用户名: 密码: 验证码:
广东沿海地热系统水文地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国是世界上地热资源十分丰富的国家,高、中低温地热均有分布。相对于高温地热资源来说,中低温地热资源具有分布广,面积大,开发和利用条件较好的特点。近年来,随着我国传统能源的日益短缺和对清洁能源需求量的增加,中低温地热资源的开发和利用受到越来越多的重视。而开展中-低温地下热水组分含量和分布特点,演化特征和热水-围岩相互作用等基础研究,对该类型地热系统的成因和地热资源的开发利用具有重要的指导意义。
     自1958年以来,广东省地热勘查经历了热矿泉普查、重点地热区勘察、隐伏地热田勘查、商业地热勘查四个阶段。广东省地质局曾于1981年编写和出版了《广东地下热水水文地质特征及勘查方法》一书,系统地总结了广东省热矿水的形成条件、分布规律、热储特征及其勘查技术方法。在1983年,广东省地质矿产部水文工程地质二大队编制了《广东省1:100万热矿水图及说明书》。然而,前期的工作主要集中在广东省地热地质、地热资源量评估和勘查方法等方面,而末对区内地下热水的形成机理进行过系统的研究。到目前为止,对广东省地下热水,尤其是沿海地区地下热水的组分含量和分布特征,组分演化过程和咸热水成因的研究程度较低,部分内容处于空白阶段。
     本研究对广东沿海地区地下热水进行了全面的调查,系统性地采集和测试了区内地下冷水、地下热水、河流和海水样品,并深入分析了区内地下热水的水文地球化学特征。论文通过对广东沿海区域地质、构造、水文地质和地热地质资料的分析,总结了研究区地下热水的出露和分布规律;根据地下热水的水化学组分和同位素分析测试结果,分别阐述了粤东和粤西地区地下热水的水文地球化学特征和同位素地球化学特征,评估了地热系统热储温度,并对咸热水水化学过程及其形成原因做了探讨和分析;论文最后选定新洲地热系统为典型区,从“点”的角度深入分析了地下热水补给特征、水-岩作用、海-淡水混合作用,并给出了相应的概念性模型。
     1.广东沿海地区地下热水的水文地球化学特征
     对广东沿海地区不同热泉和地热钻孔出露点,分4次共采集了地下冷水、地下热水、河水、大气降水和海水在内的水样147组和岩石样品8组,进行了样品中常规元素、微量元素(包括稀土元素)、溶解性气体组分等指标的测定。通过对测试结果的分析,得到:
     (1)广东沿海地下热水水化学分组明显,粤东和粤西沿海地下水均分为四个组:其一是Na-HCO3型水;其二是Na-Cl和Na-Ca-Cl型水;其三是Ca-SO4型水;第四组为上述混合形成的水化学类型。从平面分布上讲,广东沿海地区地下热水水化学类型具有有这样的演化趋势:靠近沿海地区地下热水水化学类型以氯化物型热水为主,向内陆地区逐渐过渡为重碳酸盐型热水,阳春地带发育有硫酸盐型热水,水化学类型在整体上分带明显。
     (2)广东沿海地区Ca2+、Mg2+、Na+、K+、HCO3-、SO42-、Cl-和EC组分的含量从内陆到沿海地区呈变大的趋势,说明海水对地下热水主要离子组分具有重要的影响。而微量组分如锂和锶含量也表现出相似的变化趋势,但内陆地区热水中氟含量普遍高于沿海地区,且分别在粤西和粤东内陆地区有高氟含量的区域。
     (3)广东沿海地区地下热水中溶解性气体以氮(N2)和氧(O2)为主,其中氮气古绝对的优势,其百分含量值在地下冷水中介于78%-93%,在热水中介于85%-94%之间,这说明区域地下水来源于大气降水。一般来说,地下热水中H2百分含量的高低能作为分析地热系统属于高温地热系统还是中-低温地热系统的的标志,广东沿海地下热水中H2百分含量几乎为零,这也说明该区域可能不存在高温地热系统。
     2.热水-围岩相互作用
     结合地下水(冷水和热水)各组分含量与温度关系、组分之间离子比值关系图对地下热水中离子组分的形成过程进行了分析,获得下列认识:
     (1)在Na-K-Mg三角图中,粤西沿海地区地下冷水尚处于水岩作用的初级阶段,而地下热水绝大多数位于“半平衡区”;粤东沿海地区地下热水样点均位于“平衡线”以下,部分水样位于“平衡线”和“半平衡线”之间的局部平衡区。对比粤西和粤东沿海地区地下热水样在Na-K-Mg三线图中位置,推断粤西沿海地区地下热水与围岩介质的水岩作用强度要高于粤东地区,或与“成熟度”更高的水溶液发生了混合作用。
     (2)从TDS与Cl-/(Cl-+HCO3-)的关系图,(Ca2++Mg2+)与(SO42-+HCO3-)关系图,(Mg2+/Ca2+)与(Na+/Ca2+)关系图和(Na++K+)与Cl-的关系图分析了研究区内地下热水主要组分的来源。区内硅酸岩、碳酸盐和硫酸盐矿物可能均发生了溶解,共同影响了地下热水组分的形成。此外,海水对地下热水的混合导致地下热水中部分组分的海水来源。
     (3)广东沿海地下热水中F组分受到地下水类型和pH的影响。重碳酸钠型的地下热水中F毫克当最百分含量值最大,而当地下热水中S042-和Cl-的当量百分值增加时,F毫克当量百分含量值较重碳酸钠型的地下热水有显著的降低。碱性环境有利于F-的富集。
     3.同位素地球化学特征
     (1)氢氧同位素
     ①广东沿海地区地下冷水、地下热水和地表水均落在全球大气降水线附近,说明大气降水是这些水体的主要补给来源。②粤西地区部分水体在818O-δD关系图中较分散,有明显的“分层”现象,即地下冷水、地表河水、岩溶型热水和孔隙型热水具有不同的氢氧同位素组成特征,这说明这些水体接受补给的时期,水体的流动系统不同。③在δ18O和cl、EC关系图中,粤西部分地下冷水、孔隙型热水和裂隙型热水与海水之间成一线,说明海水和地下冷水可能是热水的两个影响端元,存在了海水和地下冷水的混合,这与水化学分析结果一致。
