用户名: 密码: 验证码:
粉末冶金超细晶AZ31镁合金材料制备与力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金材料由于其比强度高、比刚度大、易于回收利用等一系列的优点而在航空、航天、汽车、电子工业等领域得到了广泛的应用。超细晶材料具有优异的物理、化学和力学性能,已经成为材料科学领域研究开发的重点和热点之一。基于镁合金材料和超细晶材料的特点,本文提出一种有效制备块体超细晶AZ31镁合金材料的工艺方法,主要工艺流程为:纳米晶AZ31镁合金粉末—冷压—真空热压—包套挤压等,其中获取纳米晶AZ31镁合金粉末、寻找真空热压和包套挤压最佳工艺参数是制备超细晶AZ31镁合金材料的关键环节。此外,超细晶AZ31镁合金材料的室温力学行为与高温力学行为显著不同于常规AZ31镁合金材料,因而,建立超细晶AZ31镁合金材料力学行为模型具有重要理论意义和指导意义。
     研究了纳米晶AZ31镁合金粉末的粒度、形貌、微观特征和组织热稳定性,探讨了纳米晶AZ31镁合金粉末的晶粒长大行为,计算得出晶粒长大动力学常数n值、k值和晶粒长大激活能G值,为后续的真空热压、包套挤压、轧制工艺提供理论依据;其次利用黄培元双对数压制方程研究了纳米晶AZ31镁合金粉末的压制特性,指导纳米晶AZ31镁合金粉末的冷压制实验;再次,采用数值模拟和试验研究相结合的方法探讨了工艺参数对真空热压和包套挤压过程的影响规律,最终确定制备超细晶AZ31镁合金材料的最佳工艺参数,从而获得性能优异的全致密超细晶AZ31镁合金材料。
     研究了超细晶AZ31镁合金材料的组织热稳定性、晶粒长大动力学和晶粒长大机制,确定了超细晶AZ31镁合金材料的最佳热加工温度;探讨了晶粒尺寸对超细晶AZ31镁合金材料组织和力学性能的影响规律,研究结果表明超细晶AZ31镁合金材料的晶粒尺寸对抗拉强度、屈服强度及硬度有着显著的影响,并且对于超细晶AZ31镁合金材料来说,其屈服强度与晶粒尺寸之间依然很好地符合Hall-Petch关系。
     研究了超细晶AZ31镁合金材料的力学行为与变形机制,室温条件下采用包套挤压获得的超细晶AZ31镁合金棒材,其抗拉强度为382MPa,屈服强度为278MPa;而轧制态超细晶AZ31镁合金板材抗拉强度为435MPa,屈服强度为330MPa,并且抗拉强度和屈服强度都随着应变速率的增加而增加,表明超细晶AZ31镁合金材料为正应变速率敏感性材料。
     采用Gleeble-3500热力模拟试验机上进行高温拉伸试验,研究了变形温度为190°C-250°C、应变速率为5×10~(-4)s~(-1)-5×10~(-3)s~(-1)时,超细晶AZ31镁合金材料热拉伸塑性变形时的力学行为与变化规律。分析了超细晶AZ31镁合金材料热拉伸变形时流变应力与变形程度、应变速率以及变形温度三者之间的函数关系,计算了应力指数和变形激活能,确定了高温热变形时的材料常数,建立了超细晶AZ31镁合金材料高温塑性变形时流变应力与应变之间的本构方程数学模型,为合理制定超细晶AZ31镁合金材料热加工工艺提供理论依据和参考,同时探讨了超细晶AZ31镁合金材料的超塑性变形机制。
Magnesium alloys have been widely used in areas such as aerospace, automotive,electronics due to their high strength, stifness, easier to recycle and a series of advantages.Block magnesium alloy materials with ultra-fine grained microstructure have excellentphysical, chemical and mechanical properties, which is one of the research hot spots inmaterial area. This paper proposes an efective way to prepare block ultra-fine magnesiumalloy and the main technological process: nanocrystalline powder-cold pressing-vacuumhot pressing-extrusion-rolling. Extrusion and rolling are the key points to prepare ultra-fine grained materials. In addition, the mechanical behaviors of ultra-fine grained AZ31magnesium alloy are significantly diferent from conventional materials at room temper-ature and high temperature. It is very important to establish the model of mechanicalbehavior of ultra-fine grained materials.
