用户名: 密码: 验证码:
镁合金沉积耐蚀金属镀层机理及工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金材料以其优异的物理性能,在21世纪的新材料领域内引起更多的关注,被誉为“绿色金属结构材料”。由于镁的电化学性质活泼,在一些腐蚀环境中,镁合金材质的零部件由于腐蚀降低了其优越的使用性能。通过对镁合金表面进行改性处理,能够显著提高镁合金对外界环境的适应性。通过金属镀层技术对镁合金表面进行改性的方法相对简单易行而且效果突出。镁合金表面进行金属镀层处理关键在于前处理工艺,以酸洗、活化这两项技术为主。对金属镀层技术进行改良和创新,可为镁合金的应用表面处理提供新技术。研究结果表明:
     1.新开发的钼酸钠酸洗液,具有环保、无毒、安全的特性,对镁合金表面酸洗刻蚀程度与铬酐酸洗液相当,安全性优于磷酸酸洗液,可完全取代含铬酐酸洗液。铬酐酸洗液(同时含HNO3)中的CrO42-和N03-对镁合金基底有很强的刻蚀作用,形成以CrOOH为主要物质的保护膜,对镁合金有暂时保护作用。磷酸酸洗液(H3PO4和HNO3混合溶液),能在镁合金表面形成以Al3PO4和Mg3(PO4)2为主要物质的磷化膜,阻止溶液与基底的直接反应,起到保护作用。新开发的钼酸钠酸洗液(Na2MO4和H3PO4混合溶液),可在镁合金基底表面形成钼酸盐类膜,该膜层比较厚,从而阻断酸洗液与基底作用,保护镁合金。
     2.使用NH4HF2活化可以取代高挥发性的HF活化工艺,同样能获得满足要求的化学镀镍层。K4P2O7活化能有效去除酸洗后产生的氧化物,形成可溶性的配位离子[Mg(P2O7)]2-,使镁合金基底在电镀液中完全裸露。活化后的基底导电性能好,适合于直接电镀镍。NH4HF2活化与HF活化后都能在镁合金基底形成含氟的活化膜。相同活化时间的HF活化膜的氟化镁含量高于NH4HF2活化膜,这就意味着NH4HF2活化后镁合金表面反应活性高于HF活化。通过控制NH4HF2活化的时间,可以控制MgF2膜在镁合金表面的覆盖度,调节镁合金表面反应活性。
     3.化学镀镍液能在复杂镁合金零部件表面得到结合力好的镍镀层。化学镀镍液中H2PO2水解时形成的Had(活泼的初生态原子H)吸附在镁合金活性基底的表面,还原了NiH,形成了镍晶核是主要反应机理。与镁合金基底表面金属的置换反应只在镁合金浸入镀液的初期发生,后期主要是原子氢引导的还原镍沉积。
     4.镁合金化学镀镍总反应方程式[Ni2++mL-n]+4H2PO2-+H2O→Ni+P+3HPO32-+4H++3/2H2+mL-n,该方程中[Ni2+]、[H2PO2-]、[L-n]等反应物的浓度,以及pH值、温度和稳定剂硫脲都会影响镍还原沉积的速率和金属镍镀层在镁合金表面的结合力和耐蚀性。
     5.采用改进型浸锌液,能在镁合金表面得到适合于电镀要求的浸镀锌层。传统的浸锌液中添加F-、EDTA和少量的NiSO4进行改进,提高了浸锌层的致密性和均匀性。浸锌液中镁合金表面的锌膜和MgF2、Mg(OH)2混合膜快速形成并附着在基底表面使基底电势迅速升高,镁的溶解活性降低,导电性不变,有利于提高电镀镍的质量。
     6.镁合金表面电镀镍层主要是由Ni2+在阴极表面得电子还原形成。电流密度、pH值、温度是影响电镀镍结合力和耐蚀性的主要因素。F-在1.0~1.5mol·dm-3内对电镀镍时阳极溶解是有促进作用的,温度升高电镀镍时阳极溶解活性增强。镁合金表面化学镀或者电镀金属镀层,后续铜镍多层电镀能进一步增强镁合金表面耐蚀性。
     7.电-化学镀镍技术既有电镀镍镀速快、镀层厚的优点,又有化学镀镍深镀能力好、镀层均匀的优点,能弥补电镀和化学镀的不足。电-化学镀镍液中次亚磷酸钠在镁合金表面还原Ni2+,能有效提高电流效率、降低阴极极化,提高电-化学沉积镍晶粒形核速率。
     8.论文的主要创新在于:(1)开发了低毒、环保、安全的钼酸钠酸洗液新工艺,取代有毒的铬酐酸洗液。钼酸钠酸洗液具有很好的均匀刻蚀能力,并能在镁合金基底表面形成一种钼酸盐保护膜防止发生严重的局部腐蚀,产生过深的孔洞而不利于镀镍。在化学镀和电镀中都能应用该酸洗工艺。(2)解释了不同活化的机理。采用K4P2O7活化在镁合金表面形成可溶性的配位离子[Mg(P2O7)]2保证镁合金基底在电镀液中可完全裸露。基底导电性能好,适合直接电镀镍。NH4HF2活化后在镁合金基底表面形成以MgF2为主的活化膜,通过控制活化时间,可控制MgF2膜在镁合金表面的覆盖度。使用低挥发性NH4HF2活化可以取代具有高挥发性的HF活化工艺,获得结合力好的化学镀镍层。(3)首次提出了添加少量次亚磷酸钠进行电镀的电-化学镀镍新工艺。电-化学镀镍液中次亚磷酸钠在镁合金表面将Ni2+还原,能有效提高电流效率、降低阴极极化,提高成核的速率,使电-化学沉积镍晶粒更进一步的细化,形成纳米晶粒,得到的镀镍层既有化学镀镍的均匀性,又有电镀镍的高速性。