     (2)碳同位素
     ①粤西沿海地区地下水中14C校正年龄介于933-11721年,平均为6528年;而粤东地区地下热水年龄处于4937-8239的范围内,平均为6635年。从14C等值线图可以看出,粤西内陆向沿海一带地下热水中14C含量值逐渐减小,地下水年龄增大。阳江和阳春地区存在低值封闭区,反映了这些区域地下热水属局部径流和排泄系统,这与前面水化学和氢氧同位素数据分析结果相一致。②广东沿海地区地下热水中δ13C值介于-17.8‰~-1.7‰之间,平均值为-8.9‰,说明其碳的多种来源性。粤东地区地下热水δ13C值介于-2.2‰~-3.8‰,接近于碳酸盐变质作用形成的δ13C值,说明该区域地下热水中碳来源于碳酸盐变质作用。粤西地区不同类型的地下热水其δ13C值含量不同,孔隙型热水中δ13C值介于-10‰~-15‰之间,其碳的来源可能是生物成因或有机物成因的碳;裂隙型热水中δ13C值范围较宽,介于-1‰~-18‰之间,说明其碳来源的多重性。
     (3)锶同位素
     广东沿海地区地下水中87Sr/86Sr平均值接近砂、页岩的87Sr/86Sr平均值,而低于花岗岩类岩石87Sr/86Sr平均值,这说明两类岩石对地下水中锶含量的影响。而热水绝大多数出露于花岗岩和沉积岩的接触带上,热水径流过程中与上述围岩的相互作用导致地下热水呈现出与围岩相似的87Sr/86Sr比值。
     (4)硼同位素
     ①粤西地区地下冷水和地下热水中B含量和δ11B值分为四个区:Ⅰ区中B>0.1mg/L, δ11B>10‰,这部分热水有一个共同的特征就是热水中总溶解性固体含量值‘(TDS)大于4000mg/L;Ⅱ区为3>0.1mg/L,δ11B<‰,这部分热水属于裂隙型热水,其同位素介于-10-10‰之间,与美国黄石公园热水具有相似的δ11B值;m区为3<0.1mg/L,δ11B>10‰的地下冷水;Ⅳ区为3<0.1mg/L,δ11B<‰的岩溶热水、部分裂隙热水和孔隙热水。②在δ11B与Cl/B,Li/B和Sr/B的二变量关系图中,粤西地下热水和地下冷水分别位于不同位置,说明所采集的地下热水与地下冷水之间不存在水力联系,这可能是地下热水与地下冷水采集区域不同,不属于同一流动系统。但TDS含量值大于4g/L的地下热水其δ11B与Cl/B趋势线的箭头指向海水端元(δ1’B为39.5‰),这说明海水对热水的混合作用。
     4.咸热水形成的原因
     对广东沿海地区TDS值介于1g/L至13g/L的地下热水形成的原因进行分析,通过对该类型热水中离子组分比值、H、O、B同位素分析,得出如下认识:
     ①对比分析广东沿海地下热水与海水中Ca/Cl.Mg/Cl、Na/Cl.K/Cl.HC03/Cl、S04/Cl和Cl/Br比值,Ca-Cl.Na-Cl.Br-Cl的相关关系图,说明存在海水对咸热水组分的影响。②通过咸热水和海水的δD、δ18O与Cl-含量分析,经拟合计算获得混合体系中淡水端元δD和δ180初始值:δD=-50.73‰和δ18O=-7.25‰。③从咸热水和海水δ18O-δD拟合线与大气降水线的交点,准确地求出端元组成数据:δD=-51.86‰和δ180=-7.73‰。
     5.地热系统温标估算和相对地热梯度
     采用常用的二氧化硅和阳离子地球化学温标对研究区地下热水系统热储层温度进行了估算和误差分析,认识到:①玉髓温标和Na-K-Ca温标所计算的热储温度与实际测试的温度误差较小,且玉髓温标计算值更接近实际测试的温度;石英温标(无蒸汽损失和最大蒸汽损失)计算值误差次之,其值介于Na-K温标和玉髓温标计算值之间;Na-K温标计算获取的热储温度与实际测试温度之间的误差最大,说明该温标不适合于研究区热储温度的计算。②广东沿海地下热水相对地热梯度在近海一带较高,如阳西儒洞温泉和阳东县新洲沸泉地区,其相对地热梯度值介于70-86之间。总体来说,广东沿海地区相对地热梯度值均低于100,说明研究区热流背景值不高,形成高温地热的可能性不大。③广东沿海地区地下热水的最大循环深度介于1013-5679m之间,最小循环深度介于566-3148m之间。不难推断,在同一地质构造和地热地质背景下,当地温梯度越高时,地下水加热增温至一定温度所需要的循环深度就越小。
     6.典型地热异常区的水文地球化学演化
     以广东阳东县新洲地热系统为典型地热系统开展了水文地球化学演化特征的详细研究,主要认识有:
     ①通过对离子组分和氢氧同位素的分析,得出新洲地热系统及其外围热水为当地地下冷水与海水混合的结果,初步推断新洲热田热水中海水的混入比例介于9.8-11.4%,而神灶热泉中海水的混入比例为38%。②从δ11B与Cl/B的关系图中可以看出,新洲地热系统混入的海水可能不是现代海水,而是由海水演化来的一种类似海水的端元(贫硼组分,而富δ11B),这可能是全新世海侵过程中残存于岩石裂隙或断裂带中的海水。从新洲地热系统几个钻孔热水碳同位素的校正年龄可以看出,地热系统内热水年龄介于3947-6528年之间,与全新世早期第二次海侵的事件相吻合,推测新洲热田内混入的海水端元就为该时期残存海水。③新洲地热系统地下热水的形成模式为:在偏异常的区域大地热流值背景下,大气降水沿深、大断裂带入渗,深循环加热后与全新世海侵残存的古海水混合,形成Na-Cl型水;混合后的地下热水沿断裂带继续上升,随后分两个途径到达浅部地表和出露,第一类途径未经第二次混合直接出露地表,如编号为YX-1的钻孔热水(实际钻孔编号ZK-03),第二类途径为经历第二次浅部混合的地下热水,其TDS、 T和C1等组分有所降低,如编号为YX-41的钻孔热水(实际钻孔编号ZK-05)。