     Research on grain degrees, morphology, microstructure and hot stability of nanocrys-talline AZ31magnesium alloy powder. The grain sizes increase with annealing tempera-ture and annealing time increasing. Discussion has been done on grain growth behavior ofnanocrystalline AZ31magnesium alloy powder. The grain growth index n and activationenergy G have been calculated, which shows as the basic work for the following vacuumhot pressing, extrusion and rolling. Studying on cold compactability of nano-grain mag-nesium alloy powder by Huang Peiyun compaction equation as experiment instruction ofcold pressing, hot pressing and extrusion, ultimately determined for nanocrystalline mag-nesium alloy powder preparation method of ultra fine-grained AZ31magnesium alloymaterials, optimizing the process parameters, to compact ultra fine-grained AZ31magne-sium alloy materials.
     Research on microstructure stability of ultra-fine AZ31magnesium alloy to deter-mine the optimum temperature of hot working process. Discussion on the efect of dif-ferent grain size on microstructure and properties and the results show the grain sizes ofAZ31magnesium alloy significantly efect the yield strength and the hardness. For theultra-fine grained AZ31magnesium alloy, its yield strength and grain size are still goodto meet traditional of Hall-Petch relationship.
     Research on mechanical behavior and deformation mechanism of ultra-fine magne-sium alloy. Preparation of ultra-fine grained AZ31magnesium alloy rod by extrusion at diferent temperature and its tensile strength at room temperature is382MPa, yieldstrength is278MPa. Rolled ultra-fine grained AZ31magnesium alloy sheet shows tensilestrength at room temperature is435MPa and yield strength is330MPa. Ultra-fine grainedAZ31magnesium alloy is strain rate sensitivity material for yield strength increasing withthe strain rate increasing.
     Gleeble-3500drawing simulation testing machine is taken to study on mechanicalbehavior of ultra-fine AZ31magnesium alloy at high temperature. An Analysis on hotflow stress with the deformation degree, tensile deformation strain rate and deformationtemperature have been done. Establishing the constitutive equations of flow stress, strainand Zener-Hollomon parameters to determine the material constants of thermal deforma-tion. Proposing reasonable thermal processing technology reference for hot working ofultra-fine grained AZ31magnesium alloy. Discussion on superplastic deformation mech-anisms of AZ31magnesium alloy materials and the establishment of appropriate models.
引文
[1]黎文献.镁及镁合金[M].湖南:中南大学出版社,2005:532–575.
    [2] Song D, Ma A, Jiang J, et al. Corrosion behaviour of bulk ultra-fine grained AZ91Dmagnesium alloy fabricated by equal-channel angular pressing[J]. Corrosion Sci-ence,2011,53(1):362–373.
    [3] Mordike B, Ebert T. Magnesium: Properties—applications—potential[J]. Materi-als Science and Engineering: A,2001,302(1):37–45.
    [4]王荣,朱秀荣,杨波. ZK60镁合金的室温静液挤压强化[J].中南大学学报(自然科学版),2008,39:252.
    [5] Avedesian M, Baker H. Magnesium and magnesium alloys[M]. United States:ASM International,1998:5–112.
    [6] Ho K, Gupta M, Srivatsan T. The mechanical behavior of magnesium alloy AZ91reinforced with fine copper particulates[J]. Materials Science and Engineering: A,2004,369(1):302–308.
    [7] Polmear I. Recent developments in light alloys[J]. Materials Transactions,1996,37(1):12–31.
    [8] Lu L, Liu T, Chen Y, et al. Deformation and fracture behavior of hot extruded Mgalloys AZ31[J]. Materials Characterization,2012,67:93–100.
    [9] Honeycombe R W K. The plastic deformation of metals[J]. Edward arnold,1975:40–50.
    [10] Mordike B, Ebert T. Magnesium: Properties—applications—potential[J]. Materi-als Science and Engineering: A,2001,302(1):37–45.
    [11]丁道云.非铁合金的结构与性能[M].湖南:科学出版社,1999:1–200.
    [12] Polmear I. Magnesium alloys and applications[J]. Materials science and technolo-gy,1994,10(1):1–16.
    [13] Hong S, Park S, Lee C. Role of {10-12} twinning characteristics in the defor-mation behavior of a polycrystalline magnesium alloy[J]. Acta Materialia,2010,58(18):5873–5885.
