用户名: 密码: 验证码:
挤压AZ31B镁合金及纯镁疲劳裂纹扩展研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁及镁合金具有低密度,高比刚度和高比强度,易加工回收等优点,是电子电器、交通汽车、航空航天和兵工行业最具发展潜力的金属结构材料。镁及其合金塑性变形能力差、目前大部分镁合金构件为铸件,难满足工程实际在力学性能和产品形状尺寸上的需求。变形镁合金以优良机械性能和尺寸、规格多样优势受广泛关注,成为材料领域研究的重点方向之一。工程实际构件往往承受循环载荷,疲劳失效是在役设备最主要的失效方式之一。压力加工易引起镁合金晶粒择优取向形成织构,导致机械性能各向异性,对镁合金构件的疲劳行为和寿命评估有重要影响。研究织构镁合金的疲劳裂纹扩展行为、机理和寿命预测方法,具有重要的理论意义和应用价值。
     本文针对挤压纯镁和挤压AZ31B镁合金,研究不同方向疲劳裂纹扩展行为和断裂机理,利用光学显微镜(OM)、扫描电镜(SEM)和背散射电子衍射(EBSD)等手段对材料的组织、裂纹扩展行为及断口进行分析,讨论了不同方向塑性变形、断裂机理、裂纹扩展路径及特征,分析了织构对挤压圆棒不同方向裂纹扩展的影响;分析Walker和Wheeler模型以及Paris公式对常幅和变幅加载下疲劳扩展速率预测适用性。本文的主要工作和成果如下:
     研究表明挤压AZ31B镁合金圆棒具有纤维状分层不均匀组织,晶粒粗细不均匀,大晶粒平均约50μm,小晶粒平均约8μm,部分晶粒沿挤压方向严重拉长、长大。挤压纯镁主要由等轴晶粒组成,大部分晶粒平均约1501μm,部分晶间夹杂有粒径约20gm小晶粒,无纤维状拉长分层组织。挤压纯镁和AZ31B镁合金均为强基面织构,大部分晶粒基面平行于挤压方向,c轴以圆棒轴心为中心呈放射状分布,织构指数分别为15.85和12.65。
     试样的取向对挤压AZ31B镁合金疲劳裂纹扩展行为有重要影响,沿挤压(T-L)方向和垂直挤压(L-T)方向裂纹扩展应力强度因子幅门槛值在0.95~1.34MP(?)m之间,受应力比影响不大。径向(T-R)方向门槛值在1.04~2.43MP(?)m间,随应力比增加而增加。三个方向裂纹均以穿晶为主和部分沿晶模式扩展,T-L和L-T方向裂纹以第二系列锥面滑移解理模型为主,而T-R方向有锥面滑移也存在沿孪晶界扩展。T-L方向裂纹扩展路径沿Ⅰ型方向呈直线扩展,裂纹扩展速率最快;T-R方向裂纹呈曲折沿Ⅰ型扩展;L-T方向裂纹扩展严重偏离Ⅰ型方向,裂纹有朝{1120}晶面发生偏转或分枝趋向,裂纹扩展速率最慢,在近门槛附近出现稳定扩展平台,da/dN-△K双对数曲线呈三段线性关系。裂纹扩展速率均随应力比的增加和加载频率的降低而增加,Walker有效应力强度因子模型与Paris公式可以的描述挤压AZ31B三个方向常幅加载的裂纹扩展速率,可以用于预测AZ31B疲劳裂纹扩展寿命和安全评估。
     单幅过载对AZ31B镁合金疲劳裂纹扩展有延滞作用,但过载影响区均小于0.35mm,过载后裂纹扩展速率立刻降至一个最小值,但随着裂纹延展,扩展速率迅速上升达到过载前水平,过载中没有发生裂纹尖端撕裂或偏折现象。高低幅加载过程中,当前步加载最大载荷大于后步最大载荷时,裂纹扩展有过载效应。当前后两步最大载荷相同时,裂纹扩展受载荷幅控制。Wheeler模型可以合理模拟过载效应。
     挤压纯镁圆棒三个方向裂纹均以穿晶扩展为主,塑性变形第二系列锥面(1122)<1123>和(1122)<1123>滑移机制为主,T-L和L-T方向趋于沿(1120)面扩展,T-R方向部分晶粒产生{1012)孪生协助滑移塑性变形,存在两种滑移机制。三个方向均呈解理脆性断裂特征。L-T方向裂纹扩展严重偏离Ⅰ型方向,容易产生分叉,裂纹扩展速率最慢,T-L方向基本呈直线扩展,裂纹扩展速率最快,T-R方向裂纹扩展路径出现局部波动和分叉。裂纹偏离、分叉和微裂纹导致扩展速率降低。常幅加载下三个方向的裂纹扩展da/dN-△K双对数曲线型双线性关系,L-T和T-L方向在ΔK≈3.0MPa(?),T-R方向在ΔK≈3.4MPa(?)附近两边斜率不同。
     单幅拉伸过载对纯镁L-T和T-R方向裂纹扩展延滞的实际影响区域很小,分别不超过0.1mm和0.2mm,远小于Wheeler模型预测过载影响区域,T-L方向过载没有观察到延滞现象,有促进裂纹扩展迹象。压缩过载引起裂尖孪品和残余拉应力,促进裂纹扩展。
Magnesium (Mg) alloys have excellent mechanical properties such as low density, superior specific strength and stiffness, good physical machinability and recyclability. They are important future engineering metallic structure materials in electrons, transportation, aerospace and weapon industry. Because of their poor ability of plastic deformation, most magnesium alloys components are made by casting process. Due to pores and inclusions left from the casting process, cast Mg alloys do not sastify the engineering requirement for strength. Wrought Mg alloys exhibit superior physical properties and they become a subject of research. Cyclic load is usually applied on a real structure, and fatigue failure is the main failure mode for a structure in service. The fatigue properties of wrought Mg alloys are anisotropic due to initial texture and microstructure caused by extrusion and rolling processes. It is significant to study the fatigue crack growth of magnesium alloys with strong texture
     In this thesis, the study focuses on the a detailed investigation on the fatigue crack growth (FCG) behavior and fracture mechanism of extruded pure Mg and AZ31B Mg alloy bar with strong texture. The microstructure, texture, crack growth path and fracture face were investigated by optical microscope (OM), scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD). The study was conducted using compact tension specimens oriented in three different directions with respect to the extrusion direction. The effect of texture on FCG of different direction specimen is discussed. The experimental results are used to evaluate two existing fatigue models (Walkers model and Wheelers model) for their capabilities to account for the R-ratio effect, the overload effect, and the high-low loading sequence effect. The following conclusions were reached:
     The extruded AZ31B Mg alloy consists of an inhomogeneous microstructure exhibiting equiaxed large grains and equiaxed small grain clusters. The average sizes of the large and small grains are approximately50μm and8μm, respectively. On the plane parallel to the extrusion direction, large grains are elongated due to the extrusion process and a lamellar microstructure composed of alternatively elongated large grain and small grain cluster is developed. On the other hand, the extruded pure Mg is mainly composed of equiaxed large grains with an average size of approximate150μm and a few small grains with a size of20μm. No elongated grains and lamellar microstructure were abserved in extruded pure Mg. A strong basal texture was observed in both extruded AZ31B Mg alloy and pure Mg. The basal planes of most grains are parallel to the extrusion direction and the c-axes of most grains are orientated along the radial direction. The texture factor of the extruded AZ31B Mg alloy and pure Mg are15.85and12.65, respectively.
