用户名: 密码: 验证码:
菩人丹对糖脂毒导致的INS-1细胞损伤的修复作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[背景]
     2型糖尿病是严重危害人类健康的重大疑难疾病。胰岛p细胞功能的衰竭和胰岛素抵抗是其主要发病机制,其中胰岛p细胞数量的异常减少和胰岛素分泌功能的下降是导致2型糖尿病发生和发展的关键因素。葡萄糖和脂肪虽然是机体必需的营养物质,但是长期高水平的葡萄糖和游离脂肪酸将造成胰岛p细胞损伤,致使细胞发生凋亡并逐步丧失胰岛素分泌的功能,最终导致2型糖尿病的不可逆发生。而胰岛p细胞上的胰岛素信号转导通路,调控着p细胞的增殖、分化和胰岛素的合成、分泌,在机体糖脂代谢中发挥着重要作用。我国传统中医药治疗糖尿病已有上千年的历史,中药复方多靶点、多途径的作用特点,以及较少的毒副作用,在预防糖尿病发生以及并发症出现方面具有显著优势。
     [目的]
     本实验试图通过体外实验研究,证实高浓度葡萄糖、软脂酸及软脂酸+高糖对胰岛p细胞的损伤作用及其差异。在此基础上考察“益气养阴清热、活血化瘀通络”中药复方菩人丹对胰岛p细胞活力、凋亡以及胰岛素分泌的影响,阐明菩人丹保护胰岛p细胞“质”“量”之功效,并从分子水平研究菩人丹对胰岛p细胞胰岛素信号转导中IRS2/PI3K/Akt通路的影响,揭示菩人丹修复“糖脂毒”导致的胰岛p细胞损伤的作用机制。
     [方法]
     选取大鼠胰岛素瘤细胞系INS-1细胞为胰岛p细胞的体外研究对象,以33.3mM葡萄糖、0.5mM软脂酸及0.5mM软脂酸合并33.3mM葡萄糖分别构建糖毒性、脂毒性及糖脂毒性p细胞损伤模型。在各损伤模型基础上,分别给予5%菩人丹含药血清、10%菩人丹含药血清干预24小时,并以10%二甲双胍含药血清为阳性对照。采用CCK-8试剂盒检测INS-1细胞活力;Hoechst荧光染色法和流式Annexin V-FITC/PI双染法检测细胞凋亡;caspase-3和caspase-8活性检测试剂盒检测细胞caspase-3/-8活性;葡萄糖刺激胰岛素释放实验检测INS-1细胞的胰岛素分泌;采用Western blot法分析胰岛素信号转导通路相关蛋白IRS2、Akt、BAD、FOXO1、mTOR、P70s6k和PTP1B的蛋白质表达水平,以及IRS2(ser731)、Akt(thr308)、BAD(serl36)、 FOXO1(ser256)、mTOR(ser2448)和P70s6k(thr389)的磷酸化水平。
     [结果]
     1.三种模型的特点和胰岛素分泌功能变化规律:
     (1)33.3mM葡萄糖作用于INS-1细胞,12小时后,与对照组比较细胞活力(P=0.013)和细胞BIS以及GSIS均显著升高(BIS:P<0.001, GSIS: P=0.046);培养24小时后,细胞活力和胰岛素分泌出现下降(P<0.001),其降低呈现时间依赖性;此时出现明显的细胞凋亡(P<0.001)。
     (2)0.5mM软脂酸作用于INS-1细胞,6小时后细胞活力即开始下降,但此时细胞BIS有所升高,然而二者变化均无统计学意义(P>0.05);培养24小时后,细胞活力和GSIS均明显降低(P<0.001),但BIS则明显升高(P=0.001);同时观察到明显的细胞凋亡(P<0.001),且凋亡率大于高糖损伤细胞。
     (3)0.5mM软脂酸和33.3mM葡萄糖同时作用于INS-1细胞,6小时后,细胞活力和GSIS即出现显著降低(细胞活力:P=0.041; GSIS:P<0.001),细胞BIS在12小时后也开始显著下降(P<0.001),其下降呈现时间依赖性;细胞凋亡率则远高于单纯高糖组和软脂酸组。
     2.菩人丹对糖脂损伤INS-1细胞的保护作用:
     (1)菩人丹对糖脂损伤INS-1细胞的活力影响:高糖、软脂酸、软脂酸+高糖均使INS-1细胞活力显著降低(vs.对照组,P<0.001)。低剂量菩人丹对损伤细胞的活力无明显作用(vs.模型组,P>0.05),而高剂量菩人丹可使细胞活力明显升高(vs.模型组,P=0.003或P<0.001),作用效果与阳性对照药二甲双胍相当。
     (2)菩人丹对糖脂损伤INS-1细胞凋亡的影响:高糖、软脂酸、软脂酸合并高糖均明显促进INS-1细胞的凋亡(vs.对照组,P<0.001),升高caspase-3和caspase-8的活性。低剂量菩人丹对细胞凋亡无明显作用(vs.模型组,P>0.05),而高剂量菩人丹可显著降低caspase-3和caspase-8的活性,抑制细胞凋亡(vs.模型组,P<0.001),并与阳性对照药二甲双胍作用效果相当。
     (3)菩人丹对糖脂损伤INS-1细胞胰岛素分泌的影响:高糖、软脂酸合并高糖使INS-1细胞的BIS和GSIS降低(vs.对照组,P<0.001),而软脂酸使INS-1细胞GSIS降低的同时(vs.对照组,P<0.001),使BIS升高(vs.对照组,P=0.012)。低剂量菩人丹对细胞胰岛素分泌无显著影响(vs.模型组,P>0.05),而高剂量菩人丹可明显增加糖脂损伤INS-1细胞的BIS及GSIS(vs.模型组,P<0.001),对软脂酸导致的细胞BIS上升虽有所抑制,但差异无统计学意义(vs.模型组,P=0.099)。菩人丹对糖脂损伤INS-1细胞胰岛素分泌的作用效果与二甲双胍相当。
     3.菩人丹对INS-1细胞胰岛素信号转导通路的影响:
     高糖、软脂酸、软脂酸合并高糖均可显著下调IRS2蛋白质表达水平(P<0.001),降低Akt(thr308)、B AD(ser136)、FOXO1(ser256)、mTOR(ser2448)和P70s6k(thr389)的磷酸化水平(P<0.001),上调FOXO1和PTP1B的蛋白质表达,升高IRS2(ser731)磷酸化水平(P<0.001)。菩人丹干预24小时后,促进了各损伤模型细胞IRS2的蛋白表达(P<0.001)以及Akt(thr308)、 BAD(ser136)、FOXO1(ser256)、mTOR(ser2448)和P70s6k(thr389)的磷酸化(P<0.001),同时抑制了FOXO1和PTP1B的蛋白质表达(P<0.001)以及IRS2(ser731)的磷酸化(P<0.001),并且与阳性对照药二甲双胍作用效果相当。
     [结论]
     1.高浓度葡萄糖在短时间内可以促进INS-1细胞的增殖和胰岛素分泌,而持续高糖则表现出促进细胞凋亡、抑制细胞活力和胰岛素分泌的作用,并且对GSIS的影响较BIS更为显著;软脂酸可抑制INS-1细胞活力,促进细胞凋亡,并且在短时间内可轻微增加胰岛素分泌,但长时间作用表现为增加细胞BIS而抑制GSIS;软脂酸合并高糖可抑制INS-1细胞活力、促进细胞凋亡、降低胰岛素分泌,且作用强于单纯高糖和软脂酸,对INS-1细胞的损伤具有协同性和叠加性。
     2.菩人丹可以显著抑制糖毒性、脂毒性和糖脂毒性导致的胰岛p细胞凋亡、提高细胞活力、降低caspase-3和caspase-8活性、促进p细胞葡萄糖刺激的胰岛素分泌,保护p细胞的“质”和“量”,从而发挥菩人丹“益气养阴清热、活性化瘀通络”治疗2型糖尿病之功效。
     3.菩人丹可以减少“糖脂毒”损伤INS-1细胞IRS2蛋白的异常降解和丝氨酸(ser731)磷酸化,保证足量的IRS2可以被胰岛素受体的酪氨酸激酶活化,继而减轻糖脂毒对胰岛p细胞Akt活性的抑制作用,使Akt苏氨酸(thr308)磷酸化增强,激活胰岛素信号转导系统中的PI3K/Akt通路,将胰岛素信号继续向下游传递,使下游效应因子BAD、FOXO1、mTOR和P70s6k被活化,得以发挥其各自的生物学功能,从而抑制“糖脂毒”对胰岛p细胞凋亡的促进作用、修复“糖脂毒”导致的胰岛素分泌损伤,改善“糖脂毒”损伤p细胞的“质”“量”。
Background:Type2diabetes mellitus (T2DM) is a chronic disease that could result disability and shortened life expectancy. Abnormal reduced cell mass and dysfunction of insulin secretion of pancreatic islet β cell are the key causes of type2diabetes mellitus. Although glucose and fat are essential nutritional elements of organisms, high level of them for long-term might cause apoptosis of β cells and decline of insulin secretion, and will ultimately induce type2diabetes mellitus. Insulin signaling pathways in islet β cell have regulation effects on β cell mass and insulin secretion, which play an important role in glucolipid metabolism.