    [14] Boas W, Ogilvie G. The plastic deformation of a crystal in a polycrystalline aggre-gate[J]. Acta Metallurgica,1954,2(5):655–659.
    [15] Mestral F, Brun M. Foundry magnesium alloys for aeronautical casings: uses andprospects[J]. Magnesium Alloys and Their Applications,1992:389–396.
    [16]汪凌云,黄光胜,范永革.变形AZ31镁合金的晶粒细化[J].中国有色金属学报,2003,13(3):594–598.
    [17] Frost H. MF Ashby in Deformation Mechanism Maps[M]. Oxford: PergamonPress,1982:43–45.
    [18] Socjusz-Podosek M, Lityn′ska L. Efect of yttrium on structure and mechanicalproperties of Mg alloys[J]. Materials chemistry and physics,2003,80(2):455–475.
    [19] Mordike B. Creep-resistant magnesium alloys[J]. Materials Science and Engineer-ing: A,2002,324(1):103–112.
    [20] Qu Z, Liu X, Wu R, et al. The superplastic property of the as-extruded Mg-8Lialloy[J]. Materials Science and Engineering: A,2010,527(13-14):3284–3287.
    [21] Letzig D, Swiostek J, Bohlen J, et al. Magnesium wrought alloy properties of theAZ-series[J]. Magnesium Technology,2005:55–59.
    [22] Xu S, Zheng M, Kamado S, et al. The microstructural evolution and superplasticbehavior at low temperatures of Mg-5.00Zn-0.92Y-0.16Zr (wt.%) alloys afterhot extrusion and ECAP process[J]. Materials Science and Engineering: A,2012,549(15):60–68.
    [23]陈振华.变形镁合金[M].北京:化学工业出版社,2005.
    [24] Du J, Han W, Peng Y. Life cycle greenhouse gases, energy and cost assessmentof automobiles using magnesium from Chinese Pidgeon process[J]. Journal ofCleaner Production,2010,18(2):112–119.
    [25] Wang Q, Zhang Z, Zhang X, et al. New extrusion process of Mg alloy automobilewheels[J]. Transactions of Nonferrous Metals Society of China,2010,20:599–603.
    [26]薛俊峰.镁合金防腐蚀技术[J].化学工业出版社,2010(4):251–253.
    [27] Hollrigl-Rosta F, Just E, Kohler J, et al. Magnesium in the Volkswagen Works[J].Metall,1980,34(12):1138–1141.
    [28] Agnew S R. Wrought magnesium: A21st century outlook[J]. Journal of theMinerals, Metals and Materials Society,2004,56(5):20–21.
    [29] Kim W, Hong S, Kim Y, et al. Texture development and its efect on mechanicalproperties of an AZ61Mg alloy fabricated by equal channel angular pressing[J].Acta Materialia,2003,51(11):3293–3307.
    [30] Villeta M, de Agustina B, Sa′enz de Pipao′n J, et al. Efcient optimisation of machin-ing processes based on technical specifications for surface roughness: applicationto magnesium pieces in the aerospace industry[J]. The International Journal ofAdvanced Manufacturing Technology,2012,60(9):1237–1246.
    [31]谢春晓,陈丙璇,刘凯. AZ31变形镁合金的研究与开发[J].金属世界,2006(2):22–26.
    [32]陈振华,严红革,陈吉华.镁合金[M].北京:化学工业出版社,2004.
    [33] Quan G, Ku T, Song W, et al. The workability evaluation of wrought AZ80mag-nesium alloy in hot compression[J]. Materials&Design,2011,32(4):2462–2468.
    [34]钟皓,刘培英,周铁涛.镁及镁合金在航空航天中的应用及前景[J].航空工程与维修,2002,4:41–42.
    [35]康鸿跃,陈善华,马永平.镁合金在军事装备中的应用[J].金属世界,2008,1:61–63.
    [36] Das S, Chang C. Magnesium alloys and their applications[J]. DGM InformationSgesellschaft, Oberursel,1992:56.
    [37] Polmear I. Magnesium alloys and applications[J]. Materials science and technolo-gy,1994,10(1):1–16.
    [38]刘静安,盛春磊.镁及镁合金的应用及市场发展前景[J].有色金属加工,2007,36(2):1–6.
    [39] Valiev R, Islamgaliev R, Alexandrov I. Bulk nanostructured materials from severeplastic deformation[M]. Russian: Progress in Materials Science,2000:103–189.
