用户名: 密码: 验证码:
大熊猫保护的种群动力学机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
该文主要运用种群生态学理论来研究大熊猫种群,利用动力学建模方法建立大熊猫种群与环境之间、局域种群与种群之间关系的数学模型,通过运用脉冲微分方程理论、时滞微分方程理论等数学理论方法和数值模拟对所建立的微分系统的动力学行为进行探索,从而对大熊猫种群在区域内的持续生存进行预测和推断,为大熊猫种群保护研究提供理论依据。具体研究内容和结果如下:
     (1)建立大熊猫与两种主食竹之间关系的两次脉冲微分系统,研究当大熊猫栖息地仅有两种主食竹时主食竹开花对大熊猫种群生存的影响,并结合卧龙自然保护区五一棚地区的调查研究数据,用数值模拟的方法讨论了五一棚地区大熊猫与两种主食竹拐棍竹和冷箭竹之间的关系。该章所建模型及研究方法可以用来预测某一区域内主食竹开花是否会对大熊猫的生存造成影响,研究结论可为开花竹林的人工复壮更新和人工造竹林提供理论依据。
     (2)从数学的角度建立描述“乔木-竹子-大熊猫”之间关系的微分方程数学模型。通过对带有时滞和阶段结构的变系数微分系统的分析,得到了系统持续生存的条件,从理论上验证了李俊清等提出的森林、主食竹、大熊猫三位一体系统的稳定性维持机制,并进一步分析制约系统稳定发展的因素,为大熊猫栖息地保护提出建议。
     (3)建立大熊猫在不同类型的斑块间扩散和迁移的微分系统模型,通过数学分析得到大熊猫在斑块间持续生存和灭绝的条件,并把所得结论用在秦岭大熊猫局域种群中去。研究方法可用来研究大熊猫在各类局域种群中的扩散和迁移,从而预测大熊猫局域种群的未来发展情况。
     (4)针对在两个相邻的斑块环境里放归圈养大熊猫的两个方案分别建立了状态反馈脉冲控制数学模型,通过运用半连续系统几何理论,讨论系统在相空间的阶k(k大于等于1的整数)周期解的存在性和稳定性,从而验证了所给出的放归方案的稳定性和合理性。研究结论可为复壮小局域种群野生大熊猫数量和大熊猫历史分布区野生大熊猫的重新引入工作提供理论依据。
In this paper, some differential equation models for describing the development of the giant panda population were established by dynamic modeling methods, and the dynamical behaviors of the differential systems were explored by impulsive differential equations theory, delay differential equations theory and other mathematical theories and numerical simulation methods. The results can be used to predict and infer the persistence of the giant panda population, and also provide theoretical basis for the study of giant panda protection. The results are summarized as follows.
     (1) An impulsive differential system on the relation of giant panda and two kinds of staple food bamboo was established, and how the staple food of bamboo flowering impact on the survival of the giant panda was discussed. Based on the investigation data of Wolong nature protection five one shed area, the relation between pandas and two kinds of staple food bamboo (Fargesia robusta and Bashania fargesii) was discussed by using numerical simulation method. The model can be used to consider whether bamboo flowering cause giant pandas to food shortages or not in some areas, and the study also provides a theoretical basis for blossom bamboo artificial regeneration and the artificial forest.
     (2) From the view of mathematics, a mathematical delay differential equation model of the relation between the trees, bamboo and giant pandas was established. Through the analysis of the variable coefficient differential systems with time delay and stage structure, the conditions for the permanence of the system were obtained, which can ensure the three populations to develop Corporately. The characteristics of this part are to verify the stability of the forest, bamboo and panda three-in-one system maintenance mechanism which was presented by Juqing Li et al. and to analyze the factors that restrict the stable development of the system, which will provide theoretical basis for the giant panda habitat protection.
