rice across environments. Plant Science,2005,168:1501~1506
    142 Lordelo MM, Shaaban SA, Dale NM, Calhoun MC, Vendrel PF, Davis AJ. Near infrared reflectance spectroscopy for the determination of free gossypol in cottonseed meal. Poultry Science Association,2008,17:243~248
    143 Martinez WH, Berardi LC, Goldblatt LA. Cottonseed protein products composition and functionality. Journal of Agricultural and Food Chemistry,1970,18:961~968
    144 Meredith WRJr, Brown JS. Heterosis and combining ability of cottons originating from different regions of the United States. The Journal of Cotton Science,1998,2:77~84
    145 Monforte AJ, Tanksley SD. Fine mapping of a quantitative trait locus (QTL) from Lycopersicon hirsute chromosome 1 affecting fruit characteristics and agronomic traits: breaking linkage among QTLs affecting different traits and dissection of heterosis for yield. Theoretical Applied Genetics,2000,100:471~479
    146 Moncada P, Martinez CP, Borrero J, Chatel M, Gauch HJr, Guimaraes E, Tohme J, McCouch SR. Quantitative trait loci for yield and yield components in an oryza sativa × oryza rufipogon BC2F2 population evaluated in an upland environment. Theoretical Applied Genetics,2001,102:41~52.
    147 Meredith WR. Yield and fiber quality potential for second generation cotton hybrids. Crop Science,1990,30:1045~1048
    148 Norris KH, Barnes RF, Moore JE, Shenk JS. Predicting forage quality by infrared reflectance spectroscopy. Journal of Animal Science,1976,43(4):889~897
    149 Osborne BG. Near infrared spectroscopy in food analysis. Published in USA,1988
    150 Pandey SN, Thejappa N. Study on relationship between oil, protein, and gossypol in cottonseed kernels. Journal of the American Oil Chemists'Society,1975,52:312~315
    151 Parrish FW, Madacsi JP, Phillippy BQ, Wilfred AG, Buco SM. Determination of phytic acid in cottonseed by near-infrared reflectance spectroscopy. Journal of Agricultural and Food Chemistry,1990,38(2):407~409
    152 Pizzinatto MA, Menten JOM, Soave J, Cia E, Maeda JA, Machado MJO. Relationship between cotton seed weight and quality. Bragantia,1991,50:269~289
    153 Pleines S, Friedt W. Genetic control of linolenic acid concentration in seed oil of rapeseed (Brassica napus L.). Theoretical Applied Genetics,1989,78:793~797
    154 Pope OA, Ware JO. Effect of variety, location and season on oil, protein and fuzz of cottonseed and on fiber problems of lint. Technical Bulletin United States Department Agriculture,1945,903:41
    155 Ramos LCDS, Kohel RJ. Seed-oil content of glanded and glandless cottons. Journal of the American Oil Chemists'Society,1987,64:1337~1340
    156 Ramos LCDS. A genetic study of cottonseed oil content associated with glanded and glandless strains. Ph D Diss, Texas A and M University, College Station.1985
    157 Rao CR. Estimation of variance and covariance component: MINQUE theory. Journal of Multivariate Analysis,1971,1:257~275
    158 Ribaut JM, Hoisington D. Marker assisted selection:new tools and strategies. Trend in Plant Science,1998,3(6):236~239
    159 Scheffler JA, Romano GB. Modifying gossypol in cotton (Gossypiuw hirsutum L.):A cost effective method for small seed samples. The Journal of Cotton Science,2008,12:202~209
    160 Sharpley ZW, Jenkins JN, Zhu J, McCarty JC. Quantitative trait loci associated with agronomic and fiber quality traits of upland cotton. Journal of Cotton Science,1998,2(4): 153~163
    161 Shaver TN, Dilday RH. Measurement of and correlations among selected seed quality actors for 36 Texas race stocks of cotton. Crop Science,1982,22:779~781
    162 Shen XL, Guo WZ, Lu QX, Zhu XF, Yuan YL, Zhang TZ. Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in upland cotton. Euphytica,2007, 155:371~380
    163 Shi CH, Zhang HZ, Wu JG, Li CT, Ren YL. Genetic and genotype × environment interaction effects analysis for erucic acid content in rapeseed(Brassica napus L.). Euphytica,2003,130: 249~254
    164 Shi CH, Zhu J, Zang RC, Chen GL. Genetic and heterosis analysis for cooking quality traits of Indica rice in different environments. Theoretical Applied Genetics,1997,95:294~300
    165 Singh M, Singh TH, Chahal GS. Genetic analysis of some seed quality characters in upland cotton(Gossypium hirsutum L.). Theoretical Applied Genetic,1985,71(1):126~128
    166 Smith FH. Determination of gossypol in leaves and flower buds of Gossypium. Journal of the American Oil Chemists'Society,1967,44:267~269
    167 Song XL, Zhang TZ. Identification of quantitative trait loci controlling seed physical and
    nutrient traits in cotton. Seed Science Research,2007,17:243~251
    168 Speed TR, Kzieg DR, Jividen G. Relationship between cotton seeding cold tolerance and physical and chemical properties. Proceedings Beltwide Cotton Conferences,1996,2: 1170~1171
