用户名: 密码: 验证码:
CO_2浓度对寒地粳稻生育特性及产量生理影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CO2浓度是影响水稻生产的重要环境因子。IPCC(政府间气候变化专门委员会)报告显示,大气CO2浓度呈现快速增长的趋势,预测到本世纪中叶将达到550μmol·mol-1.这种环境的加剧变化将对植物生态系统产生重要的影响。本研究以OTC(开顶式气室)为试验手段,寒地粳稻为研究对象,设定多个CO2浓度,研究CO2浓度对寒地粳稻产量、生育特性和光合生理的影响。主要结果如下:
     1.随着CO2浓度的增加,寒地粳稻总干物质积累量增加,其中根、茎、穗的干物质量增加,叶片干物质量先增加后减少。不同器官对CO2浓度响应的差异,导致水稻根冠比、茎叶比升高,谷草比和收获指数下降。随着CO2浓度的增加,水稻产量增加,其中有效穗数和主穗2次枝梗库容的增加是产量增加的主要因素。高CO2浓度较CK增产15.6%,中CO2浓度较CK增产,但差异不显著;产量构成中有效穗数、着粒密度、穗粒数增加,但千粒重显著下降。根据不同部位的稻穗和穗部结构对产量增加的贡献率,从大到小依次是:有效穗数、主穗的2次枝梗数、2次枝梗平均实粒数、1次枝梗平均实粒数。
     2.随着CO2浓度增加,寒地粳稻生育进程加快。叶龄指数和抽穗期提前,抽穗速度加快,扬花时间提前,灌浆速率提高。高、中CO2浓度较CK,抽穗期分别提前72h、21h;高CO2浓度较CK,平均灌浆速率提高、高速灌浆的时间缩短,并提前2d达到最大灌浆速率,最大灌浆速率提高11.50%,其中劣势粒较优势粒提高明显。随着CO2浓度增加,寒地粳稻叶面积指数先增加后减少;单叶叶面积显著减少,比叶重显著增加,叶龄越大影响越显著,营养生长期显著抑制叶宽,生殖生长期显著抑制叶长。
     3.随着C02浓度的增加,光合速率和胞间CO2浓度提高,气孔导度、蒸腾速率降低,光合参数对浓度变化的响应存在短期和长期的效应,在光合速率参数中,除暗呼吸速率提高外,其它参数都向着有利于光合生产率提高的方向变化。高CO2浓度处理的平均光合生产率显著高于中CO2浓度和CK,增幅分别为25.96%、19.00%,平均光合生产率除灌浆期外,其它时期随处理时间延长逐渐减少,灌浆期最大;随着CO2浓度增加,最大净光合速率、暗呼吸、初始量子效率、光饱和点逐渐增加,光补偿点逐渐减少;最大净光合速率在CO2浓度在380-680μmol-mol-1时,呈现加速提高的趋势,CO2浓度超过680μmol·mol-1后增速逐渐减小。
     4.随着CO2浓度增加,叶片微观结构发生改变,单位面积细胞数量增多,不同细胞参数差异明显,对叶片背面影响显著。随CO2浓度增加,单元内硅栓细胞带和气孔带间距离极显著增加;不同细胞带上细胞排列更加紧密,S型排列气孔带数量增加。CO2浓度增加,硅、栓细胞长度增加、宽度变小,硅栓带上单位面积细胞数量显著减小,尤其是栓细胞上镶嵌乳突面积极显著减少;叶片背面气孔密度(SD)略有下降,气孔指数(SI)显著降低,气孔器、保卫细胞的面积、周长,长度极显著增大,保卫细胞宽度和乳突数量极显著减小;叶片腹面气孔器宽度和乳突数量极显著减小,面积、周长显著减小。
     随着CO2浓度增加,叶绿体形状由原来的近梭形、椭圆形变成近圆形,淀粉粒体积变大,叶绿体及其基粒和类囊体膜完好无损,叶绿体厚度变薄,基粒的垛迭程度和宽度增加。
     5.随着CO2浓度的增加,寒地粳稻品种产量提高,有效分蘖增加是产量增加的主要因素,不同品种对CO2的响应差异显著。研究表明,随着CO2浓度的增加,株高、结实率、千粒重和有效分蘖呈增加趋势:穗长和穗粒数在品种间变化趋势不一致。不同熟期品种产量增幅比较,早熟品种>中熟品种>晚熟品种。同熟期品种产量结构变化特征表明,中熟品种产量性状对CO2浓度变化的响应趋势较一致,晚熟品种差异较大。
Atmospheric CO2concentration is important environmental factor for rice production. IPCC's reports showed a increasing trend for CO2concentration, which predicted the concentration will hit up to550μmol-mol-1in this mid of century. This condition will accelerate the impact of elevated CO2on ecosystem of plants, ecosystem. OTC (open top chamber) is applied in this study. Japonica rice of cold region will be used to research the effects of different CO2concentration on the yield, growth character and photosynthetic physiology of Japonica rice in cold region. The results showed:
     1. Elevated CO2induced a increase of dry matter for root, stem and grain, and for single leaf increase at first and decrease. Differences from different organs makes the root-shoot ratio and stem-leaf ratio increase, grain-straw ratio and harvest index decrease. CO2concentration increasing makes the productivity increase, valid tiller number, sub-racbis in main stem are the main factors. The productivity of CK increased15.6%under elevated CO2treatment, but not significant effects occurred under middle level of CO2concentration. Tiller number, panicle intensity, number of panicle per tiller increased, but thousand grain weight decreased significantly. The changes of productivity on sensitivity of CO2in turn were:valid tiller number, sub-rachis in main stem, averaged valid grain at sub-rachis, valid grain at first rachis according to different position responsible for changes of productivity and sensitivity of tiller structure.