     (3) An n dimensional differential system was established on the giant panda population dispersal in complex patchy environments. By mathematical analysis of the periodic coefficient diffusion differential system, sufficient conditions for permanence and extinction were obtained. Furthermore, the conclusions were applied to the local population in Qinling Mountains. The research method can be used to predict the future development of the local population of giant pandas.
     (4) Two mathematical models of release captive giant pandas in patchy environments were established, and the release mode of captive giant pandas was discussed by using state feedback control impulsive differential equations. Using the geometry theory of semi-continuous dynamical system, the existence and stability of order k periodic solutions in the phase space were studied. Thus, a series of release modes of the captive giant pandas were presented, for increasing small isolated pandas in patchy environments. Also, it would reintroduction wild pandas in the history of the giant panda distribution area.
引文
[1]曹庆,朱云,阮英琴,雍立军,王小红,张文辉.观音山自然保护区和佛坪自然保护区大熊猫种群的分布格局[J].应用生态学报,2009,20(9):2271-2276.
    [2]陈兰荪.害虫治理与半连续动力系统几何理论[J].北华大学学报(自然科学版),2011,12(1):1-9.
    [3]陈兰荪.脉冲微分方程与生命科学[J].平顶山师专学报,2002,17(2):1-8.
    [4]陈兰荪,宋新宇,陆征一.数学生态学模型与研究方法[M].成都:四川科学技术出版社,2003:292-293.
    [5]陈利顶,刘雪华.卧龙自然保护区大熊猫生境破碎化研究[J].生态学报,1999,19(3):291-297.
    [6]邸志鹰.放归大熊猫[J].科学世界,2004,7:40-45.
    [7]杜万全,大熊猫及其社会价值略谈[J].四川林勘设计,2012,1:1-10.
    [8]葛之葳,邢玮,李俊清,杨伟勇.保护区周边居民薪柴采集对乔木分布的影响-以四川王朗大熊猫自然保护区为例[J].生态学报,2006,26(1):97-103.
    [9]巩文,任继文,赵长青,李晓鸿.甘肃省大熊猫栖息地生境分析[J].林业科学,2005,41(5):86-91.
    [10]桂占吉,程艳霞,宋国华.“森林-竹子-大熊猫”非线性动力系统的周期解与混沌奇怪吸引子[J].北京林业大学学报,2012,34(1):110-115.
    [11]桂占吉,宋国华,程艳霞.大熊猫种群在小区域之间扩散对持续生存的影响[J].中北大学学报(自然科学版),2011,32(4):405-410.
    [12]国家林业局.全国第三次大熊猫调查报告[M].北京:科学出版社,2006.
    [13]郭瑞海,廖志武,袁晓凤.大熊猫生态系统动态规律的数值模拟[J].西南民族学院学报(自然科学版),2000,26(1):5-10.
    [14]胡杰,胡锦矗,屈植彪,杨冬雷.黄龙大熊猫对华西箭竹选择与利用的研究[J].动物学研究,2000,21(1):48-51.
    [15]胡锦矗.大熊猫种群现状与保护[J].四川师范学院学报(自然科学版),2000,21(1):11-17.
    [16]胡锦矗.大熊猫研究[M].上海:上海科技教育出版社,2001.
    [17]胡锦矗.大熊猫生物学研究与进展[M].成都:四川科技出版社,1990.
    [18]胡锦矗,Schaller G.B.,潘文石,朱清.卧龙的大熊猫[M].成都:四川科技出版社,1985.
    [19]金明仕.森林生态学(文剑平译)[M].北京:中国林业出版社,1991.
    [20]康东伟,康文,谭留夷,李俊清.王朗自然保护区大熊猫生境选择[J].生态学报,2011,31(2):401-409.
    [21]李承彪.大熊猫主食竹研究[M].贵阳:贵州科技出版社,1997.
    [22]李典谟,马祖飞.展望数学生态学与生态模型的未来[J].生态学报,2000,20(6):1083-1089.