Magnesium alloys have excellent physical properties which are regarded as green metallic structure material. In21st century, the new material field pays more attention to it. Thanks to its lively electrochemical properties, the parts of magnesium alloys don't have an advantage of overall performance in the corrosion environment. The surface modification technology can significantly improve the adaptability for external environment on magnesium alloys. Metallic coating technique is a relatively simple and excellent method of surface modification on magnesium alloys. The literatures in international and domestic are reported more about means and methods of research results on aluminum and other materials. But there are very small innovative technical studies on magnesium alloys. The key step of surface metallic coating technology on magnesium alloys is pretreatment procedure. Pickling and activation are two main technologies among numerous pretreatment processes on magnesium alloys. At the same time, the surface metallic coating technology also need improvement and innovation which can provide new technology for application of surface treatment on magnesium alloys. The main results were gained as following:
     1. It can be concluded that the newly developed Na2MO4pickling solution can replace traditional CrO3pickling solution. The ions CrO42-and NO3-in CrO3+HNO3pickling solution have very strong etching function to the substrate of magnesium alloys. The main outcome of CrOOH has an effect of temporary protection to the substrate. After pickling in the H3PO4and HNO3mixed solution, there is a piece of phosphating film with Al3PO4and Mg3(PO4)2formed, which can prevent the direct response between the pickling solution and substrate. After pickling in the Na2MO4and H3PO4mixed solution, there are molybdenum acid salts film formed. If it is adequately thick, it can also play an important role on protection of the substrate. Sodium molybdate acid liquid has a number of prosperous features such as environmental protection, non-toxic, safety features. The etching degree of the substrate in sodium molybdate pickling solution is comparative to in chromic acid pickling solution, and the security of sodium molybdate pickling solution is better than the phosphoric acid pickling solution.