    [40] Zhernakov V, Latysh V, Stolyarov V, et al. The developing of nanostructured SPDTi for medical application[J]. Scripta Materialia,2001,44(8):1771–1774.
    [41] Kruis F, Fissan H, Peled A. Synthesis of nanoparticles in the gas phase for elec-tronic, optical and magnetic applications[J]. Journal of Aerosol Science,1998,29(5):511–535.
    [42] Harvey E, Ladani L, Weaver M. Complete mechanical characterization ofnanocrystalline Al-Mg alloy using nanoindentation[J]. Mechanics of Materials,2012,52:1–11.
    [43] Siegel R W. Nanostructured materials-mind over matter[J]. Nanostructured Mate-rials,1993,3(1):1–18.
    [44] Gleiter H. Nanostructured materials: State of the art and perspectives[J]. Nanos-tructured materials,1995,6(1):3–14.
    [45] Thomas G, Siegel R, Eastman J. Grain boundaries in nanophase palladium: highresolution electron microscopy and image simulation[J]. Scripta Metal Materialia,1990,24(1):201–206.
    [46] Iwanaga K, Tashiro H, Okamoto H, et al. Improvement of formability from roomtemperature to warm temperature in AZ31magnesium alloy[J]. Journal of Materi-als Processing Technology,2004,155:1313–1316.
    [47] Hu L, Wu Y, Yuan Y, et al. Microstructure nanocrystallization of a Mg–3wt.%Al–1wt.%Zn alloy by mechanically assisted hydriding–dehydriding[J]. MaterialsLetters,2008,62(17):2984–2987.
    [48] Abe E, Kawamura Y, Hayashi K, et al. Long-period ordered structure in a high-strength nanocrystalline Mg-1at%Zn-2at%Y alloy studied by atomic-resolutionZ-contrast stem[J]. Acta materialia,2002,50(15):3845–3857.
    [49] Mora E, Garce′s G, On orbe E, et al. High-strength Mg–Zn–Y alloys produced bypowder metallurgy[J]. Scripta Materialia,2009,60(9):776–779.
    [50] Scattergood R, Koch C. A modified model for Hall-Petch behavior in nanocrys-talline materials[J]. Scripta metallurgica et materialia,1992,27(9):1195–1200.
    [51] Masumura R, Hazzledine P, Pande C. Yield stress of fine grained materials[J]. ActaMaterialia,1998,46(13):4527–4534.
    [52] Kumar K, Van Swygenhoven H, Suresh S. Mechanical behavior of nanocrystallinemetals and alloys1[J]. Acta Materialia,2003,51(19):5743–5774.
    [53]陈拂晓,柏奇志. MB26镁合金的超塑性与超塑挤压研究[J].热加工工艺,2001(4):16–17.
    [54] Kai M, Horita Z, Langdon T. Developing grain refinement and superplasticity ina magnesium alloy processed by high-pressure torsion[J]. Materials Science andEngineering: A,2008,488(1):117–124.
    [55]吴诗抈.金属超塑性变形理论[M].北京:国防工业出版社,1997:32–44.
    [56]魏伟.块体超细晶铜的制备与组织性能研究[D].南京:南京理工大学,2005.
    [57] Watanabe H, Mukai T, Mabuchi M, et al. Superplastic deformation mechanism inpowder metallurgy magnesium alloys and composites[J]. Acta materialia,2001,49(11):2027–2037.
    [58] Mohri T, Mabuchi M, Nakamura M, et al. Microstructural evolution and super-plasticity of rolled Mg-9Al-1Zn[J]. Materials Science and Engineering: A,2000,290(1):139–144.
    [59] Imai T, Nishida Y, Jiang D. Superplasticity of a AlN/Mg-5wt%Al alloy compositemade by a vortex method[J]. Scripta materialia,1997,36(5):611–615.
    [60] Li Y, Langdon T. A unified interpretation of threshold stresses in the creep andhigh strain rate superplasticity of metal matrix composites[J]. Acta materialia,1999,47(12):3395–3403.
    [61] Talachi A, Eizadjou M, Manesh H, et al. Wear characteristics of severely deformedaluminum sheets by accumulative roll bonding (ARB) process[J]. Materials Char-acterization,2011,62(1):12–21.
    [62] Tsuji N, Saito Y, Utsunomiya H, et al. Ultra-fine grained bulk steel produced byaccumulative roll-bonding (ARB) process[J]. Scripta materialia,1999,40(7):795–800.