     2. Elevated CO2induced growth process become faster, leaf-age index and heading date earlier, heading faster, flowering period earlier, filling speed faster. The heading stage shifted to72h,21h under high concentration and middle CO2compared to CK, elevated CO2accelerate averaged graining ratio, shorter high-speed graining, and2d ahead of heading stage reached up to maximum graining, the maximum graining speed increased11.5%, some at superior position increase obviously. Elevated CO2induced leaf-area index increase at first and then decrease, single leaf area reduce significantly more than leaf weight which is according to leaf age.
     3. Elevated CO2induced photosynthetic rates and rnal CO2increased, stomatal conductance and transpiration decrease. Response from photosynthetic index has long term and short term effects to CO2concentration, all parameters change according to photosynthetic production increase except dark respiration rate. Averaged productivity of photosynthesis under higher CO2concentration treatments increased25.96%and19.00%under highest and middle concentration, respectively. Maximum net photosynthetic rates, dark respiration, initial quantum efficiency, saturated point of light increased, but compensate point of light decreased, maximum of nct photosynthetic rates between380-680μmol-mol-1exhibited a faster trends, after680μmol-mol-1, the speed became slower.
     4. Elevated CO2induced microstructure change:unit cell number increase, cell index differ obviously and impact leaf back significantly. Distance between silicon cell band cork and cork cell band increase significantly; Different cells arrange more intensely, S stomata band number increase. Elevated CO2induced the increase of silicon and cork in foliar silicon band, but the width became smaller, cellular unit areas along silicon cork band were significantly decreased, especially for cork cell mount in mastoid numbers, stoma density at foliar back showed slightly decrease, somatal index decreased significant, stoma and areas of guard cells, circumference and length increased significantly, width of guard cells and numbers of mastoid process decreased significantly. Width of stoma at segmental venter decreased significantly, as well as area, circumference.
     During CO2increased, Shapes of chloroplast shifted from ellipse to circular, volume of starch grain became bigger and occupying into chloroplast, foliar chloroplast and its granum and thylakoid membrane have no difference, thickness of chloroplast decreased, but granum superposition and width increased.
     5. Elevated CO2induced productivity cold land japonica rice increase, the main factor is increase of effective tiller number, there are big differences among different cultivars. By comparing the cultivars of different maturity, the order from high to low for productivity is early>middle> later maturity. The results by analyzing the effects of CO2concentration on productivity of cultivars at same period maturity showed, the cultivars at middle maturity stages in response to CO? showed same trends, but there are big differences among late cultivars.
引文
[1]B. A. Kimball,朱建国,程磊,等.2002.开放系统中农作物对空气CO2浓度增加的响应.应用生态学报,13(10):1323-1338.