     2. After the NH4HF2activation, the adaptive coating can also obtained on electroless nickel plating, so the NH4HF2activation can replace HF activation technology which has volatility. The K4P2O7activation can effectively remove oxide after pickling procedure. The soluble outcome of [Mg(P2O7)]2-can guarantee the substrate surface completely exposed. Because of the excellent conductive performance, the activation technology can be used in directly electroless nickel plating. NH4HF2activation and HF activation can form fluorine activation membrane, but the HF activation has thicker density than NH4HF2activation. It means that the reactive activation of NH4HF2membrane is higher than that of HF membrane. In control of activation time in NH4HF2solution, the coverage of MgF2film can be controlled.
     3. Electroless nickel plating on complex surface of magnesium alloys can get nickel coating with excellent adhesion. The Had will form adhere to the substrate surface and the Ni2+will be deoxidize to nickel during the process of H2PO2-hydrolysis. The main reaction mechanism is the formation of nickel crystal nucleus. The displacement response occurs only in the early stage, and the later reaction is mainly the reduction of nickel deposit which is guided from atomic hydrogen.
     4.[Ni2++mL-n]+4H2PO2-+H2O→Ni+P+3HPO32-+4H++3/2H2+mL-n is the total reactivate equation of electroless nickel plating on magnesium alloys. The deposition rate of nickel reduction, adhesion and corrosion resistance of the electroless nickel plating are mainly affected by the reactivate concentration of [Ni2+]、[H2PO2-]、[L-n], pH value, temperature and the stabilizer of thiourea.
     5. The process of zinc immersion was improved. The new solution contains F-, EDTA and small additive of NiSO4and can increase density of and uniformity of the zinc film. The MgF2and Mg(OH)2mixed membrane and zinc film on the surface of substrate can form quickly. They would adhere to the substrate surface and result in potential increasing, the dissolution activity reducing and conductivity unchanging. These features can improve the quality of plating nickel.
     6. Nickel plating is mature processes and they can be used in industrial production. The main reaction is the reduction of Ni2+Current density, pH value and temperature are the main factors of effecting adhesion and corrosion resistance of the nickel plating. F-can promote anodic dissolution between1.0mol·dm-3and1.5mol·dm-3in the nickel plating process. The activation of anodic dissolution is strengthened when the temperature increases. After electroless nickel plating or electroplating, the latter Cu/Ni/Cr combination coatings can further enhance corrosion resistance.
     7. Electrochemical nickel plating process has advantages of high plating rate and thick coating in electroplating. It also has merits of deep plating and symmetrical coating in eletroless nickel plating. It avoids effectively deficiency from the former two plating technologies. The ion Ni2+is reduced in role of NaH2PO2which can effectively improve the current efficiency and decrease the cathode polarization. It can also improve refinement of the electrochemical deposition nickel grain.
     8. Research innovations in this paper are as follows:(1) One of innovations in this dissertation is the investigation of sodium molybdate pickling solution, which has a number of prosperous features such as environmental protection, non-toxic, safety features. It can replace deleterious chromium anhydride pickling solution. It has the capability of finer symmetrical etching and there are molybdenum acid salts film formed on the surface to prevent extremely thick cavity from serious partial corrosion which can go against nickel plating. The pickling solution is adaptive both to electroless nickel platting and electroplating.(2) The soluble outcome of [Mg(P2O7)]2-in K4P2O7activation solution can guarantee the surface of magnesium alloys completely exposed. The new surface after activation is suitable for direct nickel electroplating. MgF2film will be formed after NH4HF2activation. The coverage of MgF2film can be controlled through in control of activation time. NH4HF2activation can replace dangerous HF activation to get coating with good adhesion.(3) Electrochemical nickel plating process is first suggested. The ion Ni2+is reduced in role of NaH2PO2which can effectively improve the current efficiency and decrease the cathode polarization. It can also improve refinement of the electrochemical deposition nickel grain. Experimental results showed that the nickel coating has the merits of uniformity in electroless nickel plating and high speed in electroplating nickel.