There is huge geothermal resource in China, including high and low to medium temperature geothermal resource. Compared to high temperature geothermal resource, the low to medium geothermal resource is rich in reserve, wide in distribution and cost-effective for exploration. In recent years, more and more attentions have been paid on low to medium geothermal resource as the demand for cleaner energy keeps increasing. To study on the water-rock interaction, the chemical components and its evolution of thermal water, is significance for analyzing the genesis and utilization of geothermal system.
     Since1958, there are four stages for the development of geothermal exploration in Guangdong, including the investigation of hot spring, the exploration of remarkable thermal fields, the underlying geothermal fields and commercial geothermal exploration. Books of "The hydrogeological characteristics and exploration methods of thermal water in Guangdong" and "The map of hot mineral water and its instruction in Guangdong" are published in1981and1983, which systematically summarized the formation and distribution of thermal water, the characteristic of reservoir, and its exploration methods. However, little research is carried on the hydrogeochemical evolution of chemical components and the genesis of geothermal systems in Guangdong, especially in the coastal area.
     In this paper, water samples, including cold groundwater, hot spring, river water, rainy water and seawater, were collected to analyze the hydrogeochemical characteristics of the low to medium geothermal system. The occurrence of thermal water was studied based on regional geology, tectonics, hydrogeology and geothermal geology. The chemical and isotope characteristics, the calculated temperature of geothermal reservoir, the genesis of saline water, were analyzed and discussed by using the chemistry and isotope analysis results. A typical geothermal system, the Xinzhou geothermal field, was selected to discuss the recharge area, water-rock interaction, mixing processes of sea water and hot water. Finally, a conceptual model for the Xinzhou geothermal field was given.