    [63] Birringer R, Gleiter H, Klein H, et al. Nanocrystalline materials an approachto a novel solid structure with gas-like disorder[J]. Physics Letters A,1984,102(8):365–369.
    [64] Zhilyaev A, Nurislamova G, Kim B, et al. Experimental parameters influencinggrain refinement and microstructural evolution during high-pressure torsion[J]. Ac-ta Materialia,2003,51(3):753–765.
    [65] Zhilyaev A, Langdon T. Using high-pressure torsion for metal processing: Funda-mentals and applications[J]. Progress in Materials Science,2008,53(6):893–979.
    [66] Horita Z, Langdon T. Achieving exceptional superplasticity in a bulk aluminumalloy processed by high-pressure torsion[J]. Scripta materialia,2008,58(11):1029–1032.
    [67] Masaaki K, Zenji H, Terence G L. Developing grain refinement and superplasticityin a magnesium alloy processed by high-pressure torsion[J]. Materials Science andEngineering: A,2008,488:117–124.
    [68] Serre P, Figueiredo R, Gao N, et al. Influence of strain rate on the characteristics ofa magnesium alloy processed by high-pressure torsion[J]. Materials Science andEngineering: A,2011,528(10):3601–3608.
    [69] Figueiredo R, Langdon T. Development of structural heterogeneities in a magne-sium alloy processed by high-pressure torsion[J]. Materials Science and Engineer-ing: A,2011,528(13):4500–4506.
    [70] Wang C, Gao N, Gee M, et al. Efect of grain size on the micro-tribologicalbehavior of pure titanium processed by high-pressure torsion[J]. Wear,2012,280(20):28–35.
    [71] Chen Y, Chai Y, Roven H, et al. Microstructure and mechanical properties ofAl–xMg alloys processed by room temperature ECAP[J]. Materials Science andEngineering: A,2012,545:139–147.
    [72] Figueiredo R, Langdon T. Principles of grain refinement and superplastic flow inmagnesium alloys processed by ECAP[J]. Materials Science and Engineering: A,2009,501(1-2):105–114.
    [73] Miyahara Y, Horita Z, Langdon T. Exceptional superplasticity in an AZ61magne-sium alloy processed by extrusion and ECAP[J]. Materials Science and Engineer-ing: A,2006,420(1):240–244.
    [74] Figueiredo R, Langdon T. The development of superplastic ductilities and mi-crostructural homogeneity in a magnesium ZK60alloy processed by ECAP[J].Materials Science and Engineering: A,2006,430(1-2):151–156.
    [75] Ma A, Jiang J, Saito N, et al. Improving both strength and ductility of a Mg alloythrough a large number of ECAP passes[J]. Materials Science and Engineering: A,2009,513:122–127.
    [76] Iwahashi Y, Horita Z, Nemoto M, et al. Principle of equal-channel angular press-ing for the processing of ultra-fine grained materials[J]. Scripta Materialia,1996,35(2):143–146.
    [77] Matsubara K, Miyahara Y, Makii K. Using Extrusion and ECAP Processing toAchieve Low Temperature and High Strain Rate Superplasticity[C]//Materials Sci-ence Forum. Switzerland: Trans Tech Publications,2003:497–502.
    [78] Watanabe H, Mukai T, Kamado S, et al. Mechanical properties of Mg-Y-Zn alloyprocessed by equal-channel-angular extrusion[J]. Materials Transactions,2003,44(4):463–467.
    [79] Estrin Y, Yi S, Brokmeier H G, et al. Microstructure, texture and mechanical prop-erties of the magnesium alloy AZ31processed by ECAP[J]. International journalof materials research,2008,99(1):50–55.
    [80] Kang S, Lee Y, Lee J. Efect of grain refinement of magnesium alloy AZ31bysevere plastic deformation on material characteristics[J]. Journal of Materials Pro-cessing Technology,2008,201(1):436–440.
    [81] Matsubara K, Miyahara Y, Horita Z, et al. Developing superplasticity in a mag-nesium alloy through a combination of extrusion and ECAP[J]. Acta materialia,2003,51(11):3073–3084.
    [82] Derakhshandeh H R, Jenabali Jahromi A. An investigation on the capability ofequal channel angular pressing for consolidation of aluminum and aluminum com-posite powder[J]. Materials&Design,2011,32(6):3377–3388.