    [2]梁霞,张利权,赵广琦.2006.芦苇与外来植物互花米草在不同CO2浓度下的光合特性较,26(3):842-848.
    [3]苏培玺,张立新,杜明武,等.2003.胡杨不同叶形光合特性、水分利用效率及其对加富C02的响应.植物生态学报,27(1):34-40.
    [4]王健林,于贵瑞,王伯伦,等.2005.北方粳稻光合速率、气孔导度对光强和CO2浓度的响应.植物生态学报,29(1):16-25.
    [5]徐文铎,齐淑艳,何兴元,等.2008.大气中CO2、O3浓度升高对银杏成年叶片气孔数量特征的影响.生态学杂志,27(7):1059-1063.
    [6]杨惠敏,王根轩.2001.干旱和CO2浓度升高对干旱区春小麦气孔密度及分布的影响.植物生态学报,25,(3):312-316.
    [7]左闻韵,贺金生,韩梅,等.2005.植物气孔对大气CO2浓度和温度升高的反应-基于在CO2浓度和温度梯度中生长的10种植物的观测.生态学报,25(3):565-574.
    [8]孟婷婷,倪健,王国宏.2007.植物功能性状与环境和生态系统功能.植物生态学报,31(1):150-165.
    [9]杨秉耀,陈新芳,刘向东,等.2006.水稻不同品种叶表面硅质细胞的扫描电镜观察.电子显微学报,25(2):146-150.
    [10]水茂兴,陈德富,秦遂初,等.1999.水稻新嫩组织的硅质化及其与稻瘟病抗性的关系.植物营养与肥料学报,5(4):352-358.
    [11]郭嘉,张卫建,户其亮,等.2008.大气CO2浓度倍增对稻田生态系统钙、镁、硅离子流失的潜在影响.中国科学,38(6):558-564.
    [12]杨连新,王云霞,朱建国,等.2009.十年水稻FACE研究的产量响应.生态学报,(3):1486-497.
    [13]廖轶,陈根云,张海波,等.2002.水稻叶片光合作用对开放式空气CO2浓度增高(FACE)的响应与适应.应用生态学报,13(10):1205-1209.
    [14]范桂枝,李军营,王春明,等.2006.中国水稻科学,空气中CO2浓度升高条件下水稻抽穗期的QTL定位,20(3):259-264.
    [15]韩康顺,商全玉,韩亚东,等.2010.不同施肥水平对水稻9741物质生产和冠层特性及产量的影响.辽宁农业科学,(4):12-18.
    [16]潘根兴,高民,胡国华,等.2011.气候变化对中国农业生产的影响.农业环境科学学报,30(9):1698-1706.
    [17]张中峰,黄玉清,莫凌,等.2009.岩溶植物光合-光响应曲线的两种拟合模型比较.武汉植物学研究,27(3):340-344.
    [18]胡天印,方芳,郭水良,等.2007.外来入侵种加拿大一枝黄花及其伴生植物光合特性研究.浙江大学学报(农业与生命科学版),33(4):379-386.
    [19]郭水良,方芳,黄华,等.2004.外来入侵植物北美车前繁殖及光合.生理生态学研究,28(6):787-793.
    [20]叶子飘.2007.光响应模型在超级杂交稻组合-Ⅱ优明86中的应用.生态学杂志,26(8):1323-1326.
    [21]佘诚棋,程鹏,季琳琳,等.2012.油茶光合作用光响应曲线的拟合.经济林研究,30(1):118-120.
    [22]李永秀,杨再强,张富存.2011.光合作用模型在长江下游冬麦区的适用性研究.中国农业气象,32(4):588-592.
    [23]钱莲文,张新时,杨智杰,等.2009.几种光合作用光响应典型模型的比较研究.武汉植物学研究,27(2):197-203.
    [24]刘宇峰,萧浪涛,董建华,等.2005.非直线双曲线模型在光合光响应曲线数据分析中的应用.中国农学通报,21(8):76-79.
    [25]黄红英,窦新永,孙蓓育,等.2009.两种不同生态型麻疯树夏季光和特性的比较.生态学报,29(6):2861-2867.