     1. Hydrogeochemistry of thermal water in the coastal areas of Guangdong
     One hundred and forty-seven water samples and eight rock samples were collected to determine the major, minor and trace elements, and the types of dissolved gas in the study area. The results are as follows:
     (1) There are four hydrochemical types, named Na-HCO3, Na-Cl and Na-Ca-Cl, Ca-SO4, and the mixing type, in the coastal area of Guangdong. In addition, from the coastal area to the inland, the water changes from Cl to HCO3for hydrochemical type, and there is Ca-SO4type in the area of Yangchun sity.
     (2) The concentrations of Ca2+、Mg2+、Na+、K+、 HCO3-、SO42-、Cl-and EC increase from inland to coastal area, indicating that the impact of sea water on the chemical components of thermal water.
     (3) Nitrogen (N2) and oxygen (O2) are the major dissolved gas in water samples, and the percentage values of Nitrogen are78%to93%, and85%to94%for cold groundwater and thermal water, respectively. The results of dissolved gas indicate that the thermal water is meteoric origin. The contents of hydrogen (H2) in thermal water are used to determine the high and low temperature geothermal system of geothermal fields. However, the percentage of H2in thermal water is almost zero, which means that there are not high temperature geothermal systems in Guangdong.
     2. Thermal water-rock interaction
     The hydrochemical processes of major ions in thermal water were analyzed by the relationship between the chemical constituents and temperature, and ion ratios, the results are shown as follows:
     (1) The cold groundwater in the west coastal area of Guangdong is so-called "immature water", while the thermal water was fell into the area between "mature water" and "immature water". It indicated that the ion exchange between water and rock is still under equilibrium. The groundwater collected in the east coastal area of Guangdong is also plotted into the area between "mature water" and "immature water", moreover, it near to the "immature water" area. Compare thermal water of the east coastal area with that of the west coastal area, there is more extensive water-rock interaction in the west coastal area, or other "mature water" mixed into thermal water.
     (2) From the plot of TDS and Cl-/(Cl-+HCO3-),(Ca2++Mg2+) and (SO42-+HCO3-),(Mg2+/Ca2+) and (Na+/Ca2+),(Na++K+) and Cl-, it can be suggested that the dissolved of silicate, carbonate and sulfate minerals influence the chemical component of thermal water. In addition, there is a mixture between sea water and thermal water.
     (3) The contents of F-in thermal water are controlled by hydrochemical types and pH values. The concentrations of F in HCO3-type are relatively higher than that of in SO42-and Cl-types. In addition, the contents of F-in alkaline water are high.
     3. Isotope geochemistry in thermal water
     (1) Hydrogen and oxygen isotope
     ①The cold groundwater, thermal water, and surface water samples are all plot along the global meteoric water line, indicating those water samples are recharged by precipitation.②The values of8I8O and δD in cold groundwater, thermal water, river water are different, and scatted in the plot of δ18O and δD. It indicates that those water samples belong to different water system③There are linear relationship between δ18O vs Cl and EC, which suggest that cold groundwater and sea water are possible two end-members for thermal water. These results are consistent with that of the chemical analysis.
     (2) Carbon isotope
     ①The corrected14C data of thermal water samples in the west and east coastal area of Guangdong range from933-11721a, and4937-8239a, respectively. According to the counter map, the values of14C increase from inland to coastal area, while the corrected14C data decrease. In addition, the counter map of14C enclosed in Yangjiang and Yangchun sity, indicating a local groundwater recharge and drainage system. It is consistent with the results; of chemical analysis.②The value of δ13C ranges from-17.8‰to1.7‰, with an average of-8.9‰, indicating a variety of source.
     (3) Strontium isotope
     The value of87Sr/86Sr ratio in thermal water is close to that of sand and shale, but lower to that of granitic rock, indicating water-rock interaction is the main processes for87Sr/86Sr ratio in thermal water. In fact, most of thermal water samples display on the boundary of granitic rock and sedimentary rock, then the components of wall rock can be dissolved into thermal water during water up flow forward to surface.
     (4) Boron isotope
     Four distinct area can be distinguished for groundwater based on the value of B and δ11B: the first one is B>0.1mg/L and δ11B>10‰, most thermal water with TDS value higher than4g/L belongs to this type; the second one is B>0.1mg/L and δ11B<10‰, and most fissure water are of this type, and the value of δ11B ranges from-10to10‰, which is similar to the hot spring of Yellowstone Park; the third one is B<0.1mg/L and δ11B>10‰, and cold water is this type; the last is B<0.1mg/L and δ11B<10‰, some of fissure water, pore water samples belong to this type.②Groundwater samples of west coastal area scatted in the plot of δ11B vs Cl/B, and Li/B, and Sr/B, indicating the different groundwater systems. However, the thermal water samples, with TDS value higher than4g/L, are plotted into a sea water mixing line, indicating the mixing processes of sea water.