     The specimen orientation with respect to the extrusion direction plays a critical role in FCG of extruded AZ31B Mg alloy. The threshold stress intensity factor ranges are similar in the T-L and L-T specimens with a value of0.95~1.34MP(?) and they are not significantly influenced by the load ratio. The threshold stress intensity range of the T-R specimens is1.04~2.43MP(?) and increases with the load ratio. Transgranular cracking is the major fatigue propagation mode in all the three specimen orientations. In the T-L and L-T specimens, two sets of2nd order pyramidal slip induced cleavage dominates the transgranular cracking whereas both twin boundary cracking and pyramidal slip induced cleavage exist in the T-R specimens. The cracks of the T-L specimens grow in typical mode I with the fastest FCG rate. The overal crack path of the T-R specimens follows Model1cracking, and local branching and cracking deviated from the horizontal direction are developed. A large angle of deviation from the horizontal line was observed in the crack path of L-T specimens. The crack tends to deviate or branch following the {1120} crystal planes. The FCG rate in the L-T specimens is the lowest among the three orientations. A nearly constant FCG rate was observed in the L-T specimens right after the threshold zone, and the da/dN-ΔKcurve in log-log scale exhibits three linear relationship with different slopes. The FCG rate increases with increasing stress ratio in all the specimens with three orientations. Walker"s model and Paris law can correlate well the constant amplitude FCG experiments with different R-ratios, and can be used to predict the FCG life and safety assessment for extruded AZ31B Mg alloy.
     For AZ31B Mg alloy, application of a single tensile overload during constant-amplitude loading results in an immediate decrease in the FCG rate to a minimum value in all the three specimen orientations. As the crack extends, the FCG rate recovers rapidly to the level expected during constant amplitude loading. The reduction in the FCG rate due to overloading is significant but the overload influencing zone size is small. No crack extension was detected during overloading in the experiment. In the high-low loading sequence experiment, the influence of the higher loading step on the crack growth of the subsequent lower loading step is dependent on the relative magnitude of the maximum loads in the consecutive loading steps. If the maximum loads in the two loading steps are identical, there is no loading sequence influence on the crack growth. With identical R-ratios or identical minimum loads in high-low two-step loading, the influence of the higher amplitude loading on the crack growth of the subsequent lower amplitude loading is similar to that of overloading in a constant amplitude loading. The modified Wheeler model can reasonably predict the influences of overloading and sequence loading on FCG.
     For extruded pure Mg, transgranular cracking is the major fatigue propagation mode in all the three specimen orientations. In the T-L and L-T specimens, two sets of2nd order pyramidal slip (1122)<1123> and (1122)<1123> induced cleavage dominate the transgranular cracking whereas both{1012} twin boundary cracking and
, pyramidal slip induced cleavage exist in the T-R specimens. Severe deviation from the pure Mode I cracking and many branchs were observed in the crack path of the L-T specimens. The FCG rate in the L-T specimens is the lowest in three orientations of specimens. The crack in the T-L specimen grows in typical Mode I direction with the fastest FCG rate among the three orienations for a given stress intensity factor range. The crack in the T-L specimen grows in Mode Ⅰ, and local deviation from Mode I cracking and a few branchs were observed in the crack growth path. The FCG rate discreases due to cracking dievation from Mode I, branching, and local microcracking. The da/dN-ΔKcurve under log-log scale exhibits two linear relationships with different slopes in all three orientations of specimens. The curves are divided to two parts at ΔK≈3.0MPa(?) for L-T and AK≡3.4MPa(?) for the T-L and T-R directions.
     For extruded pure Mg, application of a single tensile overload during constant-amplitude loading results in an immediate decrease in the FCG rate to a minimum value in L-T and T-R specimen orientations. The overload influencing zone size is less than0.1mm and0.2mm for L-T and T-R specimen orientations, respectively, which is much less than the predicted value by Wheeler's model. No obvious overload influence was observed in the T-L specimen. Application of a compressure underload accelerates the FCG due to the residual tensile stress and twinning ahead of the crak tip.
引文
[1]张丁非,彭建,丁培道,潘复生.镁及镁合金的资源、应用及其发展现状[J].材料导报,2004,18(4):72-76.
    [2]曾小勤,工渠东,吕宜振等.镁合金应用进展[J].铸造,1998,(11):39-43.
    [3]张高会,张平则,潘俊德.镁及镁合金的研究现状与进展[J].世界科技研究与发展,2003,25(1):72-78.
    [4]王渠东,丁文江.镁合金研究开发现状与展望[J].世界有色金属,2004,07:8-11.
    [5]Aghion E, Bronfin B. Magnesium alloys development towards the 21'st centary [J]. Material Science Forum,2000,350-351:19-28.