     Objective:To explore the injury effect of high glucose and palmitic acid on islet β cell, and confirm the protect effect of Pu-Ren-Dan formula (PRD) on injured β cell by investigatin cell viability, apoptosis and insulin secretion. And indicate the effect of PRD on insulin signaling pathways in islet β cell from molecule level, to clarify and the potential mechanisms of protective effect of PRD on islet β cells and provide experimental evidences for clinical application of PRD.
     Methods:INS-1cell line was used in this in vitro study, and cultured in33.3mM glucose,0.5mM palmitic acid or both33.3mM glucose and0.5mM palmitic acid to establish the gluco-and lipo-toxicity models. INS-1cell of each model group was treated with PRD serum (5%and10%) and10%metformin (MF) serum for24hours, respectively. Then CCK-8assay was used to measure cell viability; Hoechst33342staining, Flow Cytometry, AnnexinV-FITC/PI staning and caspase-3,-8Activity Assay Kit were deployed to detect INS-1cell apoptosis; and insulin secretion test was performed to evaluate INS-1cell function. And western blotting assay was deployed to investigate protein expressions of IRS2, Akt, BAD, FOXO1, mTOR, P70s6k and PTP1B, as well as the phosphorylations of IRS2(ser731), Akt (thr308), BAD (ser136), FOXO1(ser256), mTOR (ser2448) and P70s6k (thr389).
     Results:
     1. Compare of cell mass and insulin secretion among three injury models:
     (1) Exposure of INS-1cell to33.3mM glucose for12hours, compared to control group, cell viability (P=0.013), basal insulin secretion (BIS, P<0.001) and glucose-stimulated insulin secretion (GSIS, P=0.046) were significantly increased; after24hours, cell viability and insulin secretion showed decreasing time-independently; meantime, apoptosis was observed markedly (P<0.001).
     (2) Exposure of INS-1cell to0.5mM palmitic acid for6hours, cell viability was decreased, while BIS was lightly increased with no significant difference (P>0.05); after24hours, cell viability (P=0.001) and GSIS (P<0.001) were significantly reduced, but BIS and apoptosis were increased obviously (P<0.001).
     (3) Exposure of INS-1cell to0.5mM palmitic acid and33.3mM glucose simultaneously for6hours, cell viability (P=0.041) and GSIS (P<0.001) were significantly and time-independently decreased; after12hours, BIS also showed decreasing markedly (P<0.001), and apoptosis rate was raised, and higher than other two cell models.
     2. Protective effect of PRD on injured INS-1cell:
     High glucose, palmitic acid and high glucose with palmitic acid reduced cell viability significantly (P<0.001), but high-dose PRD could inhibit this reduction, and increased it markedly (P=0.003or P<0.001) while low-dose PRD had no significant effect on INS-1cell viability, which was similar to positive drug MF. High glucose, palmitic acid and high glucose with palmitic acid promoted cell apoptosis (P<0.001), and raised activities of caspase-3and caspase-8(P<0.001). Low-dose PRD had no significant effect on INS-1cell apoptosis, but high-dose PRD reduced activities of caspase-3and caspase-8(P<0.001), and apoptosis was inhibited (P<0.001), which was similar to the effects of MF. High glucose, high glucose with palmitic acid decreased INS-1cell BIS and GSIS (P<0.001), while palmitic acid reduced GSIS (P<0.001) but increased BIS (P=0.012). Low-dose PRD had no significant effect on INS-1cell insulin secretion, but high-dose PRD significantly increased INS-1cell BIS and GSIS (P<0.001), except for the BIS of palmitic acid group (P=0.099). The effect of PRD on INS-1cell insulin secretion was similar to MF.
     3. High glucose, palmitic acid and high glucose with palmitic acid significantly down-regulated protein expression of IRS2(P<0.001); reduced phosphorylations of Akt (thr308), BAD (ser136), FOXO1(ser256), mTOR (ser2448) and P70s6k (thr389)(P<0.001); up-regulated protein expressions of FOXO1and PTP1B (P<0.001); increased phosphorylations of IRS2(ser731)(P<0.001). After PRD treatment for24hours, protein expression of IRS2, phosphorylations of Akt (thr308), BAD (serl36), FOXO1(ser256), mTOR (ser2448) and P70s6k (thr389) were increased (P<0.001), while protein expressions of FOXO1and PTP1B, and phosphorylations of IRS2(ser731) were reduced significantly (P<0.001).