     4. The genesis of saline thermal water
     Water samples with TDS value between1g/L and13g/L are classified into saline thermal water, and the genesis of this type is discussed by using H、O and B isotopes, the results are as follows:
     ①It is shown from the ratios of Ca/Cl、Mg/Cl、Na/Cl、K/Cl、HCO3/Cl、SO4/Cl and Cl/Br, and the plots of Ca vs Cl、Na vs Cl、Br vs Cl, that there is a mixing process between sea water and groundwater.②The initial values of δD and δ18O for one end-member are of-50.73‰and-7.25‰, respectively, based on the plot of δD and δ18O vs Cl-.③Another result of this end-member can be calculated from the intersection between the meteoric water line and the fitting line of δ18O and δD values, the value of δD and δ18O is-51.86‰and7.73‰, respectively.
     5. The calculated temperature of geothermal reservoir and the relative geothermal gradient
     The geothermometer of silica and cation is used to calculate the geothermal reservoirs, the results are:①Compare to the water temperatures tested in situ, the calculated values of silica are more reasonable than that of K-Na-Ca geothermometer, and the estimated values of Na-K geothermometer is the highest among other results.②The value of relative geothermal gradient in coastal area is relatively higher than that of inland, with a range of70to85. All in all, there may not exist high temperature geothermal system in Guangdong according to the relative geothermal gradient.③The largest and lowest circulation depth of thermal water in the study area ranges from1013to5679m and566to3148m, respectively.
     6. Hydrogeochemistry of typical geothermal field
     The Xinzhou geothermal field is selected as a typical area to analyze the evolution of hydrogeochemistry, the results are shown as follows:
     ①From the ion ratios and hydrogen and oxygen isotope results, it can be seen that the thermal water collected in and around Xinzhou geothermal field are mixture of sea water and cold groundwater, and the mixing ratio of sea water are of9.8to11.4%for thermal water of Xinzhou geothermal field, and38%for Shenzao geothermal field.②One end-member of Xinzhou geothermal field is paleo-seawater, with low B contents and high δ11B values.③The conceptual model of Xinzhou geothermal field was given.
引文
[1]Guo, Q H, Wang, Y X, and Liu, W. Major hydrogeochemical processes in the two reservoirs of the Yangbajing geothermal field, Tibet, China[J]. Journal of Volcanology and Geothermal Research,2007,166(34):255-268.
    [2]Guo, Q H, Wang, Y X, and Liu, W. Hydrogeochemistry and environmental impact of geothermal waters from Yangyi of Tibet, China[J]. Journal of Volcanology and Geothermal Research,2009,180(1):9-20.
    [3]Guo, Q H. Hydrogeochemistry of high-temperature geothermal systems in China:A review[J]. Applied Geochemistry,2012.27(10):1887-1898.
    [4]Guo, Q H. and Wang, Y X. Geochemistry of hot springs in the Tengchong hydrothermal areas, Southwestern China[J]. Journal of Volcanology and Geothermal Research,2012, 215216(0):61-73.
    [5]刘虹,张国平,金志升等.云南腾冲地区地热流体的地球化学特征[J].矿物学报,2009,(04):496-501.
    [6]赵慈平.腾冲火山区现代幔源氦释放特征及深部岩浆活动研究[博士学位论文].北京:中国地震局地质研究所,2008.
    [7].上官志冠,白春华,和孙明良.腾冲热海地区现代幔源岩浆气体释放特征[J].中国科学(D辑:地球科学),2000,(04):407-414.
    [8]文东光,扬齐青,孙晓明等.中国地热资源管理信息系统.北京:地质出版社,2010.
    [9]汪集旸,熊亮萍和庞忠和.中低温对流型地热系统.北京:科学出版社,1993.
    [10]陈墨香,旺集旸,和邓孝.中国地热资源—形成特点和潜力评估.北京:科学出版社,1994.
    [11]Lachenbruch, A H. and Sass, J H. Heat flow and thermal regims of the crust, in:The Earth's Crust, Its Nature and Physical Properities. AGU Monograph,1977:626-675.
    [12]Bowen, R. Geothermal Resource (2nd edition). Elsevier Applied Science,1989.485.
    [13]Guo, Q H, Wang, Y X, Ma, T, et al. Geochemical processes controlling the elevated fluoride concentrations in groundwaters of the Taiyuan Basin, Northern China[J]. Journal of Geochemical Exploration,2007,93(1):1-12.
    [14]工贵玲.我国地热资源勘查评价战略研究[J].中国北京,2010.
    [15]汪集旸.漳州盆地水热系统的成因分析[J].中国山东淄博,1989.
    [16]Reed, M S. Assessment of low temperature geothermal resources of the United States-1982. U.S. Geological Survey Circular,1983,892.
    [17]初滨.地热农业利用手册.北京:机械工业出版社,1991,299.