引文
[1]张津,章宗和.镁合金及应用.北京:化学工业出版社,2004,283-307
    [2]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用.北京:机械工业出版社,2002,195-201
    [3]Aghion E, Bronfin B, Eliezer D. The Role of the Magnesium Industry in Protecting the Environment. Journal of Materials Processing Technology,2001, 117(3):381-385
    [4]Mordike B L, Ebert T. Magnesium properties-application-potential. Materials Science and Engineering A,2001,302(1):37-45
    [5]史文方,周昆.我国镁合金的开发应用现状及展望.汽车工艺与材料,2004(6):32-37
    [6]慕伟意,李争显,杜继红,等.镁合金的应用及其表面处理研究进展,2011,40(2):86-91
    [7]Patcas F, Krysmann W. Efficient Catalysts with Controlled Porous Structure Obtained by Anodic Oxidation under Spark-discharge. Applied Catalysis A, 2007,316(2):240-249
    [8]黄海军,韩秋华.镁及镁合金的特性与应用.热处理技术与装备,2010,31(3):6-8
    [9]陈军.镁合金在汽车工业中的应用分析.材料研究与应用,2010,4(2):81-84
    [10]丁文江,吴玉娟,彭立明,等.高性能镁合金研究及应用的新进展.中国材料进展,2010,29(8):37-45
    [11]张春香,陈培磊,陈海军,等.镁合金在汽车工业中的应用及其研究进展.铸造技术,2008,29(4):531-535
    [12]向群,曲伟平.镁合金的发展趋势.冶金丛刊,2004,153(5):35-38
    [13]Froes F H, Eliezer D, Aghion E. The science, technology and applications of magnesium. JOM Journal of the Minerals Metals and Materials Society,1998,50 (9):30-34
    [14]高仑.镁合金成形技术的开发与应用.轻合金加工技术,2004,32(3):5-12
    [15]曾荣昌,柯伟,徐永波,等.Mg合金的最新发展及应用前景.金属学报,2001,37(7):673-685
    [16]Ben Hamu G, Eliezer D, Wagner L. The relationship between severe plastic deformation micro structure and corrosion behaviour of AZ31 magnesium alloys. Journal of Alloys and Compounds.2009,468(1-2):222-229
    [17]Caceres C H. Transient environmental effects of light alloy substitutions in transport vehicles. Materials and Design,2009,30(8):2813-2822
    [18]刘勇.德系车中白车身材料的应用.汽车工程师,2009,(7):47-51
    [19]李轶,程培元,华林.镁合金在汽车工业和3C产品中的应用.江西有色金属,2007,21(2):30-34
    [20]西西志华,陈雪.镁合金在汽车制造领域的应用及发展.工会博览,2008,(10):57-58
    [21]Medeiros M G, Bessette R R, Deschenes C M, et al. Magnesium-solution phase catholyte semi-fuel cell for undersea vehicles. Journal of Power Sources,2004, 136(2):226-231
    [22]Hakamada M, Furuta T, Chino Y, et al. Life cycle inventory study on magnesium alloy substitution in vehicles. Energy,2007,32(8):1352-1360
    [23]罗鹰.铝、镁、钛合金材料在汽车发动机中的应用.工艺材料,2009,(3):43-45
    [24]毛萍莉,王峰,林立,等.镁合金方向盘骨架应用研究及性能测试.特种铸造及有色合金,2009,29(5):420-422
    [25]高云凯,林典,余海燕,等.镁合金在座椅骨架轻量化设计中的应用.同济大学学报(自然科学版),2009,37(7):938-942
    [26]贺春.镁合金材料在轨道交通行业中的应用前景.机车车辆工艺,2009,(2):12-13
    [27]Renji K. Loss factors of composite honeycomb sandwich panels. Journal of Sound and Vibration,2002,250(4):745-761
    [28]Hansen W. Carbon-arbon honeycomb panels for aerospace applications. International SAMPE Symposium and Exhibition (Proceedings),2001,46 Ⅱ: 1552-1556
    [29]潘云生.镁合金在锁具产品上的应用与探讨.技术与工艺,2007,(8):9-12
    [30]康鸿跃,陈善华,马永平,等.镁合金在军事装备中的应用.金属世界,2008,(1):61-64
    [31]徐绍勇,李凤娥,龙思远.摩托车轮毂的材料替代应用研究.材料导报,2008,22(5):429-431
    [32]王义生,王建儒.可降解镁合金作为骨科应用生物材料的研究进展.河南医学研究,2009,18(1):75-77
    [33]张佳,宗阳,付彭怀,等.镁合金在生物医用材料领域的应用及发展前景.中国组织工程研究与临床康复,2009,13(29):5747-5750
    [34]陈鸿海.金属腐蚀学.北京:北京理工大学出版社,1995,167
    [35]宋光铃.镁合金腐蚀与防护.北京:化学工业出版社,2006,42-158.