    [6]曹富荣,崔建忠,雷方.超轻镁合金的研究历史与发展现状[J].材料工程,1996,(09):3-5.
    [7]张津,章宗和.镁合金及应用[M].北京:化学工业出版社,2004.
    [8]翟春泉,曾小勤,丁义江,王渠东,吕宜振,徐小平.镁合余的开发与应用[J].机械工程材料,2001,25(1):6-10.
    [9]刘英,李元元,张卫文,罗宗强,张大童.镁合金的研究进展与应用前景[J].轻金属,2002,(8):56-61.
    [10]余琨,黎文献,王日初,马正青,变形镁合金的研究、开发及应用[J].中国有色金属学报,2003,13(2):277-288.
    [11]李晓敏.压铸镁合金在汽车中的应用及其发展前景[J].世界有色金属,2001,(9):16-18.
    [12]于淑宾,张照东.90年代轿车新材料和新工艺[J].轻合金加工技术,2000,28(10):4-7.
    [13]黄少东,唐全波,赵祖德等.用镁合金促进兵器装备轻量化[J].金属成形工艺,2002,20(5):8-10.
    [14]钟皓,刘培英,周铁涛.镁及镁合金在航空航天中的应用及前景[J].航空工程与维修,2002,(4):41-42.
    [15]黄晓艳,刘波.轻合金是武器装备轻量化的首选金属材料[J].轻合金加工技术,2007,35(1):12-15.
    [16]康鸿跃,陈善华,马永平,王忠海.镁合金在军事装备中的应用[J].金属世界,2008,(1):61-64.
    [17]訾炳涛,王辉.镁合金及其在工业中的应用[J].稀有金属,2004,28(1):229-232.
    [18]彭立明.镁-21世纪的绿色工程材料[J].世界科学,2012,(6):44-46.
    [19]孙伯勤.镁合金压铸件在汽车行业中的巨大应用潜力[J].特种铸造及有色合金,1998,(3):40-41
    [20]Luo A A. Wrought magnesium alloys and manufacturing processes for automotive applications [J].SAE Transactions,2005,114(5):411-421.
    [21]Powell B R, Luo A A, Rezhets V, etc.al Development of creep-resistant magnesium alloys for powertrain applications:Part 1 of2[J]. SAE Technical Paper,2001,01-0422.Detroit,MI.2001.
    [22]Luo A A, Renaud J, Plourde J. Magnesium castings in the automotive industry-recent developments and future challenges [J]. International Symposium on Recent Advances in the Light Metals Industries.The Metallurgical Society of CIM.Canada.1995:329-339.
    [23]Busk Robert S. Magnesium products design [M].New York.Marcel Dekker INC.1987 (2002 Last edited).
    [24]Luo A.A, Sachdev A.K, Wrought Magnesium Research for Automotive Applications[J],2006, San Antonio, TX, Minerals, Metals and Materials Society. Warrendale, PA,2006, pp.333-339.
    [25]王渠东,吕宜振,曾小勤,丁文江,卢晨.镁合金在电子器材材壳体中的应用[J].材料导报,2000, 14(6):22-24
    [26]Das S K, Chang C F, Raybould D, King J F, Thistlethwaite S. Magnesium Alloys and Their Applications[R], DGM Informationsgesellschaft, Oberursel (1992), p.487.
    [27]Polmear I J.Light metals.Metallurgy of the light Metals[M].3rd ed.Edward Arnold,London,1995.
    [28]Aghion E, Bronfin B. Magnesium alloys development towards the 21st century[J]. Materials Science Forum,2000(350-351):19-30.
    [29]陈先华,肖瑞,丁雪征,郑璇,张志华.AZ系镁合金研究现状[J].材料热处理技术,2012,41(04):14-18.
    [30]余琨,黎文献,李松瑞.变形镁合金材料的研究进展[J].轻合金加工技术,2001,29(7):6-9,11.
    [31]王渠东,丁文江,镁合金及其成形技术的国内外动态与发展[J].世界科技研究与发展,2004,26(3):39-46.
    [32]张士宏,王忠堂,许沂,周文龙.镁合金的塑性加工技术[J].金属成形工艺,2002,20(5):1-4.
    [33]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社,2002.
    [34]崔昆.钢铁材料及有色金属材料[M].北京:机械工业出版社,1981.
    [35]London R V, Edelman R E, Markus H. Development of a wrought high-strength magnesium-yttrium alloy [J]. Transactions of American Society for Metals,1966,59:250-261.
    [36]Agnew S R, DuyguluO. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B [J]. International Journal of Plasticity,2005,21(6):1161-1193.
    [37]Stohr J F, Poirier J P. Etude en microscopieelectronique du glissement pyramidal{1122} <1123> dans le magnesium [J]. Philosophical Magazine,1972,25(6):1313-1329.
    [38]Obara T, Yoshinga H, Morozumi S.{1122} <1123> Slip system in magnesiumSysteme de glissement {1122} (1123) dans le magnesiumDas {1122} (1123)-gleitsystem in magnesium [J]. Acta Metallurgica,1973,21(7):845-853.
    [39]Yoo M H, Agnew S R, Morris J R, Ho K M. Non-basal slip systems in HCP metals and alloys:source mechanisms [J]. Materials Science and Engineering:A,2001,319-321:87-92.
    [40]Agnew S R, Yoo M H, Tome C N. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y [J]. Acta Materialia,2001,49(20):4277-4289.
    [41]Agnew S R, Tome C N, Brown D W, Holden T M, Vogel S C. Study of slip mechanisms in a magnesium alloy by neutron diffraction and modeling [J].Scripta Materialia,2003,48(8):1003-1008.
    [42]Styczynski A, Hartig C, Bohlen J, Letzig D. Cold rolling textures in AZ31 wrought magnesium alloy [J]. ScriptaMaterialia,2004,50(7):943-947.
    [43]Bohlen J, Chmelik F, Dobron P, Letzig D, et al. Acoustic emission during tensile testing of magnesium AZ alloys[J]. Journal of Alloys and Compounds,2004,378(1-2):214-219.