    169 Srivastava HK. Heterosis and intergenomic complementation mitochondria, chloroplast, and nucleus. In:Frankel R(ed), heterosis, reappraisal of theory and practice. Springer Berlin Heidelberg, New York,1983,260~286
    170 Threadgill DW, Alrey DC, Lu L, Mauly KF, Williams RW. Recombinant inbred intercross (RIX) mapping: a new approach extending the power of existing mouse resources. The 15th international mouse genome conference,2001
    171 Turner JH, Ramey HH, Worley JrS. Influence of environment on seed quality of four cotton cultivars. Crop Science,1976,58:271~288
    172 Turner JH, Ramey JrHH, Worley JrS. Relationship of yield, seed quality, and fiber properties in upland cotton. Crop Science,1976,16:578~580
    173 Ulloa M, Meredith RJ. Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intraspecific population. Journal of Cotton Science,2000,4(3):161~170
    174 Wan PJ, Dowd MK, Wakelyn PJ, Wedegaertner TC. Research on value-added uses for cottonseed. From:International News on Fats, Oils and Related Materials,2007,18(6): 368~370,372
    175 Wang DL, Zhu J, Li ZK, Paterson AH. Mapping QTLs with epistatic effect and genotype× environment interactions by mixed linear model approaches. Theoretical Applied Genetics, 1999,99:1255~1264
    176 Wang BH, Guo WZ, Zhu XF, Wu YT, Huang NT, Zhang TZ. QTL mapping of fiber quality. in an elite hybrid derived-RIL population of upland cotton. Euphytica,2006,152:367~378
    177 Wang BH, Guo WZ, Zhu XF, Wu YT, Huang NT, Zhang TZ. QTL mapping of yield and yield components for elite hybrid derived-RILs in upland cotton. Journal of Genetics and Genomics,2007,34(1):35~45
    178 Ware JO. Selection of cotton plants for protein and oil content. Arkansas Agricultural Experiment Station Bulletin,1931,268:34~35
    179 Willson FD. Interrelationship among gland density, gossypol content and lint and seed characters in cotton. Crop Science,1976,16:860~861
    180 Wright RJ, Haxton PM, Paterson AH. QTL analysis of bacteria blight resistance genes in cotton using RFLP markers. Proceedings Beltwide Cotton Production Research Conferences, 1997:635~636
    181 Wu JX, Gutierrez OA, Jenkins JN, McCarty JC, Zhu J. Quantitative analysis and QTL mapping for agronomic and fiber traits in an RI population of upland cotton. Euphytica,2009, 165:231~245
    182 Wu WR, Li WM. A new approach for mapping quantitative trait loci using complete genetic marker linkage maps. Theoretical Applied Genetics,1994,89:535~539
    183 Yan XF, Zhu J, Xu SY, Xu YH. Genetic effects of embryo and endosperm for four malting quality traits of barley. Euphytica,1999,106:27~34
    184 Yang J, Hu CC, Hu H, Yu RD, Xia Z, Ye XZ, Zhu J. QTLNetwork:mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics,2008,24: 721~723
    185 Yu ZH, Park YH, Lazo GR, Wolff NC, Kohel RJ. Molecular mapping of cotton genome and its application to cotton improvement. Proceedings Beltwide Cotton Production Research Conferences,1996,636~637
    186 Yuan YL, Zhang TZ, Jing SR, Pan JJ, Xing CZ, Guo LP, Tang CM. Studies of the inheritance of seed qualities and the exploitation of F2 heterosis in low gossypol strains in upland cotton. Acta Genetica Sinica,2001,28(5):471~481
    187 Zhang HZ, Shi CH, Wu JG, Ren YL, Li CT, Zhang DQ, Zhang YF. Analysis of genetic and genotype × environment interaction effects from embryo, cytoplasm and maternal plant for oleic acid content of Brassica napus L. Plant Science,2004,167:43~48
    188 Zhu J. Mixed model approaches for estimating genetic variances and covariance. Journal of Biomathematics,1992,7(1):1~11
    189 Zhu J. Methods of predicting genotype value and heterosis for offspring of hybrids. Journal of Biomathematics,1993,8(1):32~44
    190 Zhu J, Weir BS. Analysis of cytoplasmic and maternal effects:Ⅰ. A genetic model for diploid plant seeds and animals. Ⅱ. Genetic models for triploid endosperms. Theoretical Applied Genetics,1994,89(3):153~166
    191 Zhu J. General genetic models and new analysis methods for quantitative traits. Journal of Zhejiang Agriculture University,1994,20(6):551~559
    192 Zhu J. Weir BS. Diallel analysis for sex-linked and maternal effects. Theoretical Applied Genetics,1996,91(1):1~9
    193 Zhu J, Wang GJ, Zang RC. Genetic analysis on gene effects and GE interaction effects for kernel nutrient quality traits of upland cotton. Journal of Biomathematics,1997,12(2):111~ 120
    194 Zhu J, Weir BS. Mixed model approaches for genetic analysis of quantitative traits. In Proceedings of the International Conference on Mathematical Biology, edited by Chen L S. et al, World Scientific Publishing Co, Singapore,1998,321~330
    195 Zhu SJ, Naganagouda R, Jiang YR, Ji DF. Breeding, introgression and inheritance of delayed gland morphogenesis trait from Gosspium bickii into upland cotton germplasm. Chinese Science Bulletin,2004,49(23):2470~2476

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700