    [36]Delong H K. Plating on magnesium. Metal Finishing Guidebook,1978,76(1): 175-183
    [37]宋影伟,单大勇,陈荣石,等.AZ91D镁合金化学复合镀Ni-P-ZrO2的工艺与性能.中国有色金属学报,2006,16(4):625-630
    [38]Olsen A L. Plating of magnesium high pressure die casting. Transactions of the Institute of Metal Finishing,1980,58(2):29-32
    [39]Olsen A L, Halvorsen S T. Method for the electrolytical metal coating of magnesium articles. EP.0030305,1981-06-17
    [40]Dennis J K, Wan M M K Y Y, Wake S J. Plating on magnesium alloy diecastings. Transactions of the Institute of Metal Finishing,1985,63(2):74-80
    [41]张雪敏,赵海鹏.镁合金化学镀及其添加剂研究.郑州大学学报(工学版),2004,25(2):97-99
    [42]王建泳,成旦红,张庆,等.AZ31镁合金无氰化学镀镍工艺的研究.电镀与涂饰,2006,25(3):43-46
    [43]郝孝博,赵维民,李海鹏.AZ91D镁合金表面化学镀镍工艺的研究.中国铸造装备与技术,2008,(1):4-6
    [44]韩夏云,薛方勤,郭忠诚,等.前处理在镁及镁合金表面强化中的作用.电镀与环保,2002,22(4):.18-20
    [45]叶宏,孙智富,张鹏,等.镁合金化学镀镍研究.材料保护,2003,36(3):27-29
    [46]Liu Z M, Gao W. The Effect of Substrate on the Electroless Nickel Plating of Mg and Mg Alloys. Surface and Coatings Technology,2006,200(11):3553-3560
    [47]Xiang Y H, Hu W B, Liu X K, et al. A study on surface state during the pretreatment of electroless nickel plating on magnesium alloys. Transactions of the Institute of Metal Finishing,2001,79(1):27-29
    [48]张道军,邵红红,蒋小燕.AZ91D镁合金化学镀镍-磷新工艺研究.轻金属,2007,(10):63-65
    [49]霍宏伟,李瑛,王福会.AZ91D镁合金化学镀镍.中国腐蚀与防护学报,2002,22(1):14-17
    [50]胡文彬,刘磊,仵亚婷.难镀基材的化学镀镍技术.北京:化学工业出版社,2003,1/35-55
    [51]姜晓霞,沈伟.化学镀理论及实践,北京:国防工业出版社,2000,8-10/26-27/91/211/261
    [52]Ambat R, Zhou W. Electroless nickel plating on AZ91D magnesium alloy:effect of substrate microstructure and plating parameters. Surface and Coatings Technology,2004,179(2-3):124-134
    [53]Gu C D, Lian J S, Li G Y, et al. Electroless Ni-P Plating on AZ91D Magnesium Alloy from a Sulfate Solution. Joural of Alloys and Compouds,2005,391(1-2): 104-109
    [54]Gu C D, Lian J S, He J G, et al. High Corrosion resistance Nanocrystalline Ni Coating on AZ91D Magnesium Alloy. Surace and Coatings Technology,2006, 200(18-19):5413-5418
    [55]王晓民,王莹,辛士刚,等.AM60镁合金上两种化学镀镍方法及镀层耐蚀性比较.沈阳师范大学学报(自然科学版),2006,24(4):460-462
    [56]马壮,王茺,李智超.镁合金化学镀Ni-Cu-P合金耐磨性研究.电镀与精饰,2008,3 0(5):4-6
    [57]Malecki A, Micek-Ilnicka A. Electroless nickel plating from acid bath. Surface and Coatings Technology,2000,123(1):72-77
    [58]Sharma A K, Suresh M R, Bhojraj H, et al. Eletroless Nickle Plating on Magnesium Alloy. Metal Finishing,1998,96(3):10-18