    [44]Staroselsky A, Anand L. A constitutive model for hcp materials deforming by slip and twinning: application to magnesium alloy AZ31B[J]. International Journal of Plasticity,2003,19(10):1843-1864.
    [45]Jager A, Lukac P, Gartnerova V, Bohlen J, Kainer K U. Tensile properties of hot rolled AZ31 Mg alloy sheets at elevated temperatures[J]. Journal of Alloys and Compounds,2004,378(1-2):184-187.
    [46]Yoo M H. Slip, twinning, and fracture in hexagonal close-packed metals[J]. Metallurgical Transactions A,1981,12(3):409-418.
    [47]Wu L, Jain A, Brown D W, Stoica G M, Agnew S R, Clausen B, Fielden D E, Liaw P K. Twinning-detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought magnesium alloy, ZK60A. Acta Materialia,2008,56(4):688-695.
    [48]Chen Y J, Wang Q D, Roven H J, Karlsen M, Yu Y D, Liu M P, Hjelen J. Microstructure evolution in magnesium alloy AZ31 during cyclic extrusion compression[J]. Journal of Alloys and Compounds, 2008,462(1-2):192-200.
    [49]Nave M D, Barnett M R. Microstructures and textures of pure magnesium deformed in plane-strain compression[J]. Scripta materialia,2004,51(9):881-885.
    [50]陈振华,变形镁合金[M],北京:化学工业出版社,2005.
    [51]Barnett M R, Keshavarz Z, Beer A G, Ma X. Non-Schmid behavior during secondary twinning in a polycrystalline magnesium alloy [J]. Acta Materialia,2008,56(1):5-15.
    [52]Wang X S, Jin L, Li Y, et al. Effect of equal channel angular extrusion process on deformation behaviors of Mg-3A1-Zn alloy[J]. Materials Letters,2008,62(12-13):1856-1858.
    [53]陈振华,杨春花.镁合金塑性变形中孪生的研究[J].材料导报,2006,20(8):107-113.
    [54]吕宜振,Mg-Al-Zn合金组织、性能、变形和断裂行为研究[D].上海:上海交通大学博士学位论文,2001
    [55]Galiyev A, Sitdikov O, Kaibyshev R. Deformation behavior and controlling mechanisms for plastic flow of magnesium and magnesium alloy[J]. Materials Transactions,2003,44(4):426-435.
    [56]Yong M S, Clegg A J. Process optimization for a squeeze cast magnesium alloy [J], Journal of Materials processing Technology,2004,145(1):134-141.
    [57]Matsumoto R. Ductility improvement methods for commercial AZ31B magnesium alloy in cold forging [J]. Transactions of Nonferrous Metals Society of China,2010,20(7):1275-1281.
    [58]Ogawa N, Shiomi M, Osakada K. Forming limit of magnesium alloy at elevated temperature for precision forging[J]. International Journal of Machine Tools and Manufacture,2002,42(5):607-614.
    [59]Shan D B, Xu W C, Lu Y. Study on precision forging technology for a complex-shaped light alloy forging[J]. Journal of Materials Processing Technology,2004,151(1-3):289-931.
    [60]Matsumoto R, Osakada K. Ductility of a magnesium alloy in warm forging with controlled forming speed using a CNC servo press[J]. Journal of Materials Processing Technology,2010,210(14):2029-2035.
    [61]Rozak G A, Purgert R E. Compressing Forming of Metal[J].Magnesium,1998,27(3):1-6.
    [62]Chan C F, Yong M S, Tay C J, Shang H M. The Influence of Press Parameters on Forged Magnesium Alloys [J].Material.Science.Forum,2003,437-438:427-430.
    [63]Ogawa N, Shiomi M, Osakada K. Fundamental study on forging of magnesium alloys[J] Proceedings of 2nd International Seminar on Precision Forging.Osaka,2000:219-222.
    [64]Barnett M.R, Nave M.D, Bettles C.J. Deformation microstructures and textures of some cold rolled Mg alloys[J]. Materials Science and Engineering:A,2004,386(1-2):205-211.
    [65]Mohri T, Mabuchi M, Nakamura M,et al. Microstructural evolution and superlasticity of Rolled Mg-9Al-1Zn [J]. Materials Science and Engineering:A,2000,290(1-2):139-144.
    [66]Cheng Y.Q, Chen Z.H, Xia W.J, et al. Effect of channel clearance on crystal orientation evelopment in AZ31magnesium alloy sheet produced by equal channel angular rolling[J]. Journal of Materials Processing Technology.2007,184(1-3):97-101.
    [67]Watanabe H, Mukai T, Ishikawa K. Effect of temperature of differential speed rolling on room temperature mechanical properties and texture in an AZ31 magnesium alloy[J]. Journal of Materials Processing Technology,2007,182(1-3):644-647.
    [68]江凌云,黄光杰,陈林等.镁合金板材轧制工艺及组织性能分析[J],稀有金属材料与工程,2007,36(5):910-914.
    [69]詹美燕,李元元,陈维平,陈宛德.AZ31镁合金轧制板材在退火处理中的组绢性能演变[J].金属热处量,2007,32(7):8-12.
    [70]Delvalle J A, Perez-Prado M T, Ruano O A. Texture evolution during large strain hot rolling of the AZ61 Mg alloy[J]. Materials Science and Engineering A,2003,355:68(1-2)-78.
    [71]詹美燕,李元元,陈宛德等.大应变轧制技术制备细品AZ31镁合金板[J].华南理工大学学报:自然科学版,2007,35(8):16-21.
    [72]Hwang J K, Sohn K Y, Kim K. H, et al. CAE Application to Press Forging of Magnesium Alloys[J]. Materials Science Forum,2003,419-422:371-376.
    [73]Jin L, Lin D L, Mao D L, et al. Mechanical properties and microstructure of AZ31 Mg alloy processed by two-step equal channel angular extrusion[J].Materials Letters,2005,59(18):2267-2270.
    [74]Suh J Y, Han J H, Oh K H, et al. Effect of deformation histories on texture evolution during equal-channel and dissimilar-channel angular pressing[J]. Scripta Materialia,2003,49(2):185-190.
    [75]Tan J C, Tan M J. Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet [J]. Materials Science and Engineering:A,2003,339(1-2):124-132.