    [18]White, D E, Hydrology, activity and heat flow of the Steamboat Springs thermal system, Sashoe Country, Nevada. U.S. Geological Survey Professional Paper.,1968,109.
    [19]沈照理.水文地球化学基础.北京:地质出版社,1996.
    [20]Afyin, M. Hydrochemical evolution and water quality along the groundwater flow path in the SandLkil Plain, Afyon, Turkey[J]. Environmental Geology,1997,31(3-4):221-230.
    [21]Favara, R. Hydrochemical evolution and environmental features of Salso River Catchment, central sicity (Italy) [J]. Evironmental Geology,2000,39(11):1205-1215.
    [22]Deng, Y M, Wang, Y X, and Ma, T. Isotope and minor element geochemistry of high arsenic groundwater from Hangjinhouqi, the Hetao Plain, Inner Mongolia[J]. Applied Geochemistry, 2009,24:587-599.
    [23]孙褶,王文科,和刘国东.关中盆地浅层地下水水化学场演化规律研究[J].西南民族大学学报(自然科学版),2005,31(6):874-879.
    [24]苏春利和王焰新.大同盆地空隙地下水水化学场的分带规律性研究[J].水文地质工程地质,2008,1:83-89.
    [25]Laaksoharju, M, Gurban, I, and Skarman, C. Multivariate mixing and mass blance (M3) calculations, a new tool for decoding hydrogeochemical information[J]. Applied Geochemistry,1999,14:861-871.
    [26]马振民.山东泰安岩溶水系统地下水化学环境演化[J].现代地质,2002,16(4):423-428.
    [27]Raji, B A. and Alagbe, S A. Hydrochemical faces in part of the Nigerian Basement Complex[J]. Environmental Geology,1997,29(1-2):46-49.
    [28]Masaru, Y. and Yoshihiro, K. Sulfur isotope constrain on the provenance of salinity in a confined aquifer system of the southwestern Nobi Plain, cental Japan[J]. Journal of Hydrology,2006, (325):35-55.
    [29]曹玉清,胡宽路,和张永样.岩溶化学环境水文地质.吉林:吉林大学出版社,1994.
    [30]赵建.海(咸)水入侵与浅层地下水水化学特征及变化研究[J].地理科学,1996,(6):525-531.
    [31]马金珠,李相虎,和黄天明.石羊河流域水化学演化与地下水补给特征[J].吉林地质,2005,12(3):46-52.
    [32]Ellis, A J. and Mahon, W A.J. Geochemistry and Geothermal Systems. New York:Academic Press,1977,1-52.
    [33]Giggenbach, W F, Tedesco, D, Sulistiyo, Y, et al. Evaluation of results from the fourth and fifth IAVCEI field workshops on volcanic gases, Vulcano island, Italy and Java, Indonesia[J]. Journal of Volcanology and Geothermal Research,2001,108(1-4):157-172.
    [34]Giggenbach, W F. and Stewart, M K. Processes controlling the isotopic composition of steam and water discharges from steam vents and steam-heated pools in geothermal areas[J]. Geothermics,1982,11(2):71-80.
    [35]Giggenbach, W F., Sheppard, D S., Robinson, B W, et al. Geochemical Structure and Position of the Waiotapu Geothermal-Field, New-Zealand[J]. Geothermics,1994,23(5-6): 599-644.
    [36]Giggenbach, W F, Sano, Y, and Wakita. H. Isotopic composition of helium, and CO2 and CH4 contents in gases produced along the New Zealand part of a convergent plate boundary[J]. Geochimica et Cosmochimica Acta,1993,57(14):3427-3455.
    [37]Giggenbach, W F, Minissale, A A, and Scandiffio, G. Isotopic and chemical assessment of geothermal potential of the Colli Albani area, Latium region, Italy[J]. Applied Geochemistry, 1983,3(5):475-486.
    [38]Giggenbach, W F. and Matsuo, S. Evaluation of results from Second and Third IAVCEI Field Workshops on Volcanic Gases, Mt Usu, Japan, and White Island, New Zealand[J]. Applied Geochemistry,1991,6(2):125-141.
    [39]Giggenbach, W F, Gonfiantini, R, Jangi, B L, et al. Isotopic and chemical composition of parbati valley geothermal discharges, North-West Himalaya, India[J]. Geothermics, 1983,12(2-3):199-222.
    [40]Giggenbach, W F. and Glover, R B. Tectonic regime and major processes governing the chemistry of water and gas discharges from the rotorua geothermal field, New Zealand[J]. Geothermics,1992,21(1-2):121-140.
    [41]Giggenbach, W F, Garcia P, N, Londono C, A, et al. The chemistry of fumarolic vapor and thermal-spring discharges from the Nevado del Ruiz volcanic-magmatic-hydrothermal system, Colombia[J]. Journal of Volcanology and Geothermal Research,1990,42(1-2): 13-39.