    [23]李俊清,申国珍,等.大熊猫栖息地研究[M].北京:高等教育出版社,2012.
    [24]李义龙.儿类生物数学模型的定性与分支研究[D].上海交通大学博士学位论文,2006.
    [25]林英华,顾海军,隆廷伦,于长青,陈佑平.森林采伐对平武大熊猫栖息地的影响[J].林业科学,2005,41(1):109-115.
    [26]刘雪华,Skidmore A. K., Bionsveld M. C..集成的专家系统和神经网络应用于大熊猫生境评价[J].应用生态学报,2006,17(3):357-560.
    [27]刘妍.成都大熊猫繁育研究基地保护性旅游开发研究[D].成都理工大学硕士学位论文,2007.
    [28]刘艳萍.气候变化对岷山大熊猫的影响[D].北京林业大学硕士学位论文,2012.
    [29]刘颖颖.秦岭圈养大熊猫对投食竹种的选择[D].中国林业科学研究院硕士学位论文,2009.
    [30]刘颖颖,傅金和.大熊猫栖息地竹子及开花现象综述[J].世界竹藤通讯,2007,5(1):1-4.
    [31]陆征一,周义仓.数学生物学进展[M].北京:科技出版社,2006.
    [32]马剑.时滞微分方程在生态学中的应用[D].东北林业大学硕十学位论文,2006:1-55.
    [33]马国瑶.甘肃文县地区竹子开花后大熊猫的活动调查[J],动物学杂志,1992,27(2):4-17.
    [34]梅R.M..理论生态学[M].北京:科技出版社,1980.
    [35]孟新柱.生物系统中的时滞效应[D].大连理工大学博十论文,2008.
    [36]欧阳志云,李振新,刘建国,安力,张和民,谭迎春,周世强.卧龙自然保护区大熊猫生境恢复过程研究[J].生态学报,2002,22(11):1840-1849.
    [37]欧阳志云,刘建国,肖寒.卧龙自然保护区大熊猫生境评价[J].生态学报,2001,21(11):1869-1874.
    [38]欧阳志云,徐卫华,王学志.汶川大地震对生态系统的影响[J].生态学报,2008,28(12):5801-5809.
    [39]潘文石,吕植,王大军,朱小健,王吴,龙玉,付达莉.继续生存的机会[M].北京:北京大学出版社,2001.
    [40]秦自生.四川大熊猫的生态环境及主食竹种更新[J].竹子研究汇刊,1985,4(1):1-4.
    [41]冉江洪,曾宗永,王昊,刘少英,王鸿加,刘世昌.大熊猫在原始林和次生林中生境利用的比较研究[J].北京林业大学学报,2004,26(4):8-14.
    [42]冉汀洪,曾宗永,王鸿加,刘少英,符建荣,刘世昌.四川小相岭山系大熊猫种群及栖息地调查[J].兽类学报,2005,25(4):345-350.
    [43]冉江洪,曾宗永,刘世昌,王鸿加.四川大相岭大熊猫种群及栖息地调查[J].四川大学学报(自然科学版),2006,43(4):73-76.
    [44]任文华,杨光,魏辅文,胡锦矗.马边大风顶自然保护区大熊猫种群生存力模拟分析[J].兽类学报,2002,22(4):264-269.
    [45]申国珍,李俊清.大熊猫栖息地退化生态系统恢复指标体系研究[C].中国生物多样性保护与研究进展-第五届全国生物多样性保护与持续利用研讨会论文集,2002a,317-323.
    [46]申国珍,李俊清,蒋仕伟.大熊猫栖息地亚高山针叶林结构和动态特征[J].生态学报,2004,24(6):1294-1299.
    [47]申国珍,李俊清,任艳林,等.大熊猫适宜栖息地恢复指标研究[J].北京林业大学学报,2002c,24(4):1-5.