    [59]Xiang Y H, Hu W B, Liu X K, et al. Initial Deposition Mechanism of Electroless Nickel Plating on Magnesium Alloys. Transactions of the Institute of Metal Finishing,2001,79(1):30-32
    [60]向阳辉,胡文彬,沈彬,等.镁合金直接化学镀镍的初始沉积机制.上海交通大学学报,2000,34(12):1638-1640
    [61]尹建军,李元东,梁卫东,等.镁合金表面电镀锌的预处理工艺研究.甘肃工业大学学报,2003,29(1):36-37
    [62]罗胜联,戴磊,周海晖,等.镁合金新型电镀工艺研究.湖南大学学报(自然科学版),2006,33(3):106-109
    [63]殷珊.镁合金电镀铝、镍工艺探索:[东南大学硕士学位论文].南京市:东南大学,2010,19-55
    [64]Osamu M, Masaaki O, Ataru Y. Coating method for article made of magnesium or magnesium base alloy. Japanese Patent:55148774,1980-11-19
    [65]Yang L X, Luan B, Nagata J. Novel copper immersion coating on magnesium alloy AZ91D in an alkaline bath. Journal of Coating Technology,2006,3(3): 241-246
    [66]Luan L B, Gray J E. Acousto-immersion coating and process for magnesium and its alloy, US Patent,6669997,2003-10-30
    [67]吴鹏,王凤平.电流波形对AZ91D镁合金电镀铜的影响.电镀与涂饰,2007, 26(12):29-30
    [68]王凤平,李瑞雪,丁言伟,等.超声波对AZ91D镁合金电镀铜的影响.电镀与涂饰,2010,29(2):6-8,13
    [69]韩夏云,郭忠诚,龙晋明,等.镁及镁合金表面镀锌工艺.材料保护,2002,35(11):31-33
    [70]Jiang Y F, Zhai C Q, Liu L F, et al. Zn-Ni alloy coating pulse-plated on magnesium alloy. Surface and Coating Technology.2005,191:393-399
    [71]刘胜新,陈永,关绍康,等.镁合金电镀锌前处理工艺.轻合金加工技术,2008,36(8):35-37
    [72]王步美,薛烽,孙扬善,等.AZ31镁合金电镀前处理工艺研究.中国腐蚀与防护学报,2009,29(1):24-29
    [73]焦亮,王晓民,周婉秋,等.镁合金电镀锌工艺及其镀层性能研究.材料保护,2008,41(10):40-42
    [74]吕玲敏,杨异,栗万仲.镁合金表面电镀铝前处理工艺的研究.轻合金加工技术,2007,35(3):46-48
    [75]刘凤芹,杨异,单鹏.镁合金表面前处理浸锌工艺及电镀铝研究.特种铸造及有色合金,2009,29(9):851-853
    [76]王赫莹,李德高.镁及镁合金表面电镀镍工艺的研究.表面技术,2004,33(5):48-49
    [77]Lee J, Chung W, Jung U, et al. Direct nickel electrodeposition on magnesium alloy in pyrophosphate electrolyte. Surface and Coatings Technology,2011, 205(16):4018-4023
    [78]Song Y W, Shan D Y, Chen R S, et al., A novel dual nickel coating on AZ91D magnesium alloy. Transactions of Nonferrous Metals Society of China,2008, 1(0):s339-s343
    [79]Correa E, Zuleta A A, Sepulveda M, et al. Nickel-boron plating on magnesium and AZ91D alloy by a chromium-free electroless process. Surface and Coatings Technology,2012,206(13):3088-3093
    [80]Zhang S Y, Li Q, Yang X K, et al., Corrosion resistance of AZ91D magnesium alloy with electroless plating pretreatment and Ni-TiO2 composite coating. Materials Characterization,2010,61(3):269-276
    [81]Iranipour N, Azri Khosroshahi R, Parvini Ahmadi N. A study on the electroless Ni-P deposition on WE43 magnesium alloy. Surface and Coatings Technology, 2010,205(7):2281-2286