    [26]张小全,徐德应.2001.18年生杉木不同部位叶龄光响应研究.生态学报,21:409-404.
    [27]冯玉龙,曹坤芳,冯志立,等.2002.光合特性和暗呼吸对生长光环境的适应.生态学报,22:901-910.
    [28]宋清海,张一平,郑征,等.2006.热带季节雨林冠层树种绒毛番龙眼的光合生理生态特性.应用生态学报,17:961-966.
    [29]叶子飘,于强.2007.一个光合作用光响应新模型与传统模型的比较.沈阳农业大学学报,38(6):771-775.
    [30]叶子飘.2008.对光响应新模型及其应用.生物数学学报,23(4):710-716.
    [31]蒋高明,林光辉,Bruno D. V. Marino.1999.几种热带于雨林与荒漠植物暗呼吸作用对高C02浓度的响应.生态学报,19(4):519-522.
    [32]李绍长.2003.低磷胁迫对植物光合和呼吸作用的影响.石河子大学学报(自然科学版),7(2):157-160.
    [33]林伟宏,白克智,匡廷云.1999.大气CO2浓度和温度升高对水稻叶片及群体光合作用的影响.植物学报,41(6):624-628.
    [34]杨连新,王云霞,朱建国,等.2010.开放式空气中CO2浓度增高(FACE)对水稻生长和发育的影响.生态学报,30(6):1573-1585.
    [35]郑淑霞,常朝阳,上官周平.2004.辽东栎叶片气孔特征参数的时空变异.应用与环境生物学报,10(4):412-415.
    [36]孙同兴,张听,张长胜,等.1999.CO2倍增对紫花苜蓿叶片形态结构的影响.莱阳农学院学报,16(1):1-5.
    [37]张听,张秀芬,鞠赋红.1997.大气CO2浓度升高对植物形态结构的影响.莱阳农学院学报,14(1):36-41.
    [38]马清温,李凤兰,李承森.2005.气孔参数的变异系数和影响因素.北京林业大学学报,27(1):19-23.
    [39]马清温,李凤兰,李承森.2004.气孔参数与大气CO2浓度的相关性及其影响因素.西北植物学报,24(11):2020-2024.
    [40]杨松涛,李彦舫,胡玉熹,等.1997.CO2浓度倍增对10种禾本科植物叶片形态结构的影响.植物学报,39(9):859-866.
    [41]高素华,郭建平,毛飞,等.2000.CO2浓度升高对植物种子萌发及叶片的影响.资源科学,22(6):18-21.
    [42]齐淑艳,郭晓华,赵明.2009.CO2与O3浓度升高对入侵植物牛膝菊叶片形态特征的影响.东北师大学报,41(2):149-153.
    [43]林金星,胡玉熹.1996.大豆叶片结构对CO2浓度升高的反应.植物学报,39(1):31-34.
    [44]刘发民,王利荣,李怡,等.2008.大气CO2浓度升高对木本植物影响的研究进展.安徽农 业科学,36(28):12182-12182.
    [45]王建林,温学发,赵风华,等.2012.C02浓度倍增对8种作物叶片光合作用、蒸腾作用和水分利用效率的影响.植物生态学报,36(5):438-446.
    [46]王大力,林伟宏.1999.CO2浓度升高对水稻根系分泌物的影响-总有机碳、甲酸和乙酸含量的变化.生态学报,19(4):570-572.
    [47]林伟宏,王大力.1999.大气二氧化碳升高对水稻生长及同化物分配的影响.科学通报,43:2299-2302.
    [48]李伏生,康绍忠.2002.不同氮和水分条件下CO2浓度升高对小麦碳氮比和碳磷比的影响.植物生态学报,26(3):295-302.
    [49]陈改苹,朱建国,庞静,等.2006.CO2浓度升高对水稻抽穗期根系有关性状及根碳氮比的影响.中国水稻科学,20(1):53-57.
    [50]Amthor J S.1991.Respiration in a future higher-CO2world. Plant, Cell and environment. 14:13-20.
    [51]Bunce J A.1990. Short and long-term inhibition of respiratory carbon dioxide efflux by elevated carbon dioxide. Annals of Botany,65:637-642.
    [52]Baly E C.1935.The kinetics of photosynthesis. Proceedings of the Royal Society Ser B (Biological Sciences),117(104):218-239.