    [48]申国珍,李俊清,张明如.大熊猫退化生态系统恢复与重建的探讨[J].内蒙古农业大学学报,2002d,23(1):36-40.
    [49]申国珍,李俊清,马宇飞.大熊猫栖息地亚高山针叶林结构和干扰关系研究[J].北京林业大学学报,2002b,24(5-6):115-119.
    [50]宋卫信,张泽,刘荣堂.集合种群理论研究的数学模型[J].甘肃农业大学学报,2009,44(3):133-139.
    [51]宋秀英.微分方程数学模型和数学实验在实际生活中的应用举例[J].价值工程,2012,31(14):272-273.
    [52]孙承骞,张哲林,金学林,秦岭大熊猫局域种群的划分及数量分布[J].陕西师范大学学报(自然科学版),2006,34(z1):163-167.
    [53]王辅俊.大熊猫种群动力学的双区域模型[J].南京林业大学学报,1994,18(1):70-71.
    [54]王高雄,周之铭,朱思铭,王寿松.常微分方程(第三版)[M].北京:高等教育出版社,2006.
    [55]王昊,李松岗,潘文石.秦岭大熊猫(Ailuropoda melanoleuca)的利群存活力分析[J].北京大学学报(自然科学版),2002,38(6):756-761.
    [56]王继成,张泽军.食肉动物的扩散模式、后果及对大熊猫生态学研究的启示[J].西华师范大学学报(自然科学版),2012,33(4):323-329.
    [57]王梦君.松潘-平武地震干扰后大熊猫栖息地生态恢复研究[D].北京林业大学博士论文,2010.
    [58]王小红.竹子开花对大熊猫生存影响分析[J].成都大学学报(自然科学版),2009,28(1):17-20.
    [59]王晓静.红松种群数学模型及其动力学行为研究[D].北京林业大学博士论文,2010.
    [60]王逸之,董文渊,尚旭东.大熊猫主食竹种研究综述[J].内蒙古林业调查设计,2010,33(1):94-97.
    [61]王永健,陶建平,张炜银,等.四川茂县土地岭大熊猫走廊带植被恢复格局及其与干扰的关系[J].生态学报,2006,26(11):3525-3532.
    [62]潘文石,等.继续生存的机会[M].北京:北京大学出版社.2001.
    [63]吴云华,袁晓风,魏明彬.大熊猫生态系统动态模型稳定性及数值分析[J].生物数学学报,1998,13(1):93-96.
    [64]吴云华.一类大熊猫-竹子三种群系统的hopf分支[J].四川师范大学学报,1997,20(5):27-34.
    [65]新华网http://news.xinhuanet.com/local/2013-11/09/c-118072110.htm.
    [66]新华网http://news.xinhuanet.com/english2010/china/2011-06/16/c13934030.htm.
    [67]新华网http://www.sn.xinhuanet.com/2006-05/17/content-7007573.htm.
    [68]徐昌进.时滞微分方程的Hopf分支的时域与频域分析[D].中南大学博士学位论文,2010.
    [69]徐卫华,欧阳志云,李宇,刘建国.基于遥感和GIS的秦岭山系大熊猫生境评价[J].遥感技术与应用,2006,21(3):238-242.
    [70]严旬.野生大熊猫现状、面临的挑战及展望[J].兽类学报,2005,25(4):402-406。
    [71]杨春花.放归大熊猫Ailuropoda melanoleuca预选栖息地评估-以卧龙为例[D].华东师范大学博士学位论文,2007.
    [72]杨柳.几类生态系统的周期解与稳定性研究[D].山东科技大学硕十学位论文,2007.
    [73]杨武年,谢洪斌,简季,南希.大熊猫生境评估系统的设计与实现[J].西南交通大学学报,2010,45(1):144-149.
    [74]袁重桂,胡锦矗,张洪德.大熊猫-竹子种群动态的数学模型及其在五一棚的应用[A].大熊猫生物学研究与进展[M].成都:四川科技出版社,1990,187-205.