    [83] Eizadjou M, Manesh H, Janghorban K. Microstructure and mechanical propertiesof ultra-fine grains (UFGs) aluminum strips produced by ARB process[J]. Journalof Alloys and Compounds,2009,474(1-2):406–415.
    [84] Wang Q, Xiao X, Hu J, et al. An ultrafine-grained AZ31magnesium alloy sheetwith enhanced superplasticity prepared by accumulative roll bonding[J]. Journalof Iron and Steel Research,2007,14(5):167–172.
    [85] Pe′rez-Prado M, Ruano O, et al. Grain refinement of Mg–Al–Zn alloys via accu-mulative roll bonding[J]. Scripta materialia,2004,51(11):1093–1097.
    [86] Saito Y, Utsunomiya H, Tsuji N, et al. Novel ultra-high straining process for bulkmaterials–development of the accumulative roll-bonding (ARB) process[J]. Actamaterialia,1999,47(2):579–583.
    [87] Del Valle J, Pe′rez-Prado M, Ruano O. Accumulative roll bonding of a Mg-basedAZ61alloy[J]. Materials Science and Engineering: A,2005,410:353–357.
    [88] Zhan M, Zhang W, Zhang D. Production of Mg-Al-Zn magnesium alloy sheetswith ultrafine-grain microstructure by accumulative roll-bonding[J]. Transactionsof Nonferrous Metals Society of China,2011,21(5):991–997.
    [89]魏伟,陈光.块体纳米结构金属制备新工艺[J].材料导报,2002,16(10):22–24.
    [90] Huang J, Zhu Y, Alexander D, et al. Development of repetitive corrugation andstraightening[J]. Materials Science and Engineering: A,2004,371(1):35–39.
    [91] Mirsepasi A, Nili-Ahmadabadi M, Habibi-Parsa M, et al. Microstructure and me-chanical behavior of martensitic steel severely deformed by the novel techniqueof repetitive corrugation and straightening by rolling[J]. Materials Science andEngineering: A,2012,551:32–39.
    [92] Huang J, Zhu Y, Jiang H, et al. Microstructures and dislocation configurations innanostructured Cu processed by repetitive corrugation and straightening[J]. ActaMaterialia,2001,49(9):1497–1505.
    [93] Yang Q, Ghosh A. Production of ultrafine-grain microstructure in Mg alloy byalternate biaxial reverse corrugation[J]. Acta materialia,2006,54(19):5147–5158.
    [94]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1982:1–50.
    [95] J.S.Benjamin. Dispersion strengthened superalloys by mechanical alloying[J].Metallurgical Transactions,1970,1:2943–2951.
    [96] Koch C, Cho Y. Nanocrystals by high energy ball milling[J]. NanostructuredMaterials,1992,1(3):207–212.
    [97] Cao P, Lu L, Lai M. Grain growth and kinetics for nanocrystalline magnesiumalloy produced by mechanical alloying[J]. Materials research bulletin,2001,36(5-6):981–988.
    [98] Murty B, Ranganathan S. Novel materials synthesis by mechanical alloy-ing/milling[J]. International materials reviews,1998,43(3):101–141.
    [99] Pokorska I. Modeling of powder metallurgy processes[J]. Advanced Powder Tech-nology,2007,18(5):503–539.
    [100] Sanders P, Eastman J, Weertman J. Elastic and tensile behavior of nanocrystallinecopper and palladium[J]. Acta Materialia,1997,45(10):4019–4025.
    [101] Weertman J. Hall-Petch strengthening in nanocrystalline metals[J]. Materials Sci-ence and Engineering: A,1993,166(1):161–167.
    [102] Mani B, Jahedi M, Paydar M. Consolidation of commercial pure aluminum pow-der by torsional-equal channel angular pressing (T-ECAP) at room temperature[J].Powder Technology,2012,219:1–8.
    [103] Din S, Chishti S. Synthesis and characterization of Al40Mg25Zn35amorphouspowder by rapid solidification[J]. Powder technology,2001,114(1):51–54.
    [104]路君.等通道角挤压AZ3l镁合金力学行为研究[D].上海:上海交通大学,2009.
    [105] Koike J, Kobayashi T, Mukai T, et al. The activity of non-basal slip systems and dy-namic recovery at room temperature in fine-grained AZ31B magnesium alloys[J].Acta Materialia,2003,51(7):2055–2065.