    [53]Beerlling D J, Royer D L.2002.Reading a CO2 signal from fossil stomata. New Phytol, 153:387-397.
    [54]Beerlling D J, Chaloner W G, Huntley B, et al.1992.Variations in the stomatal density of Salix herbacea L. under the changing atmospheric CO2 concentrations of late-glacial and postglacial time. Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci.,336:215-224.
    [55]Baker JT, Allen LHJr.1993.Effects of CO2 and temperature on rice:A summary of five growing seasons. JAgricMeteorol,48:575-582.
    [56]Baker JT, Allen JrLH.1993. Contrasting crop species responses to CO2 and temperature: rice, soybean and citrus. Vegetation,104/105,239-260.
    [57]Ferris R, Taylor G.1994.Stomatal characteristics of four native herbs following exposure to elevated CO2. Annuals of Botany,73:447-453.
    [58]Farquhar G D, Von Caemmerer S.1982.Modeling of photosynthetic response to environmental condition/Lange O L. Encyclopedia of Plant Physiology. Hedelberg: Springer-Verlag,549-587.
    [59]Goris sen A, Cot rufo M F.2000.De composition of leaf an d root t issue of three perennial grass species grown at two levels of atmospheric CO2 and N supply. Plant and S oil,224:75-84.
    [60]Gray J E, Holroyd G H, Vander Lee F M, et al.2000.The HIC signaling pathway links CO2 perception to stomatal development. Nature,408:713-716.
    [61]Hodge A, Paterson E, Grays ton S J, et al.1998.Characterization and microbial utilization of exudates material from the rhizosphere of Lolium perenne grown under CO2 enrichment. Soil Biol & Biochem,30:1033-1043.
    [62]Huang J Y, Yang L X, Yang H J, et al.2005.Effects of free-air CO2enrichment(FACE) on growth duration of rice(Oryza sativa L.) and its cause. Acta Agronomica Sinica,31 (7): 882-887.
    [63]Hu J, Yang L X, Zhu J, et al.2007.Effect of free-air CO2 enrichment(FACE) on grain filling dynamics of rice. Scientia Agricultura Sinica,40 (11):2443-2451.
    [64]Heath O V S.1948.Control of stomatal movement by reduction in the normal carbon dioxide content of the air. Nature,161:179-181.
    [65]HORMOZ BASSIRIRAD, STEPHEN A, PRIOR,RICH J NORBY, et al.1999. A field method of determining NH4+and NO3-uptake kinetics in intact roots:Effects of CO2 enrichment on trees and crop species. Plant and soil,212:123-134.
    [66]IPCC. Climate change 2007:the physical science basis//Solomon S, Qin D, Manning M, et al., eds, Contribution of Working Group I to the Fourth Annual Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK:Cambridge University Press,996.
    [67]IRRI.2002.Rice Almanac:Source Book for the Most Important Economic Activity on Earth,3rd edn. Oxon, UK:CABI Publishing,
    [68]In eson P, Cot rufo M F, Bol R, et al.1996.Quantification of soil carbon inputs under elevated CO2:C3 plant s in a C4 soil. Plant and Soi 1,187:345-350.
    [69]ImaiK, Coleman DF, Yanagisawa T.1985. Increase in atmospheric partial pressure of carbon dioxide and growth and yield of rice(Oryza sativaL). Jpn J Crop Sci,54:413-418.
    [70]ImaiK.1995.Physiological response of rice to carbon dioxide, temperature and nutrients In:Peng S, Ingran KT, Neve HU, eds Climate Change and R ice Berlin, Gemany. Springer-Verlag:253-257.
    [71]Idso S B, Kimball B A.1992.Effects of atmospheric CO2enrichment on photosynthesis, respiration, and growth of source orange trees. Plant Physiology,99:341-343.
    [72]Imai K, Murata Y. Effect of carbon dioxide concentrations on growth and dry matter production of crop plants. Japanese Journal of Crop Science,1978,47:330-335.
    [73]JOHNSON D W, CHENG W, BALL J T.2000.Effects of CO2 and N fertilization on decomposition and immobilization in ponderosa pine litter. Plant and Soil,224:115-122.