     Conclusion:
     1. High glucose promoted (3cell proliferation and insulin secretion in short-term, but increased apoptosis, inhibit cell viability and insulin secretion in long-term of high glucose. The influence of high glucose on GSIS was more significant than BIS; palmitic acid inhibited (3cell viability and promoted apoptosis and BIS, and GSIS was increased by palmitic acid in short-term, but decreased in long-term; palmitic acid with high glucose inhibited (3cell viability, decreased insulin secretion and promoted apoptosis, and the effects of palmitic acid with high glucose were stronger than that of palmitic acid or high glucose.
     2. PRD as an effective antidiabetic Chinese medicine formula could protect islet β cell against gluco-and lipo-toxicity induced injury by inhibiting apoptosis, raising cell viability, reducing activities of caspase-3and-8, and promoting insulin secretion.
     3. PRD inhibited the abnormal degradation of IRS2and its serine phosphorylation, which ensured the adequate IRS2proteins and its tyrosine phosphorylation, and alleviated the inhibition of Akt activity by glucolipotoxicity, promoted threonine phosphorylation at thr308to activate the PI3K/Akt pathway, then the downstreat effector proteins BAD, FOXO1, mTORand P70s6k were activated to conduct their biological functions to inhibit P cells apoptosis, promote cell viability, and improve insulin secretion.
引文
[1]Purrello F, Rabuazzo A M, Anello M, et al. Effects of prolonged glucose stimulation on pancreatic beta cells:from increased sensitivity to desensitization [J]. Acta Diabetol,1996; 33(4):253-56.
    [2]Brock B, Mogensen J H, Gregersen S, et al. Glucose desensitization in INS-1 cells: evidence of impaired function caused by glucose metabolite(s) rather than by the glucose molecule per se [J]. Metabolism,2002; 51(6):671-77.
    [3]陆菊明.葡萄糖失敏感性和葡萄糖毒性[J].人民军医,1997;(06):340-41.
    [4]Jellinger P S. Focus on incretin-based therapies:targeting the core defects of type 2 diabetes [J]. Postgrad Med,2011; 123(1):53-65.
    [5]韦静彬,蒙碧辉.持续高血糖状态对胰岛p细胞功能的影响[J].医学研究杂志,2007;360(12):86-88.
    [6]You H, Laychock S G. Atrial natriuretic peptide promotes pancreatic islet beta-cell growth and Akt/Foxola/cyclin D2 signaling [J]. Endocrinology,2009; 150(12):5455-65.
    [7]Younce C, Burmeister M A, Ayala J E. Exendin-4 attenuates high glucose-induced cardiomyocyte apoptosis via inhibition of endoplasmic reticulum stress and activation of SERCA2a [J]. Am J Physiol Cell Physiol,2013; 304(6):C508-18.
    [8]Duprez J, Roma L P, Close A F, et al. Protective antioxidant and antiapoptotic effects of ZnC12 in rat pancreatic islets cultured in low and high glucose concentrations [J]. PLoS One,2012; 7(10):e46831.
    [9]Shah A, Xia L, Goldberg H, et al. Thioredoxin-interacting protein mediates high glucose-induced reactive oxygen species (ROS) generation by mitochondria and the NADPH oxidase, Nox4, in mesangial cells [J]. J Biol Chem,2013; 288(10):6835-48.
    [10]Lim M, Park L, Shin G, et al. Induction of apoptosis of Beta cells of the pancreas by advanced glycation end-products, important mediators of chronic complications of diabetes mellitus [J]. Ann N Y Acad Sci,2008; 1150:311-15.
    [11]许莉军.游离脂肪酸与脂毒性[J].国外医学(老年医学分册),2003;(03):109-11.
    [12]Ellis J M, Wong G W, Wolfgang M J. Acyl-CoA Thioesterase 7 regulates neuronal fatty acid metabolism to prevent neurotoxicity [J]. Mol Cell Biol,2013; 33(9):1869-82.
    [13]Gehrmann W, Elsner M, Lenzen S. Role of metabolically generated reactive oxygen species for lipotoxicity in pancreatic beta-cells [J]. Diabetes Obes Metab,2010; 12 Suppl 2:149-58.
    [14]Prentki M, Joly E, El-Assaad W, et al. Malonyl-CoA signaling, lipid partitioning, and glucolipotoxicity:role in beta-cell adaptation and failure in the etiology of diabetes[J]. Diabetes,2002; 51 Suppl 3:S405-13.
    [15]Nakakuki M, Kawano H, Notsu T, et al. Eicosapentaenoic acid suppresses palmitate-induced cytokine production by modulating long-chain acyl-CoA synthetase 1 expression in human THP-1 macrophages [J]. Atherosclerosis,2013; 227(2):289-96.
    [16]Wang Y, Zhu Y, Gao L, et al. Formononetin attenuates IL-1beta-induced apoptosis and NF-kappaB activation in INS-1 cells [J]. Molecules,2012; 17(9):10052-64.
    [17]Hanzelka K, Skalniak L, Jura J, et al. Effects of the novel mitochondrial protein mimitin in insulin-secreting cells [J]. Biochem J,2012; 445(3):349-59.
    [18]Kim J W, Yoon K H. Glucolipotoxicity in Pancreatic beta-Cells [J]. Diabetes Metab J, 2011;35(5):444-50.
    [19]邓向群,陈璐璐,李凝旭.慢性高血糖和脂毒性在对大鼠胰岛β细胞功能损害中的相互作用[J].中国糖尿病杂志,2007;(09):565-68.
    [20]Sol E M, Sargsyan E, Akusjarvi G, et al. Glucolipotoxicity in INS-1E cells is counteracted by carnitine palmitoyltransferase 1 over-expression [J]. Biochem Biophys Res Commun, 2008;375(4):517-21.
    [21]Lim S, Rashid M A, Jang M, et al. Mitochondria-targeted antioxidants protect pancreatic beta-cells against oxidative stress and improve insulin secretion in glucotoxicity and glucolipotoxicity [J]. Cell Physiol Biochem,2011; 28(5):873-86.
    [22]Mcclenaghan N H, Flatt P R. Engineering cultured insulin-secreting pancreatic B-cell lines [J]. J Mol Med (Berl),1999; 77(1):235-43.
    [23]Poitout V, Olson L K, Robertson R P. Insulin-secreting cell lines:classification, characteristics and potential applications [J]. Diabetes Metab,1996; 22(1):7-14.
    [24]Steiner D J, Kim A, Miller K, et al. Pancreatic islet plasticity:interspecies comparison of islet architecture and composition [J]. Islets,2010; 2(3):135-45.