    [42]Giggenbach, W F. Geothermal Solute Equilibria-Derivation of Na-K-Mg-Ca Geoindicators[J]. Geochimica et Cosmochimica Acta,1988,52(12):2749-2765.
    [43]Fournier, R O. and Potter Ii, R W. Magnesium correction to the Na-K-Ca chemical geothermometer[J]. Geochimica et Cosmochimica Acta,1979,43(9):1543-1550.
    [44]Fournier, R O. and Truesdell, A H. An empirical Na-K-Ca geothermometer for natural waters[J]. Geochimica et Cosmochimica Acta,1973,37(5):1255-1275.
    [45]Kamel, S. Application of selected geothermometers to Continental Intercalaire thermal water in southern Tunisia[J]. Geothermics,2012,41:63-73.
    [46]Mendrinos, D, Choropanitis, I, Polyzou, O, et al. Exploring for geothermal resources in Greece[J]. Geothermics,2010,39(1):124-137.
    [47]Mohammadi, Z, Bagheri, R, and Jahanshahi, R. Hydrogeochemistry and geothermometry of Changal thermal springs, Zagros region, Tran[J]. Geothermics,2010,39(3):242-249.
    [48]Pang Z H. Isotope and chemical geothermometry and its applications[J]. Science in China(Series E:Technological Sciences),2001, (SI):16-20.
    [49]Ahmad, M, Syafalni, Abustan, I, et al. Assessment of reservoir temperatures of thermal springs of the northern areas of Pakistan by chemical and isotope geothermometry[J]. Geothermics,2002,31(5):613-631.
    [50]Du, J G, Liu, C Q, Fu, B H, et al. Variations of geothermometry and chemical-isotopic compositions of hot spring fluids in the Rehai geothermal field, Southwestern China[J]. Journal of Volcanology and Geothermal Research,2005,142(3-4):243-261.
    [51]Gemici, U. and Tarcan, G. Hydrogeochemistry of the Simav geothermal field, western Anatolia, Turkey[J]. Journal of Volcanology and Geothermal Research,2002,116(3-4): 215-233.
    [52]Apollaro, C, Accornero, M, Marini, L, et al. The impact of dolomite and plagioclase weathering on the chemistry of shallow groundwaters circulating in a granodiorite-dominated catchment of the Sila Massif (Calabria, Southern Italy) [J]. Applied Geochemistry,2009,24(5):957-979.
    [53]Lucas, Y, Schmitt, A D, Chabaux, F, et al. Geochemical tracing and hydrogeochemical modelling of water-rock interactions during salinization of alluvial groundwater (Upper Rhine Valley, France) [J]. Applied Geochemistry,2010,25(11):1644-1663.
    [54]Apollaro, C, Marini, L, Critelli, T, et al. Investigation of rock-to-water release and fate of major, minor, and trace elements in the metabasalt-serpentinite shallow aquifer of Mt. Reventino (CZ, Italy) by reaction path modelling[J]. Applied Geochemistry,2011.26(9-10): 1722-1740.
    [55]Bernard, R, Taran, Y, Pennisi, M, et al. Chloride and Boron behavior in fluids of Los Humeros geothermal field (Mexico):A model based on the existence of deep acid brine[J]. Applied Geochemistry,2011,26(12):2064-2073.
    [56]Orlando, A, D. Borrini, and L. Marini. Dissolution and carbonation of a serpentinite: Inferences from acid attack and high P-T experiments performed in aqueous solutions at variable salinity[J]. Applied Geochemistry,2011,26(8):1569-1583.
    [57]Abid, K, Dulinski, M, Ammar, F H, et al. Deciphering interaction of regional aquifers in Southern Tunisia using hydrochemistry and isotopic tools[J]. Applied Geochemistry, 2012,27(1):44-55.
    [58]Carucci, V, Petitta, M, and Aravena, R. Interaction between shallow and deep aquifers in the Tivoli Plain (Central Italy) enhanced by groundwater extraction:A multi-isotope approach and geochemical modeling[J]. Applied Geochemistry,2012,27(1):266-280.
    [59]Dupalova, T, Sracek, O, Vencelides, Z, et al. The origin of thermal waters in the northeastern part of the Eger Rift, Czech Republic[J]. Applied Geochemistry,2012,27(3):689-702.
    [60]Gassama, N, Kasper, H U, Dia, A, et al. Discrimination between different water bodies from a multilayered aquifer (Kaluvelly watershed, India):Trace element signature[J]. Applied Geochemistry,2012,27(3):715-728.
    [61]He, J, An, Y, Zhang, F. Groundwater recharge environments and hydrogeochemical evolution in the Jiuquan Basin, Northwest China[J]. Applied Geochemistry,2012,27(4): 866-878.