    [74]Kimball BA, Kobayashi K, Bindi M.2002.Responses of agricultural crops to free-air CO2 enrichment. Adv. Agron,77:293-368.
    [75]Kim H Y, Horie T, Nakagawa H, et al.1996.Effects of elevated CO2concentration and high temperature on growth and yield of rice. Ⅱ. The effection yield and its components of Akihikari rice. Japanese Journal of Crop Science,65:644-651.
    [76]Kim H Y, Lieffering M, Miura S, et al.2001.Growth and nitrogen uptake of CO2-enriched rice under field conditions. New Phytologist,150:223-229.
    [77]Kim H Y, Lieffering M, Kobayashi K, et al.2003.Seasonal changes in the effects of elevated CO2 on rice at three levels of nitrogen supply:a free-air CO2 enrichment(FACE) experiment. Global Change Biology,9:826-837.
    [78]Kim H Y, Lieffering M, Kobayashi K, et al.2003.Effects of free-air CO2enrichment and nitrogen supply on the yield of temperate paddy rice crops. Field Crops Research,83: 261-270.
    [79]Kobayashi K, Lieffering M, Kim HY.2001. Growth and yield of paddy rice under free~air CO2 enrichment In Shiyom iM, Koizum iH, eds Structure and Function in Agroecosystem Design and M anagement. Boca Raton,Florida,USA:CRC Press. 371-395.
    [80]Kobayashi K, Okada M, Kim H Y, et al.2006. Paddy rice responses to free-air CO2 enrichments, Ecological Studies Series,187:87-104.
    [81]Knapp A K, Cocke M, Hamerlynck E P, et al.1994.Effect of elevated CO2 on stomatal density and distribution in a C4 grass and a C3 for under field conditions. Annals of Botany,74:595-599.
    [82]Lin HW, Bai KZ, Kuang TY.1999.Effects of elevated CO2 and high temperature on single leaf and canopy photosynthesis of rice. Acta Bot. Sin.,41(6):624-628.
    [83]Luomala E M, Laitinen K, Sutinen S, et al.2005.Stomatal density, anatomy and nutrient concentrations of Scots pine needles are affected by elevated CO2 and temperature. Plant Cell and Environment,28:733-749.
    [84]Lodge R J, Dijkstra P, Drake B G, et al.2001.Stomatal acclimation to increased CO2 concen tration in a Florida scrub oak species Quercus myrifolia Willd. Plant CELL Environ.,24:77-88.
    [85]Madsen, E.1974.Effect of CO2 concentrantion on growth and fruit production of tomato plant. Acta. Agric. Scand.24:242-246.
    [86]Morison JIL.1998.Stomatal response to in creased concentration. J. Exp. Bot,49: 443-452.
    [87]Murray D R.1995.Plant response to carbon dioxide. American Journal of Botany,82: 690-697.
    [88]Nakano H, Makino A, Mae T.1997.The effect of elevated partial pressures of CO2 on the relationship between photosynthetic capacity and N content in rice leaves. Plant Physiol., 115:191-198.
    [89]Okuda Aet al.1964.The role of silicon. In:The mineral nut rit ion of the rice plant.1RRI, 123-146.
    [90]Oechel W C, Strain B R.1985.Native species responses to increased atmospheric carbon dioxide concentration. In:StrainB R, Cure J D eds. Direct Effect of Increasing Carbon Dioxide on Vegetation. USDE, DOE:Washington, DC,117-154.
    [91]Povin C, Strain B R.1985.Effects of CO2enrichment and temperature on growth of two C4weeds, Echinochloa crusgalli and Eleusine indica. Canadian Journal of Botany,63: 1495-1499.
    [92]Poorter H, Gifford R M, Kriedemann P E, et al.1992.A quantitative analysis of dark respiration and carbon content as factors in the growth response of plants of elevated CO2. Australian Journal of Botany,40:501-513.
    [93]Pritchard S G Rogers H H, Prior S A, et al.1999.Elevated CO2 and plant structure:a review. Globs. Change Biol,5:807-837.
    [94]PRIOR S A, TORBERT H A, RUNION G B, et al.1998.Effects of carbon dioxide enrichment on cotton nutrient dynamics. J Plant Nutr,21(7):1407-1426.