    [25]Bouwens L, Rooman I. Regulation of pancreatic beta-cell mass [J]. Physiol Rev,2005; 85(4):1255-70.
    [26]Jensen M V, Joseph J W, Ilkayeva O, et al. Compensatory responses to pyruvate carboxylase suppression in islet beta-cells. Preservation of glucose-stimulated insulin secretion [J]. J Biol Chem,2006; 281(31):22342-51.
    [27]Kim W H, Lee J W, Suh Y H, et al. AICAR potentiates ROS production induced by chronic high glucose:roles of AMPK in pancreatic beta-cell apoptosis [J]. Cell Signal, 2007; 19(4):791v805.
    [28]Park L, Min D, Kim H, et al. The combination of metallothionein and superoxide dismutase protects pancreatic beta cells from oxidative damage [J]. Diabetes Metab Res Rev,2011; 27(8):802-08.
    [29]Karsten V, Sigrist S, Moriscot C, et al. Reduction of macrophage activation after antioxidant enzymes gene transfer to rat insulinoma INS-1 cells [J]. Immunobiology,2002; 205(3):193-203.
    [30]朱姿英,薛耀明.高甘油三酯血症和2型糖尿病[J].中国糖尿病杂志,2003;(02):81-82.
    [31]Qi D, Cai K, Wang O, et al. Fatty acids induce amylin expression and secretion by pancreatic beta-cells [J]. Am J Physiol Endocrinol Metab,2010; 298(1):E99-107.
    [32]Prentki M, Madiraju S R. Glycerolipid/free fatty acid cycle and islet beta-cell function in health, obesity and diabetes [J]. Mol Cell Endocrinol,2012; 353(1-2):88-100.
    [33]Lupi R, Dotta F, Marselli L, et al. Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets:evidence that beta-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated [J]. Diabetes,2002; 51(5):1437-42.
    [34]Wrede C E, Dickson L M, Lingohr M K, et al. Protein kinase B/Akt prevents fatty acid-induced apoptosis in pancreatic beta-cells (INS-1) [J]. J Biol Chem,2002; 277(51):49676-84.
    [35]Yuan H, Zhang X, Huang X, et al. NADPH oxidase 2-derived reactive oxygen species mediate FF As-induced dysfunction and apoptosis of beta-cells via JNK, p38 MAPK and p53 pathways [J]. PLoS One,2010; 5(12):e15726.
    [36]Eitel K, Staiger H, Rieger J, et al. Protein kinase C delta activation and translocation to the nucleus are required for fatty acid-induced apoptosis of insulin-secreting cells [J]. Diabetes,2003; 52(4):991-97.
    [37]Ragheb R, Shanab G M, Medhat A M, et al. Free fatty acid-induced muscle insulin resistance and glucose uptake dysfunction:evidence for PKC activation and oxidative stress-activated signaling pathways [J]. Biochem Biophys Res Commun,2009; 389(2):211-16.
    [38]Grishko V, Rachek L, Musiyenko S, et al. Involvement of mtDNA damage in free fatty acid-induced apoptosis [J]. Free Radic Biol Med,2005; 38(6):755-62.
    [39]Tuo Y, Wang D, Li S, et al. Long-term exposure of INS-1 rat insulinoma cells to linoleic acid and glucose in vitro affects cell viability and function through mitochondrial-mediated pathways [J]. Endocrine,2011; 39(2):128-38.
    [40]Deguil J, Pineau L, Rowland S E, et al. Modulation of lipid-induced ER stress by fatty acid shape [J]. Traffic,2011; 12(3):349-62.
    [41]Cunha D A, Hekerman P, Ladriere L, et al. Initiation and execution of lipotoxic ER stress in pancreatic beta-cells [J]. J Cell Sci,2008; 121(Pt 14):2308-18.
    [42]Tan C, Voss U, Svensson S, et al. High glucose and free fatty acids induce beta cell apoptosis via autocrine effects of ADP acting on the P2Y(13) receptor [J]. PurinergicSignal,2013;9(1):67-79.
    [43]郭莉霞.糖脂毒性对胰腺p细胞的功能损伤作用及机制[J].生物学杂志,2011;28(03):70-73.
    [44]管炜,屠庆年,陆付耳,等.游离脂肪酸诱导胰岛p细胞损伤的分子机制[J].中华全科医学,2012;10(01):86-87.
    [45]E1-Assaad W, Joly E, Barbeau A, et al. Glucolipotoxicity alters lipid partitioning and causes mitochondrial dysfunction, cholesterol, and ceramide deposition and reactive oxygen species production in INS832/13 ss-cells [J]. Endocrinology,2010; 151(7):3061-73.
    [46]Wang H W, Mizuta M, Saitoh Y, et al. Glucagon-like peptide-1 and candesartan additively improve glucolipotoxicity in pancreatic beta-cells [J]. Metabolism,2011; 60(8):1081-89.
    [47]Han S J, Kang E S, Hur K Y, et al. Rosiglitazone inhibits early stage of glucolipotoxicity-induced beta-cell apoptosis [J]. Horm Res,2008; 70(3):165-73.
    [48]楼大钧,杨文英.脂毒性与p细胞凋亡[J].国外医学(内科学分册),2006;(09):401-04.
    [49]Rashid M A, Lee S, Tak E, et al. Carbonyl reductase 1 protects pancreatic beta-cells against oxidative stress-induced apoptosis in glucotoxicity and glucolipotoxicity [J]. Free Radic Biol Med,2010; 49(10):1522-33.
    [1]喇万英.中医消渴病概述[J].华北煤炭医学院学报,2009;11(6):781-82.
    [2]王开成,方朝晖.中医药治疗2型糖尿病胰岛素抵抗的临床研究进展[J].安徽中医学院学报,2005;24(1):55-58.
    [3]张毅.养阴清热法对2型糖尿病胰岛素抵抗影响[D].上海中医药大学,2009.
    [4]祝倩.活血化瘀法治疗糖尿病的作用和地位[J].陕西中医,2006;27(4):451-53.
    [5]王玉章.益气生津汤治疗气阴两虚型2型糖尿病80例[J].河北中医,2010;32(7):992-93.
    [6]朱细华.疏肝调气法治疗Ⅱ型糖尿病64例[J].四川中医,2000;18(1):21-22.
    [7]周丹,高琼.益气健脾法治疗2型糖尿病的临床观察[J].湖北中医杂志,2010;32(7):44-45.
    [8]冯彩琴,刘丽梅.祛痰化瘀法治疗高脂血症的临床观察[J].宁夏医科大学学报,2009;31(5):667-68.
    [9]柴彦军.浅谈中医消渴病机[J].健康必读,2011(5):280.
    [10]赵军.中医辨证论治治疗糖尿病疗效分析[J].河北医学,2008;14(9):1060-62.
