用户名: 密码: 验证码:
连续级配橡胶颗粒沥青路面降噪特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
交通噪声是环境噪声污染的重要来源,随着汽车工业的发展,轮胎/路面噪声在交通噪声中占主要成分的比例越来越大,已引起人们的普遍重视,研究表明选择合适的路面材料和路面结构会使该噪声显著降低。本文借鉴国内外相关研究成果,首先对连续级配大粒径橡胶颗粒沥青混合料的拌合成型工艺和路用性能进行了试验研究,在此基础上,通过振动衰减试验、路面锤击试验、重复加载试验、吸声试验,结合小波技术及有限元分析,重点研究了该类路面的降噪特性,所作主要工作和取得的成果如下:
     1.橡胶颗粒掺量和油石比是影响连续级配大粒径橡胶颗粒沥青混合料物理力学性能最主要的两个因素,且橡胶颗粒掺量的影响大于油石比的影响。在拌合成型的过程中,原材料的投放顺序、成型温度、击实次数是3个最为重要的工艺因素。
     2.对于连续级配大粒径橡胶颗粒沥青混合料,初步确定了其最佳的拌和成型工艺:加入沥青的拌和时间是75s,加入橡胶颗粒的拌和时间是40s,拌和温度是170℃,分两次成型,第一次成型温度为170℃,双面击实次数54次,第二次成型温度为80℃,双面击实次数26次。
     3.将大粒径橡胶颗粒应用于连续级配沥青路面中是可行的,掺加橡胶颗粒后的沥青路面与普通沥青路面相比具有更好的高温稳定性和低温抗裂性,但其水稳定性要低于普通路面,且橡胶颗粒掺量越多,趋势越明显。
     4.与普通沥青路面相比,橡胶颗粒沥青路面具有更好的减振和吸声性能。橡胶颗粒掺量越多,路面中集料的最大粒径和橡胶颗粒的粒径越大,路面的减振降噪性能则越好。而橡胶颗粒沥青路面的吸声性能则受到橡胶颗粒掺量和级配类型的影响,综合考虑路面的力学性能和声振性能,在合理的橡胶颗粒掺量范围内,橡胶颗粒沥青路面主要以减振降噪为主。
     5.在沥青混合料路面中掺加大粒径的橡胶颗粒不但能有效降低车辆轮胎滚动时的振动强度,还可以大幅度减弱车辆在转向时振动的强度,使振动的能量由“低频”流向“中频”和“高频”。路面中橡胶颗粒的掺量、集料的最大粒径及橡胶颗粒的粒径会影响不同频带内的车辆轮胎振动的峰值加速度,因而可以通过调整该类参数避免轮胎某部分共振的发生,抑制轮胎的辐射噪声。
     6.橡胶颗粒沥青路面主要是通过路面空隙进行吸声降噪的,由构造深度降噪的程度较小。当车辆轮胎在橡胶颗粒沥青路面上跳跃撞击时,路面对轮胎碰撞中心的激励强度随路面厚度的增加而降低。沿行车方向看,轮胎的下落高度对轮胎激励噪声的影响具有特殊性。固定橡胶颗粒掺量的沥青路面对轮胎应力的衰减能力是有限的,超出极限时,橡胶颗粒沥青路面会失去减振降噪的优势。
Traffic noise is an important source of the environmental noise pollution. With the development of the automobile industry, the proportion of the tire / road noise in traffic noise is larger and larger, which has been generally concerned by people. Study shows that it has significant effect on noise reduction that choosing suitable road materials and pavement structure. Drawing on relevant research results at home and abroad, this paper researches mixing process, forming process and road performance of big rubber particle’s asphalt mixture about continuous gradation. And then, noise reduction’characteristic is researched emphatically by vibration damping test of tyre, hammering vibration test of pavement, iterative load test, noise absorption test, combining wavelet technology and finite element analysis. The main work and achievements are as follows:
     1. Rubber particles’content and bitumen aggregate ratio are the main two factors which effect physical and mechanical properties of big rubber particle’s asphalt mixture about continuous gradation, and rubber particles’content has more influence than bitumen aggregate ratio. In the possess of mixing and forming process, the most important technical factors are throwing order of raw materials, forming temperature and striking times.
     2. For big rubber particles’asphalt mixture of continuous gradation, the best mixing and forming process is as following: the mixing time is seventy five seconds after mixing asphalt. forty seconds is used after mixing rubber particles and mixing temperature is one hundred and seventy degrees centigrade. Forming mixture is divided into twice: mixing temperature is one hundred and seventy degrees centigrade for the first time and hitting time is fifty four on every surface; the second mixing temperature is eighty degrees centigrade and hitting time is twenty six on every surface.