    [76]Zheng M Y, Xu S W, Qiao X G, et al. Compressive deformation of Mg-Zn-Y-Zr alloy processed by equal channel angular pressing[J]. Materials Science and Engineering:A,2008,483-484:564-567.
    [77]Lim H K, Kim D H, Lee J Y, et al. Effect of grain size on the tensile deformation of wrought Mg-MM-AI-Zn-Sn alloy[J]. Materials Letters,2008,62(15):2271-2274.
    [78]RaviKumar N V, Blandin J J, Desrayaud C, et al. Grain refinement in AZ91 magnesium alloy during thermomechanical processing[J]. Materials Science and Engineering A,2003,359(1-2):150-157.
    [79]Watanabe H, Mukai T, Kohzu M, et al. Low temperature superplasticity in ZK60 magnesium alloy[J]. Materials Transactions,1999,40(8):809-814-598.
    [80]于彦东,张凯锋,蒋大鸣等.轧制镁合金超塑性和超塑胀形[J].中国有色金属学报,2003,13(1):71-75.
    [81]汪凌云,黄光胜,范永革等.变形AZ31镁金的晶粒细化[J].中国有色金属学报,2003,13(3):594-598.
    [82]Wang Y N, Huang J C.Texture analysis in hexagonal materials [J]. Materials chemistry and physics, 2003,81(1):11-26.
    [83]Yi S B, Davies C H J, Brokmeier H G, et al. Deformation and texture evolution in AZ31 magnesium alloy during uniaxial loading [J]. Acta Materialia,2006,54(2):549-562.
    [84]汪凌云,范永革,黄光杰,等.AZ31B镁合金板材的织构[J].材料研究学报,2004,18(5):466-470.
    [85]Yang P, Yu Y, Chen L, et al. Experimental determination and theoretical prediction of twin orientations in magnesium alloy AZ31 [J]. Scripta Materialia,2004,50(8):1163-1168.
    [86]Mukai T, Watanabe H, Ishikawa K, Higashi K. Guide for enhancement of room temperature ductility in Mg alloys at high strain rates [J]. Material Science Forum,2003,419-422:171-176
    [87]Perez-Prado M T, Delvalle J A, Contreras J M, Ruano O A. Microstructure evolution during large strain hot rolling of an AM60 Mgalloy[J]. Scripta Materialia,2004,50(5):661-665.
    [88]Perez-Prado M T, Delvalle J A, Ruano O A. Effect of sheet thickness on the microstructural evolution of an MgAZ61 alloy during large strain hot rolling[J]. Scripta Materialia,2004,50(5):667-671. SeriptaMaterialia,2004,50(5):667-671.
    [89]Wagner L, Hilpert M, Wendt J, et al. On methods for improving the fatigue performance of the wrought magnesium alloys AZ31 and AZ80[J], Materials Science Forum,2003,419-422:93-102.
    [90]Kaiser F, Bohlen J, Letzig D, Kainer K U, Styczynski A, Hartig C. Influenct of rolling condition on the microstructure and mechanical properties of magnesium sheet AZ31 [J]. Advanced Engineering Materials 2003,5(12):891-896.
    [91]Phillipe M J, Texture formation in hexagonal materials[J]. Materials Science Forum,1994,157-162:1337-1350.
    [92]Han J H, Jee K K, Oh K H. Orientation rotation behavior during in situ tensile deformation of polycrystalline 1050 aluminum alloy [J]. International Journal of Mechanical Sciences, 2003,45(10):1613-1623.
    [93]Kim W J, Park J D, Kim W Y. Effect of differential speed rolling on microstructure and mechanical properties of an AZ91 magnesium alloy [J], Journal of Alloys and Compounds,2008,460(1-1)289-293.
    [94]Kim S H, You B S, Dong Yim C, et al. Texture and microstructure changes in asymmetrically hot rolled AZ31 magnesium alloy sheets [J]. Materials Letters,2005,59(29-30):3876-3880.
    [95]Yoshida Y, Kama do S, Kojima Y. Application of ECAE processed magnesium alloys [J]. Journal of Japan Institute of Light M etals,2001,51(10):556-562.
    [96]Kim W J, Hong S I, Kim Y S, et al. Texture development and its effect on mechanical properties of an AZ6 1 Mg alloy fabricated by equal channel angular pressing [J]. Acta Materialia,2003, 51(ll):3293-3307.
    [97]Yoshida Y, Cisar L, Kamado S, et al. Texture development and its effect on mechanical properties of an AZ61Mgalloy fabricated by equal channel angular pressing [J]. Acta Materialia,2003, 51(11):3293-3307.
    [98]Prado M T, Ruano O A. Texture evolution during grain growth in annealed Mg AZ61 alloy [J]. Scripta Materialia,2003,48(1):59-64.
    [99]陈振华,夏伟军,程永奇,傅定发.镁合金织构与各向异性[J].中国有色金属学报,2005,15(1):1-11.
    [100]Mabuchi M, Chino Y, Iwasaki H, et al. The grain size and texture dependence of tensile properties in extruded Mg-9Al-Zn [J]. Materials Transactions,2001,42(7):1182-1189.
    [101]Kaiser F, Letzig D, Bohlen J, et al. Anisotropic properties of magnesium sheet AZ31[J]. Materials Science Forum,2003,419-422:315-320.
    [102]Wu S K, Chou T S, Wang J Y. The deformation texture in AZ31B magnesium alloy[J]. Materials Science Forum,2003,419-422:527-532.
    [103]Kim W J, Jeong H G, Mechanical properties and texture evolution in ECAP processed AZ61 Mg alloys [J], Materials Science Forum,2003,419-422:201-206.
    [104]高洪涛,吴国华,丁文江.镁合金疲劳性能的研究现状[J],铸造技术,2003.07,24(4):266-268.
    [105]曾荣昌,韩恩厚,刘路,徐永波,柯伟.轧制组织对镁合金AM60疲劳性能的影响[J].材料研究学报,2003.6,17(3):241-246.
    [106]陈立佳,刘正,胡壮麒.镁合金疲劳行为的研究现状及展望[J].沈阳工业大学学报,2005,27(3):.253-256.