    [11]赵昱,仝小林,陈良.2型糖尿病p细胞功能演变与中医证型关系探讨[J].山东中医杂志,2006;25(1):3-5.
    [12]仝小林,赵昱,陈良.胰岛p细胞功能保护的中医认识与对策[J].中医杂志,2006;47(12):888-90.
    [13]宋林宏.养阴清热法对2型糖尿病患者胰岛p细胞功能影响的临床研究[D].山东中医药大学,2012.
    [14]辛传伟,黄萍,陈雄威,等.消渴平合剂改善初发2型糖尿病患者胰岛p细胞功能的临床观察[J].中国现代应用药学,2011;28(01):81-84.
    [15]朱章志,熊曼琪.中医治疗糖尿病与改善胰岛素抵抗的研究概况[J].中药新药与临床药理,1994;(04):47-50.
    [16]毛淑梅,李承德,王琳,等.黄芪多糖对糖尿病大鼠胰岛p细胞凋亡作用及机制的研究[J].中国药理学通报,2009;25(9):1227-29.
    [17]唐姗,孙佳明,张辉.人参降糖活性的体外评价方法研究进展[J].吉林中医药,2011;31(12):1246-48.
    [18]杨宏莉,张宏馨,李兰会,等.山药多糖对2型糖尿病大鼠降糖机理的研究[J].河北农业大学学报,2010;33(3):100-03.
    [19]金雄镇,赵贤俊,张水生,等.单味中药降糖研究新进展[J].辽宁中医药大学学报,2007;9(6):77-79.
    [20]狄灵,厉英倩,张薇.参芪降糖颗粒对实验性糖尿病大鼠胰岛p细胞、C肽及血浆胰岛素释放的影响[J].第四军医大学学报,2003;24(19):1774-76.
    [21]厉英倩,马欣,刘明,等.胰复生胶囊对糖尿病大鼠降糖作用的研究[J].中医药学刊,2004;22(1):136-37.
    [22]孙云,徐峰,王德俊,等.僵知饮对四氧嘧啶诱导大鼠糖尿病的试验研究[J].扬州大学学报(农业与生命科学版),2005;26(2):15-17.
    [23]郑小清,周秋仁,孙海琼.消渴停颗粒对糖尿病大鼠血糖影响的实验研究[J].现代医药卫生,2005;21(6):636-37.
    [24]郑莉,文秀英,胡衍园,等.五龙克糖口服液对2型糖尿病大鼠胰岛β细胞的保护作用[J].湖北中医学院学报,2005;7(2):18-20.
    [25]王天民.左归降糖灵对实验性糖尿病大鼠脂质过氧化损伤的影响[D].湖南中医学院湖南中医药大学湖南省中医药研究院,2002.
    [26]蔡薇薇,王友群,寇红云.不同中药复方降糖作用机制研究[J].中国医药导报,2010;07(22):31-33,35.
    [27]中医治疗糖尿病的新思路——加强β细胞功能保护[C].中国河北石家庄:2006.
    [28]庞宗然,贾春华,刘宝山,等.菩人丹胶囊治疗2型糖尿病38例疗效观察[J].山东中医杂志,2003;22(3):137-39.
    [29]贾春华,刘宝山,庞宗然,等.菩人丹对糖尿病大鼠降糖作用的研究[J].中国中医基础医学杂志,2002;8(9):29-31.
    [30]庞宗然,赵玉堂,李静华,等.菩人丹超微粉对肥胖型2型糖尿病大鼠糖代谢相关指标的影响[J].中国实验方剂学杂志,2010;16(5):107-10.
    [31]庞宗然,贾春华,刘宝山,等.菩人丹胶囊降糖降脂作用的药效学研究[J].中医药学刊,2003;21(6):896-97.
    [32]王朝晖,庞宗然,刘祖涵,等.菩人丹对2型糖尿病大血管损伤大鼠FFAs及血脂4项的影响[J].中国中医基础医学杂志,2012;18(03):264-65.
    [33]金英,鲁碧楠,刘祖涵,等.菩人丹对T2DM大鼠胰岛β细胞分泌功能及胰岛素敏感性的影响[J].中国中医基础医学杂志,2012;18(10):1090-92.
    [34]李艳双.菩人丹对T2DM大血管病变大鼠脂代谢及胸主动脉超微结构的影响[D].中央民族大学,2011.
    [35]刘祖涵,庞宗然,王朝晖,等.菩人月超微粉对2型糖尿病大鼠胰岛α、β细胞的影响[J].中国中医基础医学杂志,2011;17(03):326-28.
    [36]米永杰,李健.中药血清药理学研究概述[J].四川解剖学杂志,2006;14(4):34-35.
    [37]张良,徐立,袁冬萍,等.中药血清药理学方法的研究进展[J].南京中医药大学学报(自然科学版),2002;18(4):254-56.
    [38]杨仙凌.中药血清药理学研究方法应用现状及展望[J].浙江中医药大学学报,2007;31(5):662-64,666.
    [39]杨奎,周明眉,姜远平.中药血清药理学的方法学研究——给药方案的研究[J].中药药理与临床,1999;15(3):43.
    [40]赵万红,曹永孝,袁泽飞.中药血清药理学的方法学探讨[J].中药新药与临床药理,2002;13(2):122-24.
    [41]周明眉,杨奎,姜远平,等.中药血清药理学的方法学研究——反应体系中含药血清加入量的研究[J].中药药理与临床,1998;(06):44-45.
    [42]韩笑,刘建勋,林成仁.血清药理学关键问题的存疑与讨论[J].中药药理与临床,2009;25(02):122-24.
    [43]刘振平.糖脂毒性与胰岛β细胞功能衰竭[J].中华老年多器官疾病杂志,2010;09(4):377-80.
    [44]钟惠菊,王敏,廖岚,等.2型糖尿病的不同阶段胰岛β细胞的早期分泌相变化[J].中南大学学报(医学版),2006;31(2):232-35.
    [45]刘瑞,李益明,王庆华.胰岛β细胞质量下降在糖尿病发展中的作用[J].国际内科学杂志,2008;35(5):265-68.
    [46]贾伟平,项坤三.胰岛β细胞功能评估--从基础到临床[J].中华内分泌代谢杂志,2005;21(3):199-201.
    [47]王克柱,刘保林.胰岛p细胞功能紊乱与2型糖尿病以及中药的干预[J].药学与临床研究,2012;20(4):330-34.
    [48]权金星,汪大望,沈飞霞,等.高浓度葡萄糖对人胰岛p细胞凋亡影响的分子机制[J].中华老年医学杂志,2004;23(11):780-84.
    [49]Marchetti P, Bugliani M, Boggi U, et al. The pancreatic beta cells in human type 2 diabetes [J]. Adv Exp Med Biol,2012; 771:288-309.