    [106] Christian J W, Mahajan S. Deformation twinning[J]. Progress in Materials Science,1995,39(1):1–157.
    [107] Watanabe H, Mukai T, Ishikawa K, et al. Low temperature superplasticity of a fine-grained ZK60magnesium alloy processed by equal-channel-angular extrusion[J].Scripta Materialia,2002,46(12):851–856.
    [108]余琨.稀土变形镁合金组织性能及加工工艺研究[D].湖南:山东大学,2002.
    [109]常丽丽.变形镁合金AZ31的织构演变与力学性能[D].大连:大连理工大学,2009.
    [110]侯增寿,热处理,卢光熙.金属学原理[M].上海:上海科学技术出版社,1990:174–186.
    [111]郭小龙,卢磊,李守新.孪晶铜中孪晶尺寸对疲劳位错组态的影响[J].金属学报,2005,41(1):23–27.
    [112]余琨,黎文献,王日初.镁合金塑性变形机制[J].中国有色金属学报,2005,15(7):1081–1086.
    [113] Thein M, Lu L, Lai M. Kinetics of grain growth in nanocrystalline magnesium-based metal–metal composite synthesized by mechanical alloying[J]. Compositesscience and technology,2006,66(3):531–537.
    [114] Miao Q, Hu L, Wang X, et al. Grain growth kinetics of a fine-grained AZ31mag-nesium alloy produced by hot rolling[J]. Journal of Alloys and Compounds,2010,493(1-2):87–90.
    [115] Wang J, Iwahashi Y, Horita Z, et al. An investigation of microstructural stabil-ity in an Al–Mg alloy with submicrometer grain size[J]. Acta Materialia,1996,44(7):2973–2982.
    [116]曲家惠,李四军,张正贵.挤出和退火工艺对AZ31镁合金组织和织构的影响[J].中国有色金属学报,2007,17(3):434–440.
    [117] Panicker R, Chokshi A, Mishra R, et al. Microstructural evolution and grain bound-ary sliding in a superplastic magnesium AZ31alloy[J]. Acta Materialia,2009,57(13):3683–3693.
    [118] Kang S, Lee Y, Lee J. Efect of grain refinement of magnesium alloy AZ31bysevere plastic deformation on material characteristics[J]. Journal of Materials Pro-cessing Technology,2008,201(3):436–440.
    [119] Sherby O, Wadsworth J. Development and characterization of fine-grain superplas-tic materials[J]. American Society for Metals,,1984:355–389.
    [120]郭学锋.细晶镁合金制备方法及组织与性能[M].北京:冶金工业出版社,2010:9–11.
    [121] Mwembela A, Konopleva E, McQueen H. Microstructural development in Mgalloy AZ31during hot working[J]. Scripta Materialia,1997,37(11):1789–1795.
    [122] Davenport S, Silk N, Sparks C, et al. Development of constitutive equations formodelling of hot rolling[J]. Materials Science and Technology,2000,16(5):539–546.
    [123] Sah J, Richardson G, Sellars C. Recrystallization during hot deformation of nick-el[J]. Journal of Australian Metals,1969,14(4):292–297.
    [124] Sellars C, McTegart W. On the mechanism of hot deformation[J]. Acta Metallur-gica,1966,14(9):1136–1138.
    [125] Sakai T, Jonas J. Dynamic recrystallization: mechanical and microstructural con-siderations[J]. Acta Metallurgica,1984,32(2):189–209.
    [126] Ion S, Humphreys F, White S. Dynamic recrystallisation and the development ofmicrostructure during the high temperature deformation of magnesium[J]. ActaMetallurgica,1982,30(10):1909–1919.
    [127] Christian J. The Theory of Transformations in Metals and Alloys[M]. Beijing:Metallurigical Industry Press,1988:270–300.
    [128]刘满平,马春江.工业态AZ31镁合金的超塑性变形行为[J].中国有色金属学报,2002,12(4):797–801.
    [129]张凯锋,尹德良,王国峰.热轧AZ31镁合金超塑变形中的微观组织演变及断裂行为[J].航空材料学报,2005,25(1):5–10.
    [130] Bae D, Ghosh A. Cavity growth in a superplastic Al–Mg alloy: II. An improvedplasticity based model[J]. Acta materialia,2002,50(5):1011–1029.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700