    [107]Horstemeyer M F, Yang N, Gall K, McDowell D L, Fan J, Gullett P M. High cycle fatigue of a die cast AZ91E-T4 magnesium alloy [J]. Acta Materialia 2004;52(8):1327-1336.
    [108]Yang F, Yin S M, Li S X, Zhang Z F. Crack initiation mechanism of extruded AZ31 magnesium alloy in the very high cycle fatigue regime[J]. Materials Science and Engineering A 2008;491(1-2):131-136
    [109]Morita S, Ohno N, Tamai F, Kawakami Y. Fatigue properties of rolled AZ31B magnesium alloy plate [J]. Transactions of Nonferrous Metals Society of China 2010;20:s523-526.
    [110]毛萍莉,李扬,刘正,贾莹莹,陈立佳.挤压态AZ31镁合金的疲劳行为研究[J].特种铸造及有色合金,2010.30(3):213-215
    [111]Uematsu Y, Tokaji K, Kamakura M, Uchida K, Shibata H, Bekku N. Effect of extrusion conditions on grain refinement and fatigue behavior in magnesium alloys [J]. Materials Science and Engineering A 2006; 434(1-2):131-140.
    [112]Xiong Y, Yu Q, Jiang Y. Multiaxial fatigue of extruded AZ31B magnesium alloy [J]. Materials Science and Engineering A 2012:546:119-128.
    [113]Tokaji K, Kamakura M, Ishiizumi Y. Hasegawa N. Fatigue behavior and fracture mechanism of a rolled AZ31 magnesium alloy[J]. International Journal of Fatigue 2004:26(1):1217-1224.
    [114]Eliezer A, Cutman E M, Abramov E, et al. Corrosion fatigue of die and extruded magnesium alloys [J].J Light Metasl,2001,1(3):179-186.
    [115]Mayer H, Papakyriacou M, Zettl B, et al. Influence of porosity on the fatigue limit of die cast magnesium and aluminium alloys[J]. International Journal of fatiue,2003,25(3):245-256.
    [116]Potzies C, Kainer K U. Fatigue of magnesium alloys [J]. Advanced Engineering Materials, 2004,6(5):281-289.
    [117]高玉侠,刘马宝,张英杰等.压铸镁合金Az91HP疲劳性能的研究[J].汽车技术,2005,(5):38-40.
    [118]Hilpert H, Wagber L. Corrosion fatigue behavior of the high strength magnesium alloy AZ80[J]. Journal of Materials Engineering and Performance,2000,9(4):402-407.
    [119]Eisenmeier G, Holzwarth B, Hoppel H W, et al. Cyclic deformation and fatigue behavior of the magnesium alloy AZ91 [J]. Materials Science and Engineering A,2001, A319-321:578-582.
    [120]Chen L, Wang C, Wu W, Liu Z, Stoica G, Wu L, et al. Low-cycle fatigue behavior of an as-extruded AM50 magnesium alloy [J]. Metall Mater Trans A 2007,38(13):2235-2241.
    [121]Lin X Z, Chen D L. Strain controlled cyclic deformation behavior of an extruded magnesium alloy [J]. Materials Science and Engineering A 2008,496(1-2):106-113.
    [122]Begum S, Chen D L, Xu S, Luo Alan A. Strain-controlled low-cycle fatigue properties of a newly developed extruded magnesium alloy [J]. Metallurgical and Materials Transactions A 2008;39(12):3014-3026.
    [123]Begum S, Chen D L, Xu S, Luo Alan A. Low cycle fatigue properties of an extruded AZ31 magnesium alloy [J]. International Journal of Fatigue 2009;31:726-735.
    [124]Begum S, Chen D L, Xu S, Luo Alan A. Effect of strain ratio and strain rate on low cyclic fatigue behavior of AZ31 wrought magnesium alloy [J]. Materials Science and Engineering A 2009;517:334-343.
    [125]Basquin 0 H. The exponential law of endurance tests [S]. Proceedings of the America Society for testing and Materials,1910,10:625-630.
    [126]Coffin L F. A study of the effects of cyclic thermal stresses on a ductile metal[J]. Transaction of the American Society of Mechanical Engineers,1954,76:931-950.
    [127]Hasegawa S, Tsuchida Y, Yano H, Matsui M. Evaluation of low fatigue life in AZ31 magnesium alloy[J]. International Journal of Fatigue,2007,29(9-11):1839-1845.
    [128]Matsuzuki M, Horibe S. Analysis of fatigue damage process in magnesium alloy AZ31[J]. Materials Science and Engineering A,2009,504(1-2):169-174.
    [129]Yu Q, Zhang J X, Jiang Y Y, Li Q Z. Multiaxial fatigue of extruded AZ61A magnesium alloy [J]. International Journal of Fatigue,2011;33(3):437-447.
    [130]Uematsu Y, Tokaji K, Matsumoto M. Effect of aging treatment on fatigue behavior in extruded AZ61 and AZ80 magnesium alloys[J]. Materials Science and Engineering A,2009,517(1-2):138-145.
    [131]Zeng R C, Han E H, Ke W, Dietzel W, Kainer KU, Atrens A. Influence of microstructure on tensile properties and fatigue crack growth in extruded magnesium alloy AM60 [J]. International Journal of Fatigue 2010,32(2):411-419.
    [132]Zeng R C, Ke W, Han E H. Influence of load frequency and ageing heat treatment on fatigue crack propagation rate of as-extruded AZ61 alloy [J]. International Journal of Fatigue 2009,31(3):463-467.
    [133]Barnett M R. Keshavarz Z, Beer AG. Atwell D. Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn [J]. Acta Materialia 2004;52(17):5093-5103.
    [134]Somekawa H. Maruyama N, Iliromoto S, Yamamoto A and Mukai T. Fatigue behaviors and microstructures in an extruded Mg-Al-Zn alloy [J]. Materials Transactions 2008,49(3):681-684.
    [135]Ishihara S. Nan Z, Goshima T. Effect of microstructure on fatigue behavior of AZ31 magnesium alloy[J]. Materials Science and Engineering A 2007,468-470:214-222.