     3. Mixing big rubber particles into continuous gradation asphalt pavement is feasible.It has better high-temperature stability and low-temperature crack resistance, has worse water stability than common bituminous pavement, and the more rubber particles mixed into pavement, the more obvious the trend becomes.
     4. Rubber particles’asphalt pavement has better capability of vibration reduction and sound absorption than common asphalt pavement. The more rubber particles content, the larger the maximum aggregate size and size of rubber particles, the better pavement’s capability of vibration reduction and noise reduction. In addition, the noise absorption capability of rubber particles asphalt pavement is mainly affected by the content of rubber particles and gradation type. Comprehensive consideration, however, rubber particles asphalt pavement is based mainly vibration reduction.
     5. It can effectively depress vibration strength of vehicle tyre when rolling and much more when turn around if mixing big rubber particles into asphalt pavement, making vibration energy flow from "low frequency" to“intermediate frequency "and "high frequency". Content of rubber particles, rubber particle size and maximal size of aggregate can effect vibrational peak acceleration of vehicle tyre in the different frequency bands.
     6. Capability of rubber particles asphalt pavement for sound absorption reduction is primarily determinated by pavement’void, and is hardly affected by structural depth.When the vehicle tyre hits pavement skipply, activation to center of impact will falls if thickness of pavement increases. Following direction of travel, dropping height of tyre has special influence on inspiring with noise of tyre. Pavement which has fixed content of rubber particles has finite damping ability to tyre stress. Once exceeding limit of damping ability, rubber particles asphalt pavement will lose superiority of noise reduction by vibration reduction.
引文
1张鹏飞,姚成.高速公路与城市道路沿线交通噪声对环境的污染分析[J].城市环境与城市生态,1999,12(3):45-47
    2郭志云,周兆驹,张波等.高等级公路交通噪声衰减规律与控制对策研究.技术鉴定资料,2004: 77-137
    3王春梅.交通噪声特性分析与绿化带降噪效果研究[D].陕西:西北农林科技大学,2007:1-4, 17-20
    4沈丽,邱飞程.高速公路噪声生态环境因子分析与治理[J].公路,2004,(11):22-25
    5中华人民共和国行业规范.公路建设项目环境影响评价规范(试行).北京:人民交通出版社, 1996
    6中华人民共和国行业标准.公路环境保护设计规范(JTJ/T006-98).北京:人民交通出版社,1998
    7内蒙古自治区人民政府办公厅.内蒙古自治区“十一五”发展规划纲要[EB/OL]. http://www.nmg.gov.cn/pages/2006310/2006310291249043.htm,2006年3月
    8孙长军,王旭东,李美江.废轮胎胶粉在公路工程中的应用及前景展望[J].橡胶科技场,2005(12): 1-4
    9杨满宏.彩钢复合板公路声屏障材料声学性能研究[J].噪声与振动控制,1999:78-83
    10朱水坤,林亚萍,陈飞.低噪音路面类型及其实用性分析[J].公路交通科技(应用技术版).2005: 64-68
    11王旭东.废旧轮胎橡胶粉在公路工程中的应用[EB/OL].http://www.chnepi.com/html/policy/ zhuanjialunwen/20070601/3712.html,2007
    12 Sacramento County Department of Environmental Review and Assessment. Report on the Status of Rubberized Asphalt Traffic Noise Reduction in Sacramento County[R],1999
    13中华人民共和国国家发展和改革委员会.国内外公路路面材料循环利用主要技术[EB/OL]. http: //www.sdpc.gov.cn/gjscy/cyjs/t20070918_160160.htm,2007,9
    14 KUENNEN T.Asphalt rubber makes a quiet comeback[J].Better Roads,2004(5): 32-43
    15苗英豪,王秉纲.沥青路面降噪性能研究综述[J].中外公路,2006,26(4)
    16曹卫东,陈旭,吕伟民.简述国内外低噪声沥青路面研究状况[J].石油沥青,2005,19(1):50- 54
    17周纯秀,谭忆秋,徐立廷等.废旧轮胎橡胶颗粒在沥青混合料中的应用[J].合成橡胶工业,2005, 28(2): 81-84
    18曹卫东,周海生,吕伟民.废橡胶颗粒改性沥青混合料的设计与性能[J].建筑材料学报,2005,8(5)
    19张金喜.废橡胶作为弹性沥青混凝土路面材料的实验研究[J].建筑材料科学,2004,7(4): 397-404
    20谭忆秋,徐立廷.马歇尔法下橡胶改性沥青混凝土成型工艺研究[J].公路,2006(2):137-139
    21辛星,谭忆秋,徐立廷等.橡胶颗粒沥青混合料设计的影响因素分析[J].公路,2006,(11): 161-164
    22周海生,吕伟民.阻尼沥青路面降噪特性的研究[J].公路交通科技,2005,22(8):8-11
    23余叔番.SMA路面设计与施工[M].北京:人民交通出版社,2002