    [50]Delghingaro-Augusto V, Decary S, Peyot M L, et al. Voluntary running exercise prevents beta-cell failure in susceptible islets of the Zucker diabetic fatty rat [J]. Am J Physiol Endocrinol Metab,2012; 302(2):E254-64.
    [51]Vernier S, Chiu A, Schober J, et al. beta-cell metabolic alterations under chronic nutrient overload in rat and human islets[J]. Islets,2012; 4(6):379-92.
    [52]杨希,李卫华,黄峥嵘.胰岛p细胞胰岛素分泌的调节及其机制[J].医学研究杂志,2012;41(10):175-78.
    [53]何清华,周迎生,王征,等.干预脂毒性改善糖尿病大鼠胰岛素分泌及氧化应激的损害[J].中国实验动物学报,2009;17(1):41-44.
    [54]庞宗然,刘宝山,胡连军,等.苦瓜降糖作用的研究与临床[J].承德医学院学报,2001;18(2):155-56.
    [55]霍宇,谢金鲜.苦瓜在糖尿病治疗中的作用研究进展[J].广西中医学院学报,2010;13(2):80-82.
    [56]吴灵威,柯李晶,黄晓南,等.苦瓜中具有保护和修复四氧嘧啶损伤HIT-T15细胞功能的有效成分的分离与表征[J].中国食品学报,2006;6(4):24-28.
    [57]盛清凯,姚惠源.苦瓜中植物胰岛素的分离及其降糖作用研究[J].食品科学,2005;26(1):223-25.
    [58]郑毅男,李慧萍,张晶,等.人参提取物及人参皂苷Re对糖尿病大鼠降血糖作用的观察[C].武汉:2005.
    [59]蒋银香.丹参配合降糖治疗糖尿病患者血液流变性的改变[J].中国微循环,2004;8(3):183-84.
    [60]吴畏.葛根素降糖作用疗效观察[J].医学理论与实践,2011;24(2):168-69.
    [61]李宗诚,金在久,崔爽,等.何首乌降血脂有效部位及量效关系的实验研究[J].中国实用医药,2008;3(29):3-5.
    [62]吕明远.近年来中药水蛭的研究概况[J].天津药学,2005;17(3):62-63.
    [63]陈华友,黄静,蒋芝君,等.抗凝良药水蛭素的研究进展[J].生物学通报,2003;38(3):3-5.
    [1]张研,袁莉.p细胞胰岛素受体信号系统与p细胞功能[J].国外医学(内分泌学分册)2005;25(4):259-61.
    [2]张丽娟,邹大进.胰岛β细胞的胰岛素抵抗[J].中华内分泌代谢杂志,2007;23(2):186-88.
    [3]马凤海,李秀钧.胰岛β细胞自身胰岛素抵抗和2型糖尿病——胰岛素抵抗研究的新领域[J].国外医学.内分泌学分册,2004;(03):154-55.
    [4]邱海燕,袁莉.胰岛β细胞胰岛素分泌的反馈调节[J].国际内分泌代谢杂志,2006;26(z1):60-62.
    [5]王冰,李宏亮,杨文英.胰岛素信号转导通路与p细胞分泌功能的关系及机制[J].中日友好医院学报,2008;22(1):54-56.
    [6]罗怡,曹仁贤.胰岛β细胞胰岛素信号转导通路[J].国际内分泌代谢杂志,2006;26(1):37-39.
    [7]宋丽娜,宋菊敏.胰岛β细胞胰岛素抵抗的研究进展[J].医学综述,2009;15(3):440-42.
    [8]王蕊,黄昆.胰岛素受体家族的结构与功能[J].中国生物化学与分子生物学报,2009;25(12):1102-09.
    [9]曾伏虎,刘国树.胰岛素受体介导主要信号传导途径与胰岛素抵抗的治疗进展[J].中国组织工程研究与临床康复,2007;11(34):6853-55.
    [10]侯志敏,刘玉杰.胰岛素受体底物活性调控的分子机制[J].生命的化学,2004;24(5):379-81.
    [11]范慧,李红.胰岛素受体底物与信号转导[J].国外医学(生理、病理科学与临床分册),2002;22(5):481-84.
    [12]舒适,宋菊敏.胰岛素受体底物-1/-2与胰岛素信号转导[J].医学综述,2008;(05):723-25.
    [13]Ansarullah, Jayaraman S, Hardikar A A, et al. Influence of Oreocnide integrifolia (Gaud.) Miq on IRS-1, Akt and Glut-4 in Fat-Fed C57BL/6J Type 2 Diabetes Mouse Model [J]. Evid Based Complement Alternat Med,2011; 2011:852720.
    [14]Liu B, Barbosa-Sampaio H, Jones P M, et al. The CaMK4/CREB/IRS-2 cascade stimulates proliferation and inhibits apoptosis of beta-cells [J]. PLoS One,2012; 7(9):e45711.
    [15]Garcia-Barrado M J, Iglesias-Osma M C, Moreno-Viedma V, et al. Differential sensitivity to adrenergic stimulation underlies the sexual dimorphism in the development of diabetes caused by Irs-2 deficiency [J]. Biochem Pharmacol,2011; 81(2):279-88.
    [16]迟毓婧,李晶,管又飞,等.PI3K-Akt信号传导通路对糖代谢的调控作用[J].中国生物化学与分子生物学报,2010;26(10):879-85.
    [17]张妍,徐桂芳.蛋白激酶B与糖原合成激酶3[J].医学综述,2006;12(14):842-44.
    [18]常盛.PI3K/Akt信号通路与胰岛素抵抗的研究进展[J].中医药导报,2008;145(07):113-16.
    [19]Kitaguchi T, Oya M, Wada Y, et al. Extracellular calcium influx activates adenylate cyclase 1 and potentiates insulin secretion in MIN6 cells [J]. Biochem J,2013; 450(2):365-73.
    [20]Men X, Peng L, Wang H, et al. Involvement of the Ca2+-responsive transactivator in high glucose-induced beta-cell apoptosis [J]. J Endocrinol,2013; 216(2):231-43.
    [21]Diederichs F. Ion homeostasis and the functional roles of SERCA reactions in stimulus-secretion coupling of the pancreatic beta-cell:A mathematical simulation [J]. Biophys Chem,2008; 134(3):119-43.
    [22]刘瑞,胡仁明,王庆华.β细胞的胰岛素抵抗促进糖尿病的发生[J].中国糖尿病杂志,2010;18(8):634-36.
    [23]刘瑞,白怀,刘秉文.胰岛素受体信号传递[J].生理科学进展,2001;32(3):254-56.
    [24]王冰,李宏亮,杨文英,等.胰岛素信号通路在高游离脂肪酸所致的β细胞功能紊乱中的作用及机制[J].北京大学学报(医学版),2007;39(5):462-66.
    [25]赵海燕,王勇,马永平,等.胰岛素信号转导障碍与胰岛素抵抗[J].新医学,2010;41(4):267-71.