    [75]张大勇,雷光春,Hanski I..集合种群动态:理论与应用[J],生物多样性,1995,7(2):81-90.
    [76]张黎明.邛崃山系大熊猫栖息地状况的初步研究[J].四川林业科技,1993,14(2):73-77.
    [77]张明春,黄炎,李德生,张和民,周世强,黄金燕,刘巅,周小平.圈养大熊猫野化培训期的生境选择特征[J],生态学报,2013,33(19):6014-6020.
    [78]张泽钧,胡锦矗,吴华,侯万儒.唐家河大熊猫种群生存力分析[J].生态学报,2002,22(7):990-998.
    [79]张泽军,张陕宁,魏辅文,王鸿家,李明,胡锦矗.移地与圈养大熊猫野外放归探讨[J].兽类学报,2006,26(3):292-299.
    [80]赵强.生物数学的发展及应用,玉林师范学院学报,2007,28(3):14-18.
    [81]钟伟伟,刘益军,史东梅.大熊猫主食竹研究进展[J].中国农学通报,2006,22(5):141-145.
    [82]中国新闻网http://www.chinanews.com/sh/2012/11-16/4335829.shtml.
    [83]Allison M.F., Robert D.B.. A framework for the design of wildlife conservation corridors with specific application to southwestern Ontario[J]. Landscape Urban Plan, 1997,37(3-4):163-186.
    [84]Armstrong M.A.. Basic Topology[M]. Springer-Verlag, New York,1983.
    [85]An, L., Lupi F., Liu J., Linderman M.A., Huang J.. Modeling the choice to switch from fuelwood to electricity:Implications for giant panda habitat conservationfJ]. Ecological Economics,2002,42(3):445-457.
    [86]Bainov D., Simeonov P.. Impulsive Differential Equations:Asymptotic Properties of the Solutions[M]. World Scientific, Singapore,1995.
    [87]Bainov D., Simeonov P.. Impulsive Differential Equations:Periodic Solutions and Appli-cations[M]. Longman Scientific and Technical, New York,1993.
    [88]Bainov D., Simeonov P.. System with Impulsive Effect:Stability, Theory and Applica-tions[M]. John Wiley & Sons, New York,1989.
    [89]Bearer S., Linderman M., Huang J.Y., An L., He G.M., Liu J.G.. Effects of fuelwood collection and timber harvesting on giant panda habitat use[J]. Biological Conservation, 2008,141(2):385-393.
    [90]Beretta E., Takeuchi Y.. Global asymptotic stability of Lotka-Volterra diffusion models with continuous time delay [J]. SIAM J. Appl. Math.1988,48(3):627-651.
    [91]Cui J.A.. The effect of dispersal on permanence in a predator-prey population growth model[J]. Computers and Mathematics with Applications,2002,44(8-9):1085-1097.
    [92]Cui J.A., Chen L.S.. Permanence and Extinction in Logistic and Lotka-Volterra Systems with Diffusionl[J]. Journal of Mathematical Analysis and Applications,2001,258(2): 512-535.
    [93]Cui J.A., Song X.Y., Chen L.S.. Two impulsive systems arising from biological and inter-grated pest contorl[J]. Diff. Eqns Dyna. Systems,2006,14(1-2):163-177.
    [94]Fan J.T., Li J.S., et al.. Impact of road construction on giant panda's habitat and its carrying capacity in Qinling Mountains Acta[J]. Ecologica Sinica,2011,31(3):145-149.
    [95]Freedman H.I., Peng Q.. Uniform persistence and global asymptotic stability in periodic single-species models of dispersal in a patchy environment[J]. Nonlinear Anal.,1999, 36(8):981-996.
    [96]Freedman H.I. and Waltman P.. Mathematical models of population interactions with dis-persal Ⅰ:Stability of two habitats with and without a predator[J]. SIAM J. Appl. Math., 1977,32(3):631-648.