    [82]Huang C A, Wang T H, Weirich T, et al. A pretreatment with galvanostatic etching for copper electrodeposition on pure magnesium and magnesium alloys in an alkaline copper-sulfate bath. Electrochimica Acta,2008,53(24): 7235-7241
    [83]Huang C A, Lin C K, Hu Y Y. Corrosion behavior of Cr/Cu-deposited Mg alloy (AZ91D) in 0.1 M H2SO4 with different concentrations of NaCl. Corrosion Science,2010,52(4):1326-1332
    [84]Huang C A, Wang T H, T. Weirich, V. Neubert. Electrodeposition of a protective copper/nickel deposit on the magnesium alloy (AZ31). Corrosion Science,2008, 50(5):1385-1390
    [85]Huang C A, Lin C K, Hu Y Y. The corrosion and wear resistances of magnesium alloy (LZ91) electroplated with copper and followed by lμm-thick chromium deposits. Thin Solid Films,2011,519(15):4774-4780
    [86]刘胜新,陈永,刘晓芳,等.AZ31镁合金环保型镀锌工艺的研究.材料保护,2008,41(2):32-35
    [87]于元春,李宁,胡会利.镁合金压铸件表面电镀锌工艺研究.2009年全国电子电镀及表面处理学术交流会论文集,2009:280-282
    [88]Zhang S Y, Li Q, Chen B, et al. Electrodeposition of zinc on AZ91D magnesium alloy pre-treated by stannate conversion coatings. Materials and Corrosion,2010, 61(10):860-865
    [89]Zhang J F, Zhang W, Yan C W, et al. Corrosion behaviors of Zn/Al-Mn alloy composite coatings deposited on magnesium alloy AZ31B (Mg-Al-Zn). Electrochimica Acta,2009,55(2):560-571
    [90]Bakkar A, Neubert V. Electrodeposition onto magnesium in air and water stable ionic liquids:From corrosion to successful plating. Electrochemistry Communications,2007,9(9):2428-2435
    [91]Wu H, Zhao G L, Mu J W, et al. Effects of ultrasonic dispersion on structure of electrodeposited Ni coating on AZ91D magnesium alloy. Transactions of Nonferrous Metals Society of China,2010,20(Supplement 2):s703-s707
    [92]杨悦,吴化.镁合金表面电沉积镍层工艺及其组织细化机理的研究.全国电子电镀及表面处理学术交流会论文集,2009:275-279
    [93]Zhang J F, Zhang W, Yan C W, et al. Corrosion behaviors of Zn/Al-Mn alloy composite coatings deposited on magnesium alloy AZ31B (Mg-Al-Zn). Electrochimica Acta,2009,55(2):560-571
    [94]Tang J W, Azumi Kazuhisa. Influence of zincate pretreatment on adhesion strength of a copper electroplating layer on AZ91 D magnesium alloy. Surface and Coatings Technology,2011,205(8-9):3050-3057
    [95]Tang J W, Azumi Kazuhisa. Effect of copper pretreatment on the zincate process and subsequent electroplating of a protective copper/nickel deposit on the AZ91D magnesium alloy. Electrochimica Acta,2011,56(24):8776-8782