    [26]张中成,刘志诚.2型糖尿病胰岛素受体后水平研究现状[J].医学综述,2002;8(3):166-68.
    [27]彭定琼,郭晓蕙,陈宇,等.胰岛素受体底物2在2型糖尿病大鼠肌肉、脂肪、肝脏中的蛋白表达及其意义[J].中国预防医学杂志,2006;7(5):405-07.
    [28]陈世清,黎华,刘杞.高脂饮食对大鼠脂肪肝胰岛素受体底物1、2表达的影响[J].中国糖尿病杂志,2008;16(7):409-12.
    [29]Rametta R, Mozzi E, Dongiovanni P, et al. Increased insulin receptor substrate 2 expression is associated with steatohepatitis and altered lipid metabolism in obese subjects [J]. Int J Obes (Lond),2012.
    [30]葛伊莉,彭红,周军,等.糖尿病和硝化条件下胰岛素受体及底物酪氨酸磷酸化的研究[J].无机化学学报,2008;24(7):1040-45.
    [31]赵慧,于苏国,王令令,等.高脂饮食诱导肥胖模型大鼠骨骼肌组织蛋白酪氨酸磷酸酯酶1B和胰岛素受体底物2的表达[J].中国组织工程研究,2012;16(20):3698-702.
    [32]Cao S, Li B, Yi X, et al. Effects of exercise on AMPK signaling and downstream components to PI3K in rat with type 2 diabetes [J]. PLoS One,2012; 7(12):e51709.
    [33]Atkins R J, Dimou J, Paradiso L, et al. Regulation of glycogen synthase kinase-3 beta (GSK-3beta) by the Akt pathway in gliomas [J]. J Clin Neurosci,2012; 19(11):1558-63.
    [34]朱国萍,娄阳,徐冲.Bcl-2蛋白家族与细胞凋亡[J].细胞生物学杂志,2001;23(1):20-23.
    [35]柳向军,张令强,刘小林,等.细胞凋亡中的Bcl-2家族蛋白及其BH3结构域的功能研究[J].生物化学与生物物理进展,2006;33(3):221-25.
    [36]何家璇,薛荣亮.Bad蛋白对细胞凋亡的调控作用[J].医学综述,2007;13(3):161-63.
    [37]李捷萌,陈彦青,刘荣国.线粒体凋亡途径与Bcl-2家族蛋白研究进展[J].医学综述,2008;14(4):489-90.
    [38]Quan J H, Cha G H, Zhou W, et al. Involvement of PI 3 kinase/Akt-dependent Bad phosphorylation in Toxoplasma gondii-mediated inhibition of host cell apoptosis [J]. Exp Parasitol,2013; 133(4):462-71.
    [39]郑舒静.胰岛β细胞转录因子FoxO1的研究进展[J].医学综述,2011;17(1):47-49.
    [40]Kaiser G, Gerst F, Michael D, et al. Regulation of forkhead box 01 (FOXO1) by protein kinase B and glucocorticoids:different mechanisms of induction of beta cell death in vitro [J]. Diabetologia,2013.
    [41]钟茜,邓宇斌.FoxO1转录因子及其翻译后修饰的生物学意义[J].中国生物化学与分子生物学报,2010;26(03):203-08.
    [42]陈洪菊,屈艺,母得志.mTOR信号通路的生物学功能[J].生命的化学,2010;30(04):555-61.
    [43]牛燕媚,苑红,张宁,等.mTOR/S6K1信号通路与胰岛素抵抗的关系及有氧运动对其影响的研究[J].中国应用生理学杂志,2010;26(04):399-403.
    [44]程庆丰,李启富.蛋白酪氨酸磷酸酶-1B与胰岛素信号转导[J].国外医学(内分泌学分册),2005;25:8-10.
    [45]蛋白质酪氨酸激酶(PTKs)和磷酸酶(PTPs)——治疗人类重大疾病药物开发的靶标[C].中国吉林抚松:2010.
    [46]廖侃.蛋白质酪氨酸磷酸酯酶(Protein Tyrosine Phosphatase)的功能作用[J].生命科学,1995;(04):10-14.
    [47]孟凡萍,李伶,杨刚毅.蛋白酪氨酸磷酸酶PTP-1B与糖脂代谢紊乱[J].国际病理科学与临床杂志,2005;25(5):432-34.
    [1]张旭东,张雷,赵春芳.糖尿病小鼠胰岛p细胞结构的光镜和电镜研究.解剖科学进展,2008,14:256-259,262.
    [2]苏明丽,王怀清,雷银雪,等.链脲佐菌素对大鼠胰岛p细胞结构及超微结构损伤的特点.中国医药导刊,2008,10:1422-1424.
    [3]Mulder H, Ling C. Mitochondrial dysfunction in pancreatic beta-cells in Type 2 diabetes. Mol Cell Endocrinol,2009,297:34-40.
    [4]Johnson JD, Luciani DS. Mechanisms of pancreatic beta-cell apoptosis in diabetes and its therapies. Adv Exp Med Biol,2010,654:447-462.
    [5]Mokini Z, Marcovecchio ML, Chiarelli F. Molecular pathology of oxidative stress in diabetic angiopathy:role of mitochondrial and cellular pathways. Diabetes Res Clin Pract, 2010,87:313-321.
    [6]Fonseca SG, Urano F, Burcin M, et al. Stress hypERactivation in the beta-cell. Islets, 2010,2:1-9.
    [7]Fonseca SG, Gromada J, Urano F. Endoplasmic reticulum stress and pancreatic beta-cell death. Trends Endocrinol Metab,2011,22:266-74.
    [8]Lipson KL, Ghosh R, Urano F. The role of IRE1alpha in the degradation of insulin mRNA in pancreatic beta-cells. PLoS One,2008,3:el648.
    [9]Park KG, Lee KM, Seo HY, et al. Glucotoxicity in the INS-1 rat insulinoma cell line is mediated by the orphan nuclear receptor small heterodimer partner. Diabetes,2007, 56:431-437.
    [10]Wang Z, Thurmond DC. Mechanisms of biphasic insulin-granule exocytosis-roles of the cytoskeleton, small GTPases and SNARE proteins. J Cell Sci,2009,122:893-903.
    [11]Pitocco D, Zaccardi F. Biphasic insulin treatment in type 2 diabetes patients. Acta Biomed, 2010,81:85-86.
    [12]潘长玉.胰岛p细胞与胰岛素分泌——可塑性与失代偿?中华内分泌代谢杂志,2009,25:2c-1-2.
    [13]Lin JD, Hsia TL, Wu CZ, Su CC, et al. The first and second phase of insulin secretion in naive Chinese type 2 diabetes mellitus. Metabolism,2010,59:780-786.