    [95]Peek M S, Russek-Cohen E, Wait D A, et al.2002.Physiological response curve analysis using nonlinear mixed models. Oecologia,132:175-180.
    [96]Prado CHBA, Moraes JAPV.1997.Photosynthetic capacity and specific leaf mass in twenty woody species of Cerrado vegetation under field condition. Photosynthetica,33(1): 103-112.
    [97]RyIe G J A, Powell C E, Teuson V.1992.Effect of elevated CO2 on photosynthesis, respiration and growth of perennial ryegrass. Journal of Experimental Botany,43: 811-818.
    [98]Raid RN, Jones DB and Snyder GH.1987.Effect of nitrogen an d silicon on blast and brow n spot. Plant Disease,32-42.
    [99]ROWSON J M.1946.The significance of stomatal index as a differential character. Part II I. Studies in the genera Atropa, Datura, Digitalis, Phytolacca and in polyploid leaves. Quarterly J Pharm Pharmaceut,19:136-143.
    [100]Ryle G J A, Stanley J.1992.Effect of elevated CO2 on stomatal size and distribution in perennial ryegrass. Annuals of Botany,70:213-309.
    [101]Ryle, G. J. A. and J.1992.Stanley, Effects of elevated CO2 on stomatal size and distribution in perennial ryegrass. Ann. Bot.69:563-565.
    [102]REDDY K R, ROBANA R R, HODGES H F, et al.1998.Interactions of CO2 enrichment and temperature on cotton growth and leaf characteristics. Environ. Exp. Bot., 39(2):117-129.
    [103]Retallack G J.2001.A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles. Nature,411:287-290.
    [104]Shimono H, Okada M, Yamakawa Y, et al.2008.Rice yield enhancement by elevated CO2 is reduced in cool weather. Global Change Biology,14:276-284.
    [105]SHARMA G K, DUNN D B.1968.Effect of environment on the cuticular features in Kalanchoef edschenkoi. Bull Torrey Bot Club,95:464-473.
    [106]SHARMA G K, DUNN D B.1969.Environmental modifications of leaf surface traits in Datura stramonium. Can J Bot,47:1211-1216.
    [107]TICHA I.1982.Photosynthetic characteristics during on to genesis of leaves.7. Stomata density and sizes. Photosynthetica,16:375-471.
    [108]Tognetti R, Minnocci A, Penuelas J, et al.2000.Comparative field water relations of three Mediterranean shrub species co-occurring at anatural CO2 vent. J. Exp. Bot.; 51: 1135-1146.
    [109]Tang R.1999.Effect of double atmospheric CO2 concentration on rice photosynthesis and rubisco. Rice Res New sletter,7:7-8.
    [110]Thornley J H M.1976.Mathematical models in plant physiology. London:Academic Press,86-110.
    [111]Wullschleger S D, Norby R J, Hendrix D L.1992.Carbon exchange rates, chlorophyll content, and carbohydrate status of two forest tree species exposed to carbon dioxide enrichment. Tree Physiology,10:21-31.
    [112]Woodward, F.1. and F. A.1988.Bazzaz, The responses of stomatal density to CO2 partial pressure. Expr. Bot.209:1771-1781.
    [113]Woodward F I, Kelly C K.1995.The influence of CO2 concentration on stomatal density. New Phytol.,131:311-327.
    [114]Yang LX, Huang JY, Yang HJ, et al.2006.SeasonaI changes in the effects of free-air CO2 enrichment(FACE) on dry matter production and distribution of rice (Oryza sativa L.). Field Crop. Res.,98:12-19.
    [115]Yang L X, Huang J Y, Yang H J, et al.2006.The impact of free-air CO2 enrichment(FACE) and N supply on yield formation of rice crops with large panicle. Field Crops Research,98 (213):141-150.
    [116]Ziska LH, Teramura AH.1992.Intraspecific variation in the response of rice(Oryza sativa)to increased CO2-photosyn-thetic,biomass and reproductive characteristics. Physiologia Plantarum,84:269-276
    [117]Yang L X, Liu H J, Wang Y L, et al.2009.Yield formation of CO2-enriched indica rice cultivar under fully open-air field condition. Science in China Series C:Life Sciences, (submitted).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700