    [96]Liu K R, Liu Q, Han Q, et al. Electrodeposition of Al on AZ31 magnesium alloy in TMPAC-A1C13 ionic liquids. Transactions of Nonferrous Metals Society of China,2011,21(9):2104-2110
    [97]Liu Q, Liu K R, Han Q, et al. Surface pretreatment of Mg alloys prior to Al electroplating in TMPAC-AlC13 ionic liquids. Transactions of Nonferrous Metals Society of China,2011,21(9):2111-2116
    [98]Pan S J, Tsai W T, Chang J K, et al. Co-deposition of Al-Zn on AZ91D magnesium alloy in AlCl3-l-ethyl-3 methylimidazolium chloride ionic liquid. Electrochimica Acta,2010,55(6):2158-2162
    [99]李瑛,余刚,刘跃龙,等.镁合金上硫酸镍体系化学镀镍工艺.材料保护,2003,36(13):32-34
    [100]Chen J L, Yu G, Hu B N, et al. A Zinc Transition Layer in Electroless Nickel Plating. Surface and Coatings Technology,2005,201(3-4):686-690
    [101]李瑛,陈珏伶,余刚,等.镁合金化学镀镍工艺的研究.电镀与环保,2004,24(6):22-26
    [102]余刚,刘云娥,胡波年,等.镁合金焦磷酸盐镀铜工艺的研究.湖南大学学报(自然科学版),2005,32(4):77-80
    [103]余刚,王新娟,欧阳跃军,等.低氟无铬前处理的镁合金电镀工艺.湖南大学学报(自然科学版),2008,35(9):65-69
    [104]余刚,易祥榕,雷细平,等.镁合金电沉积镍形成机理及电镀工艺的研究.电镀与环保,2009,29(1):21-25
    [105]Li J Z, Tian Y W, Huang Z Q, et al. Studies of the porosity in electroless nickel deposits on magnesium alloy. Applied Surface Science,2006,252(8):2839-2846
    [106]Song G L, Atrens Andrej, Wu Xianliang,et al. Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride. Corrosion Science,1998,40(10): 1769-1791
    [107]Mu G N, Li X H, Qu Q, et al. Molybdate and tungstate as corrosion inhibitors for cold rolling steel in hydrochloric acid solution. Corrosion Science,2006,48(2): 445-459
    [108]陶永顺,周喜斌.高磷高稳定性高耐蚀性化学镀镍磷合金镀液研究.华工机械,2003,30(5):263-267
    [109]Hu B N, Yu'G, Chen J L. Investigation on a non-cyanide plating process of Ni-P coating on magnesium alloy AZ91D. Journal of Materials Science and Technology,2005,21(3):301-306
    [110]安茂忠.电镀理论与技术.哈尔滨:哈尔滨工业大学出版社,2004,102-155/253-271
    [111]方景礼.电镀配合物——理论与应用.北京:化学工业出版社,2008,203-218/400-427
    [112]班春燕.化学镀Ni-P合金的热力学及动力学研究.沈阳工业大学学报,2000,22(2):118-122
    [113]El-Rehim S S A, Shaffei M, El-Ibiari N. Effect of additives on plating rate and bath stability of electroless deposition of Ni-P-B on aluminum. Metal Finishing, 1996,94(12):29-33
    [114]陈亚,李士嘉,王春林,等.现代实用电镀技术.北京:国防工业出版社,2003,51-149
    [115]周婉秋,单大勇,曾荣昌,等.镁合金腐蚀行为与表面防护方法.材料保护,2002,35(7):1-3
    [116]许振明,徐孝勉,编著.铝和镁的表面处理.上海:上海科学技术文献出版社,2005,315-317/405-440

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700