    24 FHWA International Technology Exchange Program. Quiet pavement systemsin Europe[R/OL]. 2005. http://international.fhwa.dot.gov/superiormaterials/ exchprogs.cfm
    25 Meiarashi S.Noise reduction characteristics of porous elastic road surface[J]. Applied Acoustics,1996,vol.47(3)
    26王旭东.低噪声路面结构设计研究[J].公路交通科技,2003(2)
    27郑鑫.国内外低噪声沥青路面研究状况概述[J].公路与气运,2007(3)
    28 BUCKA P M. Asphalt rubber overlay noise study update[R].Sacramento: Acoustical Analysis Associates Inc, 2002
    29 BENNERT T, HANSON D, MAHER A, et al. Influence of pavement surface type on tire/pavement generated noise[J].Journal of Testing and Evaluation, 2005,vol. 33(2):94-100
    30 CARLSOND D, ZHU H, XIAO C. Analysis of traffic noise before and after paving with asphalt-rubber[R/OL].Arizona:Rubber Pavements Association Tempe, 2003[2006]. http://www. asphaltruhber.org/ari
    31 BOLLARD P. Report on the status of rubberized asphalt traffic noise reduction in Sacramento county[R/OL]. California: Bollard&Brennan Inc,1999.http:// www.p2pays.org/ref/26/25143.pdf
    32 ILLINGWORTH&ROBKININC.I-80 Davis OGAC pavement noise study[R/OL]. South Petaluma: the California Department of Transportation, 2002.http:// www.asphaltrubber. org/ari/Noise/I80-Davis-OGAC-Pavement Noise Study.pdf
    33 JORGENSON L.Asphalt rubber pavement construction[J],Publicworks,2003(2):30-31
    34路凯冀,杨芸波.胶粉改性沥青路面减噪技术[J].交通节能与环保,2006(2):23-26
    35周海生,杨玉明,葛敛敏等.路面材料吸音降噪性能的评定[J].华东公路,2002(1):68-69
    36周海生,葛剑敏,吕伟民等.阻尼减振式低噪声沥青路面的研究[C].上海市公路学会第六届年会学术论文集,2003:78-81
    37刘彦林,牛增永,胡达平.沥青混凝土低噪声路面技术研究[J].市政技术,2004,22(3):139-152
    38曹卫东,葛剑敏,周海生等.骨架密实型降噪路面的试验研究及应用[J].同济大学学报(自然科学版),2006,34(8):1026-1030
    39刘益辉,孙保奎.减噪路面的降噪机理及其结构[J].交通环保,2005,26(3):53-55
    40许雪莹,曹卫东,董旭峰等.密实型低噪声路面动态模量的超声波法研究[J].噪声与振动控制,2006(4):67-69
    41解晓光.沥青混合料振动压实特性的研究[D].哈尔滨:哈尔滨工业大学,2000
    42郭永辉.美国工程兵旋转压实剪切试验机设计的沥青混凝土性能[J].公路.2002,(4):74-76
    43解晓光,马松林.压实工艺对沥青混合料力学性能的影响[J].东北公路.2001,24(2):29-31
    44袁志发,周静芋.试验设计与分析[M].北京:高等教育出版社,2000
    45洪伟,吴承帧.试验设计与分析—原理·操作·案例[M].北京:中国林业出版社,2004
    46吴贵生,于治福,于淑政等.试验设计与数据处理[M].北京:冶金工业出版社,1997
    47李立寒,张南鹭.路建筑材料[M].第四版.北京:人民交通出版社,2004.111-118
    48吕伟民,孙大权.沥青混合料设计手册[M].北京:人民交通出版社,2007.218-315
    49 F.J.Navarro,P.Partal,F.Martinez-Boza,etc.Rheological Characteristics of Ground Tire Rubber Modified Bitumens[J].Chemical Engineering Journal.2002,vol.89:53-61
    50 Mustaque Hossain, Stuart Swartz and Enam Hoque Fracture and Tensile Characteristics of Asphalt- Rubber Concrete Journal of Materials in Civil Engineering/November 1999
    51 Xiaohu Lu , Ulf Isacsson. Influence of Styrene-ButadieneStyrene Polymer Modification on Bitumen Viscosity[J].Fuel,1997,Vol.76(14-15):1353-1359
    52 A.A.Zaman,A.L.Fricke, C.L.Beatty. Rheological Properties of Rubber-Modified Asphalt[J]. Journal of Transportation Engineering,1995,Vol.121(6): 461-467
    53 T.J.Lougheed,A.T.Papagiannakis.Viscosity Characteristics of Rubber-Modified Asphalts[J]. Journal of Materials in Civil Engineering,1996, Vol.8(3): 153-156
    54 M.Murphy,M.O’Mahony,C.Lycett,etc.Recycled Polymers for Use as Bitumen Modifiers[J]. Journal of Materials in Civil Engineering,2001,Vol.13(4): 306-314
    55 Xiaohu Lu,Ulf Isacsson,Jonas Ekblad.Phase Separation of SBS Polymer Modified Bitumens[J]. Journal of Materials in Civil Engineering,1999,Vol.11(1): 51-57
    56 X.G.Zhong,X.Zeng,J.G.Rose.Shear Modulus and Damping Ratio of Rubber- Modified Asphalt Mixes and Unsaturated Subgrade Soils[J]. Journal of Materials in Civil Engineering,2002, Vol. 14(6):496-502
    57周纯绣.冰雪地区橡胶颗粒沥青混合料应用技术的研究[D].哈尔滨:哈尔滨工业大学,2006.