    [14]Saini, V. Molecular mechanisms of insulin resistance in type 2 diabetes mellitus. World J Diabetes,2010,1:68-75.
    [15]Liapina LA, Miasoedov NF, Andreeva LA, et al. Fibrinolytic and hypoglycemic effects of the Pro-Gly-Pro-Leu peptide during development of insulin-dependent diabetes in rats. Izv Akad Nauk Ser Biol,2010, (3):375-379.
    [16]Basu R, Basu A, Chandramouli V, et al. Effects of pioglitazone and metformin on NEFA-induced insulin resistance in type 2 diabetes. Diabetologia,2008,51:2031-2040.
    [17]Prasadan K, Koizumi M, Tulachan S, et al. The expression and function of glucose-dependent insulinotropic polypeptide in the embryonic mouse pancreas. Diabetes, 2011,60:548-554.
    [18]Ren Y, Li X, Tian H, et al. Changes of leptin, tumor necrosis factor-alpha, neuropeptide Y levels and their association with insulin resistance and insulin secretion function in normal glucose tolerant first-degree relatives of familial type 2 diabetic pedigrees. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi,2010,27:1341-1345.
    [19]Teff KL. Visceral nerves:vagal and sympathetic innervation. JPEN J Parenter Enteral Nutr,2008,32:569-571.
    [1]Baeyens L, Bouwens L. Cellular plasticity of the pancreas[J]. Biol Chem,2009; 390(10):995-1001.
    [2]Szabat M, Lynn F C, Hoffman B G, et al. Maintenance of beta-Cell Maturity and Plasticity in the Adult Pancreas:Developmental Biology Concepts in Adult Physiology [J]. Diabetes,2012; 61 (6):1365-71.
    [3]Johansson M, Mattsson G, Andersson A, et al. Islet endothelial cells and pancreatic beta-cell proliferation:studies in vitro and during pregnancy in adult rats [J]. Endocrinology,2006; 147(5):2315-24.
    [4]Layden B T, Durai V, Newman M V, et al. Regulation of pancreatic islet gene expression in mouse islets by pregnancy [J]. J Endocrinol,2010; 207(3):265-79.
    [5]Peyot M L, Pepin E, Lamontagne J, et al. Beta-cell failure in diet-induced obese mice stratified according to body weight gain:secretory dysfunction and altered islet lipid metabolism without steatosis or reduced beta-cell mass [J]. Diabetes,2010; 59(9):2178-87.
    [6]Lindstrom P. beta-cell function in obese-hyperglycemic mice [ob/ob Mice] [J]. Adv Exp Med Biol,2010; 654:463-77.
    [7]Poucher S M, Cheetham S, Francis J, et al. Effects of saxagliptin and sitagliptin on glycaemic control and pancreatic beta-cell mass in a streptozotocin-induced mouse model of type 2 diabetes [J]. Diabetes Obes Metab,2012; 14(10):918-26.
    [8]Tiano J P, Mauvais-Jarvis F. Importance of oestrogen receptors to preserve functional beta-cell mass in diabetes[J]. Nat Rev Endocrinol,2012; 8(6):342-51.
    [9]Dominguez-Bendala J, Inverardi L, Ricordi C. Regeneration of pancreatic beta-cell mass for the treatment of diabetes [J]. Expert Opin Biol Ther,2012; 12(6):731-41.
    [10]Lupi R, Del P S. Beta-cell apoptosis in type 2 diabetes:quantitative and functional consequences [J]. Diabetes Metab,2008; 34 Suppl 2:S56-64.
    [11]Kaiser N, Leibowitz G, Nesher R. Glucotoxicity and beta-cell failure in type 2 diabetes mellitus [J]. J Pediatr Endocrinol Metab,2003; 16(1):5-22.
    [12]Del G S, Grupillo M, Masini M, et al. Gliclazide protects human islet beta-cells from apoptosis induced by intermittent high glucose [J]. Diabetes Metab Res Rev,2007; 23(3):234-38.
    [13]D'Alessandris C, Andreozzi F, Federici M, et al. Increased O-glycosylation of insulin signaling proteins results in their impaired activation and enhanced susceptibility to apoptosis in pancreatic beta-cells [J]. FASEB J,2004; 18(9):959-61.
    [14]Schumann D M, Maedler K, Franklin I, et al. The Fas pathway is involved in pancreatic beta cell secretory function [J]. Proc Natl Acad Sci U S A,2007;104(8):2861-66.
    [15]Marchetti P, Bugliani M, Lupi R, et al. The endoplasmic reticulum in pancreatic beta cells of type 2 diabetes patients [J]. Diabetologia,2007; 50(12):2486-94.
    [16]Wang W, Zhang D, Zhao H, et al. Ghrelin inhibits cell apoptosis induced by lipotoxicity in pancreatic beta-cell line [J]. Regul Pept,2010; 161(1-3):43-50.
    [17]Las G, Shirihai O S. The role of autophagy in beta-cell lipotoxicity and type 2 diabetes [J]. Diabetes Obes Metab,2010; 12 Suppl 2:15-19.
    [18]Poitout V, Robertson R P. Glucolipotoxicity:fuel excess and beta-cell dysfunction [J]. Endocr Rev,2008; 29(3):351-66.
    [19]Matveyenko A V, Gurlo T, Daval M, et al. Successful versus failed adaptation to high-fat diet-induced insulin resistance:the role of IAPP-induced beta-cell endoplasmic reticulum stress [J]. Diabetes,2009; 58(4):906-16.
    [20]Takahashi A, Nagashima K, Hamasaki A, et al. Sulfonylurea and glinide reduce insulin content, functional expression of K(ATP) channels, and accelerate apoptotic beta-cell death in the chronic phase[J]. Diabetes Res Clin Pract,2007; 77(3):343-50.
    [21]Maedler K, Carr R D, Bosco D, et al. Sulfonylurea induced beta-cell apoptosis in cultured human islets[J]. J Clin Endocrinol Metab,2005; 90(1):501-06.
    [22]Hansotia T, Drucker D J. GIP and GLP-1 as incretin hormones:lessons from single and double incretin receptor knockout mice [J]. Regul Pept,2005; 128(2):125-34.
    [23]Kern W. Beta-cell function in the foreground. GLP-1 based therapy of type 2 diabetes [J]. MMW Fortschr Med,2010; 151 Suppl 4:173-78.
    [24]Portha B, Tourrel-Cuzin C, Movassat J. Activation of the GLP-1 receptor signalling pathway:a relevant strategy to repair a deficient beta-cell mass [J]. Exp Diabetes Res, 2011; 2011:376509.
    [25]Asmar M, Hojberg P V, Deacon C F, et al. Pancreatic beta-cell responses to GLP-1 after near-normalization of blood glucose in patients with type 2 diabetes [J]. Regul Pept,2010; 160(1-3):175-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700