    [136]Sajuri Z B, Miyashita Y, Hosokai Y, Mutoh Y. Effects of Mn content and texture on fatigue properties of as-cast and extrudedAZ61magnesium alloys [J]. International Journal of Mechanical Sciences 2006,48(2):198-209.
    [137]Zhang H X, Yan Z F, Wang W X, Liang P Y, Li H Z, Wei Y H. As-extruded AZ31B magnesium alloy fatigue crack propagation behavior [J]. Journal of Wuhan University of Technology-Mater. Sci.Ed. Dec.2011:1114-1120.
    [138]Zeng R C, Han E H, Ke W. A critical discussion on influence of loading frequency on fatigue crack propagation behavior for extruded Mg-AI-Zn alloys [J]. International Journal of Fatigue 20I2;36:40-46.
    [139]Zeng R C, Xu Y B, Ke W, Han E H. Fatigue crack propagation behavior of an as-extruded magnesium alloy AZ80 [J]. Materials Science and Engineering A 2009;509:1-7.
    [140]Pook L P, Greenan A F. Fatigue crack-growth characteristics of two magnesium alloys [J]. Engineering Fracture Mechanics,1973,5:935-946.
    [141]Kobayashi Y, Shibusawa T, Ishikawa K. Environmental effect of fatigue crack propagation of magnesium alloy [J]. Materials Science and Engineering A 1997,234-236:220-222.
    [142]Tokaji K, Nakajima M, Uematsu Y. Fatigue crack propagation and fracture mechanisms of wrought magnesium alloys in different environments [J]. International Journal of Fatigue 2009,31:1137-1143.
    [143]Corbly D M, Packman P F. On the influence of single and multiple peak overloads on fatigue crack propagation in 7075-T651 aluminum [J]. Engineering Fracture Mechanics,1973,5:479-497.
    [144]Kumai S, Higo Y. Effects of delamination on fatigue crack growth retardation after single tensile overloads in 8090 Al-Li alloys [J]. Materials Science and Engineering A,1996; 221:154-162..
    [145]Zhao T, Zheng J, Jiang Y. A study of fatigue crack growth of 7075-T651 aluminum alloy [J]. International Journal of Fatigue 2008,3:1169-1180.
    [146]Daneshpour S, Kocak M, Langlade S, Horstmann M. Effect of overload on fatigue crak retardation of aerospace Al-alloy laser welds using crack-tip plasticity analysis [J]. International Journal of Fatigue 2009; 31:1603-1612.
    [147]Shuter D M, Geary W, Some aspects of fatigue crack growth retardation behaviour following tensile overloads in a structural steel [J], Fatigue & Fracture of Engineering Materials & Structures 1996; 19:189-199.
    [148]Makabe, C, Prnowidodo, A, and McEvily, A. J, Effects of surface deformation and crack closure on fatigue crack propagation after overloading and underloading [J]. International Journal of Fatigue, 2004; 26:1341-1348.
    [149]Hammouda M M I, Osman, H G, and Sallam H E M, Mode I notch fatigue crack growth behaviour under constant amplitude loading and due to the application of a single tensile overload [J]. International Journal of Fatigue 2004,26:183-192.
    [150]Wang X G, Gao Z L, Zhao T W, Jiang Y Y, An experimental study of the crack growth behavior of 16MnR pressure vessel steel [J]. Journal of Pressure vessel technology,2009,131(2):1-9
    [151]Shin C S, Hsu S H, On the mechanisms and behaviour of overload retardation in AISI 304 stainless steel [J]. International Journal of Fatigue,1993; 15:181-92.
    [152]Wheatley G, Hu X Z, Estrin Y. Effects of a single tensile overload on fatigue crack growth in a 316Lsteel [J]. Fatigue & Fracture of Engineering Materials & Structures,1999; 22(12):1041-51.
    [153]Kalnaus S, Fan F, Vasudevan A K, Jiang Y, An experimental investigation on fatigue crack growth of AL6XN stainless steel [J]. Engineering Fracture Mechanics 2008,75(8):2002-2019.
    [154]Kalnaus S, Fan F, Jiang Y, Vasudevan A K, An experimental investigation of fatigue crack growth of stainless steel 304L [J]. International Journal of Fatigue,2009,31:840-849.
    [155]Chen C Y, Gao D X. Fatigue crack propagation in a cast magnesium alloy [J]. Fatigue & Fracture of Engineering Materials & Structures,1983(6):167-176.
    [156]Wu W, Lee S.Y, Paradowska A M, Gao Y, Liaw P K. Twinning-detwinning behavior during fatigue-crack propagation in a wrought magnesium alloy AZ31B [J]. Materials Science and Engineering A 2011(556):278-286.
    [157]Nie D F, Zhao J. Fatigue crack growth and overload effect in az31 magnesium alloy [J]. Chinese Journal of Nonferrous Metals,2008.18 (5):771-776
    [158]Elber W. The significance of crack closure [J]. ASTM STP,1971,486:230-242.
    [159]Matsuoka S, Tanaka K, Kawahara M. The retardation phenomenon of fatigue crack growth in HT80 steel [J]. Engineering Fracture Mechanics,1976,8:507-523.
    [160]Wheeler OE. Spectrum loading and crack growth [J]. J Basic Eng Trans ASME. D94 1972,1:181-186.
    [161]Lu Y, Li K. A new model for fatigue crack growth after a single overload [J]. Engineering Fracture Mechanics,1993,46:849-856.
    [162]ASTM E647-13 Standard Test Method for Measurement of Fatigue Crack Growth Rates [S].2013.
    [163]Somekawa H, Mukai T, Effect of grain refinement on fracture toughness in extruded pure magnesium [J]. Scripta Materialia 2005,53:1059-1064
    [164]GB/T 6398-2000金属材料疲劳裂纹扩展速率试验方法[S].国家标准出版社,北京,2001.
    [165]Tada H, Paris PC, Irwin G.R. The stress analysis of cracks handbook [M].3rded. ASME International, 2000.
    [166]Paris P, Erdogan F. Acritical analysis of crack propagation laws [J]. ASME Transactions, Journal of Basic Engineering, Serices D,1963,85D(4):528-534.