    58王昌衡,陈建民.沥青混合料车辙试验研究[J].中外公路,2003,23(6):81-83
    59包秀宁,李燕枫,王哲人.沥青混合料水损害试验方法探究[J].广州大学学报(自然科学版), 2003,2(2):157
    60许涛,黄晓明.沥青混合料水损害性评价方法研究[J].公路,2003,8(8):13
    61沈金安,李福普,陈景.高速公路沥青路面早期损坏分析与对策[M].北京:人民交通出版社,2004
    62中华人民共和国交通部.公路沥青路面施工技术规范(JTG F40-2004).北京:人民交通出版社,2005
    63张登良.沥青与沥青混合料[M.北京:人民交通出版社,2001
    64张争奇.用J-积分评价改性沥青的低温性能[J].东北公路,1997,20(4):17-21
    65申爱琴,蒋庆华.沥青混合料低温抗裂性能评价及影响因素[J].长安大学学报(自然科学版),2004,24(5):1-6
    66郝培文,张登良,胡西宁.沥青混合料低温抗裂性能评价指标[J].西安公路交通大学学报,2000,20(3):1-5
    67葛折圣,黄晓明,胡少宏.沥青混合料低温抗裂性能影响因素的灰关联分析[J].公路交通科技,2003,20(2):1-3
    68樊统江.不同级配对沥青混合料的力学性能和路用性能的影响[J].重庆交通学院学报,2004,23(1):22-25
    69 KANERVA Hannele K. Low temperature cracking field validation of the thermal stress restrained specimen test[R].SHRP-A-401,National Research Council,1994
    70卢铁瑞.道路沥青混合料低温性能评价指标的研究[J].石油沥青,1998,12(1):20-32
    71张登良.沥青路面[M].北京:人民交通出版社,1999
    62葛折圣,黄晓明.用弯曲应变能方法评价沥青混合料的低温抗裂性能[J].东南大学学报,2002,32(4):653~655.
    73 C.F.比尔兹.结构振动分析(振动结构的模型、分析和阻尼)[M].朱世杰,陈玉琼.北京:中国铁道出版社,1988
    74董旭峰,葛剑敏,王佐民.密实型低噪声沥青路面振动特性试验研究[J].同济大学学报(自然科学版),2006,34(8):1031-1034
    75戴德沛.阻尼减振降噪技术[M].西安:西安交通大学出版社,1986
    76刘棣华.粘弹阻尼减振降噪应用技术[M].北京:中国宇航出版社,1990
    77曹卫东,杨永顺,吕伟民.骨架密实型低噪声路面的声振特性[J].交通运输工程学报,2007,7(2):55-58
    78伍石生.低噪音沥青路面设计与施工养护[M].北京:人民交通出版社,2005
    79盛美萍,王敏庆,孙进才.噪声与振动控制技术基础[M].北京:科技出版社,2001
    80严普强,黄长艺.机械工程测试技术[M].北京:机械工业出版社,1985:134-136
    81李民平,张洪亭,周剑英等.测试技术[M].北京:高等教育出版社,2001:58-60
    82程正兴.小波分析与应用实例[M].西安:西安交通大学出版社,2006
    83张贤达,保铮.非平稳信号分析与处理[M].北京:国防出版社,1998.