    [97]Freedman H.I., Rai B., Waltman P.. Mathematical models of population interactions with dispersal Ⅱ:Differential survival in a change of habitat[J]. J. Math. Anal. Appl.,1986, 115(1):140-154.
    [98]Freedman H.I., Takeuchi Y.. Predator survival versus extinction as a function of dispersal in a predatorprey model with patchy environment[J]. Appl. Anal.,1989,31(4):247-266.
    [99]Freedman H.I. and Takeuchi Y.. Global stability and predator dynamics in a model of prey dispersal in a patchy environment[J]. Nonlin. Anal. T.M.A.,1989,13(8):993-1002.
    [100]Georgescua P., Morosanu G.. Impulsive perturbations of a three-trophic prey-dependent food chain system[J]. Mathematical and Computer Modelling,2008,48(7-8):975-997.
    [101]Gui Z.J., Song G.H., Cheng Y.X.. Computer numerical simulation of diffusion on the giant panda population dynamics models among small areas[J]. Procedia Environmental Sciences,2012,13:2085-2090.
    [102]Guo J., Chen Y.H., Zhang H.D., Chen G.Z., Hu J.C., Wu Y.i.. A mathematical model for the population of giant pandas and bamboo in Yele Nature Reserve of Xiangling Moun-tains[J]. J. Nat. Conserv.,2002,10(2):69-74.
    [103]Hanski I.. Metapopulation Ecology[M]. Oxford university press, Oxford,1999.
    [104]Hanski I., Kuussaari M., Nieminen M.. Metapopulation persistence of an endangered but-terfly in a fragmented landscape[J]. Oikos,1995,72(1):21-28.
    [105]Hastings A.. Dynamics of a single species in a spatially varying environment:the stability role of high dispersal rates[J]. J. Math. Biol.,1982,16(1):49-55.
    [106]Hastings A.. Spatial heterogeneity and the stability of predator prey systems[J]. Theoret. Popul. Biol.1977,12(1):37-48.
    [107]Holt R.. Population dynamics in two-patch environments:some anomalous consequences of optimal habitat distribution[J]. Theor. Pop. Biol.,1985,28(2):181-208.
    [108]Hu J.C.. Review on the classification and population ecology of the giant panda[J], Zoo-logical Research,2000,21(1):28-34.
    [109]Hu S., Lakshmikantham V., Leela S.. Impulsive Differential Systems and the Pulse Phe-nomena[J]. J. Math. Anal. App.,1989,137(2):605-612.
    [110]Huang M.Z., Liu S.Z., Song X.Y., Chen L.S.. Periodic solutions and homoclinic bifurca-tion of a predator-prey system with two types of harvesting[J]. Nonlinear Dyn.,2013, 73(1-2):815-826.
    [111]Hui J., Chen L.S.. Impulsive vaccination of SIR epidemic models with nonlinear incidence rates[J]. Disc. Cont. Dyna. systems (Series B),2004,4(3):595-605.
    [112]Krasnoselskii M. A.. The Operator of Translation along Trajectories of Differential Equa-tions[M]. Translation of Math. Momographs, Volume 19, Am. Math. Soc. Providence, R.J.1968.
    [113]Lakshmikantham V., Bainov D.D., Simeonov P.S.. Theory or Impulsive Differential Equa-tions[M]. World Scientigic, Singapore,1989.
    [114]Levin S.A.. Dispersion and population interactions[J]. Amer. Natur.,2005,108(960):207-228.
    [115]Levin S.A. and Segel L.A.. Hypothesis to explain the origin of planktonic patchness[J]. Nature,1976,259:659.
    [116]Li H.L., Li D.H., Li T., Qiao Q., Yang J., Zhang H.M.. Application of least-cost path model to identify a giant panda dispersal corridor network after the Wenchuan earthquake-case study of Wolong Nature Reserve[J]. Ecological Modelling,2010,221(6):944-952.