    [167]Suresh S. Crack deflection:Implications for the growth of loading and short fatigue cracks [J]. Metallurgical Transactions A,1983, 14A:2375-2385.
    [168]Walker K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum [M]. In:Effects of environment and complex loading history on fatigue life. ASTM STP, 462. Philadelphia (PA):American Society for Testing and Materials; 1970. p.1-14
    [169]Kujawski D. A new (ΔK+Kmax)0.5 driving force parameter for crack growth in aluminum alloys [J]. International Journal of Fatigue 2001; 23:733-740.
    [170]Ando S, Ikejiri Y, lida N, Tsushida M, Tonda H. Orientation dependence of fatigue crack propagation in magnesium single crystals [J]. Journal of the Japan Institute Metals,70(8),634(2003)
    [171]Irwin GR. Analysis of stress and strains near the end of a crack traversing a plate [J]. Trans ASME J Appl Mech 1957; E24:361-364.
    [172]Li M, Lou X.Y, Kim J.H, Wagoner R.H. An efficient constitutive model for room-temperature, low-rate plasticity of annealed Mg AZ31B sheet [J]. International Journal of Plasticity,2010,26:820-58.
    [173]Noban M, Albinmousa J, Jahed H, Lambert S. A Continuum-Based Cyclic Plasticity Model for AZ31B Magnesium Alloy under Proportional loading [J]. Procedia Engineering.2011,10:1366-1371
    [174]Proust G, Tome CN, Jain A, Agnew SR. Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31 [J]. International Journal of Plasticity,2009,25:861-880.
    [175]Wang H, Wu PD, Tome CN, Wang J. A constitutive model of twinning and detwinning for hexagonal close packed polycrystals [J]. Materials Science and Engineering A,2012;555:93-98
    [176]Mathis K, Nyilas K, Axt A, Dragomir-Cernatascu I, Ungar T, Lukac P, The evolution of non-basal dislocations as a function of deformation temperature in pure magnesium determined by X-ray diffraction [J]. Acta Materialia,2004.52:2889-2894.
    [177]Yoshinaga H, Horiuchi R. On the nonbasal slip in magnesium crystals [J]. Transaction of the Japan Institute of Metals,1963,5:14-21.
    [178]Caceres C, Lukac P. Strain hardening behaviour and the Taylor factor of pure magnesium [J]. Philosophical Magazine,2008,88:977-989.
    [179]Beyerlein I.J, Capolungo L, Marshall RE, McCabe R.J, Tome C.N, Statistical analyses of deformation twinning in magnesium [J]. Philosophical Magazine,2010,90:2161-2190.
    [180]Yu Q, Zhang J, Jiang Y. Fatigue demage development in pure polycrystalline magnesium under cyclic tension-cmopression loading [J]. Materials Science and Engineering A,2011,528:7816-1826.
    [181]Nicoletto G, Konecna R, Pirondi A. Fatigue crack paths in coarse-grain magnesium [J]. Fatigue Fracture Engneering Material Structure,2004,28:237-244.
    [182]Prasad T V R K, Rao K P. Effect of crystallographic texture on the kinetics of hot deformation of rolled Mg-3Al-1Zn alloy plate [J]. Materials Science and Engineering:A,2006,432(1-2):170-177.
    [183]余琨,黎文献,王日初.镁合金塑性变形机制[J].中国有色金属学报,2005,15(7):1081-1086.
    [184]余琨,芮守泰,工日初,彭超群,薛新颖.AZ31镁合金挤压薄板织构及力学性能各向异性[J],中国有色金属学报,2008,18(12),2127-2131.
    [185]Lou X Y, Li M, Boger R K, Agnew S R, Wagoner R H. Hardening evolution of AZ31B Mg sheet [J]. International Journal of Plasticity,2007,23(1):44-86
    [186]Kim J, Ryou H, Kim D, Lee W, Hong S, Chung K, Constitutive law for AZ31B Mg alloy sheets and finite element simulation for three-point bending [J]. International Journal of Mechanical Sciences, 2008,50(10-11):1510.
    [187]Lee M, Wagoner R H, Lee J K, Chung K, Kim H Y, constitutive modeling for anisotropic/asymmetric hardening behavior of magnesium alloy sheets [J]. International Journal of Plasticity,2008,24(4):545.
    [188]Khan A S, Pandey A, Herold T G, Mishra R K, Mechanical response and texture evolution of AZ31 alloy at large strains for different strain rates and temperatures [J]. International Journal of Plasticity, 2011,27(5):688.
    [189]唐伟琴,张少睿,范晓慧,李大永,彭颖红.AZ31镁合金的织构对其力学性能的影响[J].中国有色金属学报,2010,20(3):371-377.
    [190]吴章斌,桂良进,范子杰,AZ31B镁合金挤压板材力学性能的各向异性[J].材料研究学报,2012,26(2):218-224.
    [191]Klerner.S, Uggowitzer.P.J, Mechanical anisotropy of extruded Mg-6%Al-1% Zn alloy [J]. Materials Science and Engineering A 2004,379:258-263.
    [192]陈庆荣,杨忠,李建平,吴永兴,刘继林,杨志玲,挤压GW102镁合金组织和力学性能[J].材料研究学报,2013,27(3):317-325.
    [193]Ji D, Liu C, Tang L, Wan Y, Cen H, Microstructures and mechanical properties of a hot extruded Mg-4.45Zn-0.46Y-0.76Zr alloy plate [J]. Materials and Design,2014,53:602-610.
    [194]Morita S, Matsushita K, Mayama T, Hirai T, Enjoji T, Hattori N, Fatigue-fractured surfaces and crack paths of textured polycrystalline magnesium alloys [J]. gruppofrattura.it:571-578.
    [195]Morita S, Ohno N, Tamai F, Kawakami Y, Fatigue crack propagation behavior of textured polycrystalline magnesium alloys [J]. Materials Transactions,2010,51(9):1543-1546.
    [196]Mine Y, Ando S, Takashima K, Crystallographic fatigue crack growth in titanium single crystals [J]. Materials Science and Engineering A,2011,528:7570-7578.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700