    84王琼.基于小波变换信号去噪方法的研究[D].湖南:西华大学,2004
    85高成,郭磊,李阳明等.Matlab小波分析与应用[M].第二版.北京:国防工业出版社,2007
    86胡昌华,张军波,夏军等.基于MATLAB的系统分析与统计小波分析[M].西安:西安电子科技大学出版社,1999
    87郭亚.振动信号处理中的小波基选择研究[D].合肥:合肥工业大学,2003
    88 Daubechies I. Orthonormal bases of compactly supported wavelet[J]. Communication Pure and Applied Mathematics.1988,vol.41(7):909-996.
    89陈淑琴.基于小波包分析的道路信号加速度特征谱提取[J].中北大学学报(自然科学版),2007,28(4):369-372
    90王宏禹.随机数字信号处理[M].北京:科学出版社,1998
    91黄文梅,雄桂林,杨勇.信号分析与处理—MATLAB语言及应用[M].长沙:国防科技大学出版社,2000:221-235
    92王新明,王秉纲。高速公路路面功率谱[J].交通运输工程学报,2003,3(2):53-56
    93邹云屏,李潇.信号变换与处理.武汉:华中理工大学出版社,1993:8-12
    94晏俊伟,龙源,方向等.基于小波变换的爆破振动信号能量分布特征分析[J].爆炸与冲击,2007,27(5):405-410
    95林大超,施惠基,白春华等.基于小波变换的爆破振动时频特征分析[J].岩石力学与工程学报,2004,23(1):101-106
    96徐维红.低噪声路面的研究[D].北京:北京交通大学,2005
    97沈丽,邱飞程.高速公路噪声生态环境因子分析与治理[J].公路,2004(11):22-25
    98隋文峰.高速公路噪声的综合治理[J].山东林业科技,2005(6):38-40
    99魏建军,孔永健.多孔隙低噪声沥青路面降噪机理的研究[J].黑龙江工程学院学报(自然科学版),2004,18(1):11-19
    100刘雅萍.公路生态环境工程设计研究[D].天津:河北工业大学,2001
    101其其格,闰宏伟.高速公路对通过区的环境影响研究进展[J].北华大学学报(自然科学版),2005,2(2):173-178
    102侯子义,庞明宝.低噪声沥青混凝土路面声学分析[J].公路,2006(6):22-25
    103王华,新平,曹平等.轮胎花纹与路面纹理祸合对轮胎噪声的影响.轮胎工业,2007,27(2):77-80
    104李福军,吴桂忠.轮胎花纹沟的发声模拟计算[J].轮胎工业.2006,26(4):203-207
    105 A. von Meier and al. Reduction of traffic noise by road surface design and tire-road matching,M+P,1994
    106 A.von Meier and al. The influence of texture and sound absorption on the noise of Porous Road surfaces[R].In Second International Symposium on Road Surface Charaeteristies,1992:7-19
    107朱兴元.轮胎花纹块撞击路面的噪声研究[J].橡胶工业,2003(50):526-528
    108金新航.轮胎花纹噪声仿声系统.武汉工业大学硕士论文[D].武汉:武汉工业大学,1997
    109陈理君,钟克洪,李海涛等.轮胎花纹噪声仿真与优化系统软件设计[J].轮胎工业,2000,20(4):32-35
    110 Tsukui Keisuke,Oshino Yasuo.Study of Road Traffic Noise Simulation Model Taking Account of Traffic Flow around Toll Gates[J]. JARI Research Journal,2000, VOL.22(3):134-137
    111张丽宏,黄晓明.轮胎/路面噪声的有限元分析[J].环境工程学报,2008,2(12):1695-1697
    112李裕春,时党勇,赵远. ANSYSl0.0/LS-DYNA基础理论与工程实践[M].北京:中国水利水电出版社,2006:1-21
    113白金泽. LS-DYNA3D基础理论与实例分析[M].北京:科学出版社,2004
    114管迪,华李梅.不同宽度轮辋对轮胎静刚度特性影响的试验分析[J].汽车技术,2007,(1):31-44
    115杨建荣,李建中,范立础.基于ANSYS的车桥耦合振动分析[J].计算机辅助工程,2007,16(4):23-26
    116陈栋华,靳晓雄.轮胎刚度和阻尼非线性模型的解析研究[J].中国工程机械学报,2004,2(4):408-412
    117任旭春,张光华,洪宗跃.有限元在载重子午线轮胎弹性模量优选中的应用[J].橡胶工业,2004,51:464-466
    118赵发章,王解军.阻尼对行车荷载下大跨桥梁振动的影响[J].冰川冻土,2004,26(4): 461-465
    119 GB/T 2978-2008,轿车轮胎规格、尺寸、气压与负荷[S]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700