    [117]Li Y., Andres Vina, Yang W., Chen X.D., Zhang J.D., Ouyang Z.Y., Liang Z., Liu J.G.. Effects of conservation policies on forest cover change in giant panda habitat regions, China[J]. Land Use Policy,2013,33:42-53.
    [118]Linderman M., Bearer S., An Li, Tan Y.C., Ouyang Z.Y., Liu J.G.. The effects of under-story bamboo on broad-scale estimates of giant panda habitat[J]. Biological Conservation, 2005,121:383-390.
    [119]Liu B., Liu W., Teng Z.. Analysis of a predator-prey model concerning impulsive per-turbations[J]. Dynamics of Continuous, Discrete and Impulsive Systems,2007,14(1): 135-153.
    [120]Liu J.G., Linderman M., Ouyang Z.Y., Zhang H. M.. Ecological degradation in protected areas:the case of Wolong Nature Reserve for Giant Pandas[J]. Science,2001,292(5514): 98-101.
    [121]Levin S.A.. Dispersion and population interactions[J]. Amer. Natur.,1974,108(960):207-228.
    [122]Lu Z.H., Chi X.B., Chen L.S.. Impulsive control strategies inbiological control of pesti-cide[J]. Theo. Pop. Biol.,2003,64(1):39-47.
    [123]Mahbuba R., Chen L.S.. On the nonautonomuous Lotka-Volterre competition system with diffusion[J]. Differential Equations and Dynamical Systems,1994,19:243-253.
    [124]Nie L., Teng Z., Hu L., Peng J.. The dynamics of a Lotka-Volterra predator-prey model with state dependent impulsive harvest for predator[J]. Biosystems,2009,98(2):67-72.
    [125]Roper T.J., Ostler J.R., Conradt L.. The Process of Dispersal in Badgers Meles Meles[J]. Mammal Review,2003,33(3):314-318.
    [126]Schaller G.B.. Secrets of the Wild Panda[J]. National Geographic,1986,169(3):284-309.
    [127]Schaller G.B., Teng Q., Johnson K., Wang X., Shen H., Hu J. The feeding ecology of giant pandas in the Tangjiahe Reserve, In:Hu J., Wei F., Yuan C., Wu Y. Research and Progress in Biology of the Giant Panda[M]. Sichuan Publishing House of Science and Technology, Sichuan,1990.
    [128]Schaller G.B., Hu J., Pan W., Zhu J.. The Giant Pandas of Wolong[M]. University Chicago Press, Chicago,1985.
    [129]Schaller G.B.. The Last Panda[M]. Chicago, Illions:University of Chicago Press,1993.
    [130]Simenov P.S., Bainov D.D.. Orbital stability of the periodic solutions of autonomous sys-tems with impulse effect[J]. Int. J. Syst. Sci.,1988,19(12):2561-2585.
    [131]Skellem J.D.. Random dispersal in theoretical population[J]. Biometrika,1951,38(1-2): 196-216.
    [132]Smith H.L.. Cooperative systems of differential equations with concave nonlinearities[J]. Nonlinear Anal.,1986,10(10):1037-1052.
    [133]Song G.H., Gui Z.J.. Periodic Solutions of a "Forest-Bamboo-Giant Panda" Nonlinear Dynamic Model[J]. Journal of Beijing University of Civil Engineering and Architecture, 2013,29(2):60-63.
    [134]Song X.Y, Chen L.S.. Optimal harvesting and stability for a twospecies competitive sys-tem with stage structure[J]. Math. Biosci.,2001,170(2):173-186.
    [135]Soule M.E., Mills L.S.. No need to isolate genetics[J]. Science,282(5394):1658-1659.
    [136]Stephens P.A., Sutherland W.J., Freckleton R.P.. What is the Allee effect?[J]. Oikos,1999, 87(1):185-190.
    [137]Su H., Dai B.X., Chen Y., Li K.. Dynamic complexities of a predator-prey model with generalized Holling type Ⅲ functional response and impulsive effects[J]. Computers and Mathematics with Applications,2008,56(7):1715-1725.
    [138]Takeuchi Y.. Diffusion effect on stability of Lotka-Volterra model[J]. Bull. Math. Biol., 1986,46(5-6):585-601.
    [139]Takeuchi Y.. Diffusion-mediated persistence in two-species competition Lotka-Volterra model[J]. Math. Biosci.,1989,95(1):65-83.
    [140]Tang S.Y., Chen L.S.. The effect of seasonal harvesting on stage-structured population models[J]. J. Math. Biol.,2004,48(4):357-374.
    [141]Tang S.Y. and Cheke R.A.. State-dependent impulsive models of integrated pest man-agement (IPM) strategies and their dynamic consequences[J]. Journal of Mathematical Biology,2005,50(3):257-292.
    [142]Taylor A.H., Qin Z.S.. Bamboo regeneration after flowering in the wolong giant panda reserve, China[J]. Biological Conservation,1993,63(3):231-234.
    [143]Teng Z.D., Chen L.S.. Permanence and extinction of periodic predator-prey systems in patchy environment with delay[J]. Nonlinear Anal. Real World Appl.,2003,4(2):335-364.
    [144]Teng Z.D., Lu Z.Y.. The effect of dispersal on single-species nonautonomous dispersal model with delays[J]. J. Math. Biol.,2001,42(5):439-454.
    [145]Wang W.D., Chen L.S.. Global stability of a population Dispersal in a Two-patch Envi-ronment[J]. Dyn. Systems Appl.,1997,6(2):207-216.
    [146]Wang W.D., Tang C.L.. Dynamics of a delayed population model with feedback con-trol[J]. J. Austral. Math. Soc. Ser. B,2000,41:451-457.
    [147]Wu H., Stoker R.L., Gao L.. A modified Lotka-Volterra simulation model to study the interaction between arrow bamboo (Sinarundinaria fangiana) and giant panda (Ailuropoda melanoleuca)[J]. Ecological Modelling,1996,84(1-3):11-17.
    [148]Xiao J., Xu W.H., Kang D.W., Li J.Q.. Nature reserve group planning for conservation of giant pandas in North Minshan, China[J]. Journal for Nature Conservation,2011,19(4): 209-214.
    [149]Yang G., Zhang H.D., Hu J.C.. A study of the mathematical model of the dynamic rela-tions between giant pandas and two kinds of food bamboo in Liang Shan mountains[J]. Journal of Biomathematics,1993,8(4):177-185.
    [150]Zeng G., Chen L., Sun L.. Existence of periodic solution of order one of planar impul-sive autonomous system[J]. Journal of Computational and Applied Mathematics,2006, 186(2):466-481.
    [151]Zhan X.J., Zhang Z.J., Wu H., Goossens B., Li M., Jiang S.W., Bruford M.W., Wei F.W.. Molecular Analysis of Dispersal in Giant Pandas[J]. Molecular Ecology,2007,16(18): 3792-3800.
    [152]Zhang Z.J., Zhang S.N., Wei F.W., et al.. Translocation and discussion on reintroduction of captive giant panda[J]. Acta Theriologica Sinica,2006,26(3):292-299.
    [153]Zhu L.F., Zhan X.J., Meng T., et al.. Landscape features influence geneflow as measured by cost-distance and genetic analyses:a case study for giant pandas in the Daxiangling and Xiaoxiangling Mountains[J]. BMC Gentics,2010,11:72.
    [154]Zhao X.Q.. The qualitative analysis of N-species Lotka-Volterra periodic competition sys-tems[J]. Math. Comput. Modelling,1991,15(11):3-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700