    [62]Guo, Q. and Wang, Y. Impact of Geothermal Wastewater Drainage on Arsenic Species in Environmental Media:A Case Study at the Yangbajing Geothermal Field, Tibet, China[J]. Procedia Earth and Planetary Science,2013,7(0):317-320.
    [63]张慧,张新基,和何元庆,水文地质学中的环境同位素.河南:黄河水利出版社,2006.
    [64]Craig, H. Isotope Variations in Meteoric Water[J]. Science,1961,133:1702-1703.
    [65]Craig, H. The isotopic geochemistry of water and carbon in geothermal area, in:E.Tongirogi (Ed), Nuclear Geology on geothermal area, Spoleto,1963. Consiglio Nazionale Delle Ricerche Laboratorio Di Geologia Nucleare, Pisa.1963,17-53.
    [66]Davisson, M L. Isotope hydrology of southerm Nevada grondwater:stable isotopes and radiocarbon[J]. Water Resource Research,1999,35(1):279-294.
    [67]马致远,王心刚,和苏艳.陕西关中盆地中部地下热水H、O同位素交换及其影响因素[J].地质通报,2008,27(6):888-894.
    [68]Amold, J R. and Libby, W F. Age determinations by radio content:Checks with samples of known age[J], Science,1949,110(2868):678-680.
    [69]Munnich, K O.14C-gehaltes von hartem groundwater[J]. Nature Wisens Chaften,1957,44: 2853-2868.
    [70]Hogan, J F. and Blum, J D. Boron and lithium isotopes as groundwater tracers:a study at the Fresh Kills Landfill, Staten Island, New York, USA[J]. Applied Geochemistry,2003,18(4): 615-627.
    [71]Oi, T, Ikeda, K, Nakano, Met al. Boron isotope geochemistry of hot spring waters in Ibusuki and adjacent areas, Kagoshima, Japan[J]. Geochemical Journal,1996,30(5):273-287.
    [72]Torgersen, T, Lupton, J E, Sheppard, D S et al. Helium isotope variations in the thermal areas of New Zealand[J]. Journal of Volcanology and Geothermal Research,1982,12(3-4): 283-298.
    [73]Millot, R. and Ne'grel, P. Multi-isotopic tracing (δ7Li,δ1B,87Sr/86Sr) and chemical geothermometry:evidence from hydro-geothermal systems in France[J]. Chemical Geology, 2007,244(34):664-678.
    [74]Millot, R, Negrel, P, and Petelet-Giraud, E. Multi-isotopic (Li, B, Sr, Nd) approach for geothermal reservoir characterization in the Limagne Basin (Massif Central, France) [J]. Applied Geochemistry,2007,22(11):2307-2325.
    [75]Savov, I P. Boron isotopic variations in NW USA rhyolites:Yellowstone, Snake River Plain, Eastern Oregon[J]. Journal of Volcanology and Geothermal Research,2009,188(13): 162-172.
    [76]Dotsika, E, Poutoukis, D, Kloppmann, W, et al. The use of O, H, B, Sr and S isotopes for tracing the origin of dissolved boron in groundwater in Central Macedonia, Greece[J]. Applied Geochemistry,2010,25(11):1783-1796.
    [77]Zhao, K D. Fluid-rock interaction in the Qitianling granite and associated tin deposits, South China:Evidence from boron and oxygen isotopes[J]. Ore Geology Reviews,2011,43(1): 243-248.
    [78]Millot, R, Hegan, A, and Negrel, P Geothermal waters from the Taupo Volcanic Zone, New Zealand:Li, B and Sr isotopes characterization[J]. Applied Geochemistry,2012,27(3): 677-688.
    [79]Reyes, A G, and Trompetter, W J. Hydrothermal water-rock interaction and the redistribution of Li, B and Cl in the Taupo Volcanic Zone, New Zealand[J]. Chemical Geology,2012,314317(0):96-112.
    [80]Yang, S Y, and Jiang, S Y. Chemical and boron isotopic composition of tourmaline in the Xiangshan volcanic-intrusive complex, Southeast China:Evidence for boron mobilization and infiltration during magmatic-hydrothermal processes[J]. Chemical Geology,2012, 312313(0):177-189.
    [81]Karakus, H, and Simsek, S. Tracing deep thermal water circulation systems in the E-W trending Buyuk Menderes Graben, western Turkey[J]. Journal of Volcanology and Geothermal Research,2013,252(0):38-52.
    [82]Yilmaz Ipek, I, Kabay, N, and Yuksel, M. Modeling of fixed bed column studies for removal of boron from geothermal water by selective chelating ion exchange resins[J]. Desalination, 2013,310(0):151-157.
    [83]Giggenbach, W F, Minissale, A A, and Scandiffio, G. Isotopic and chemical assessment of geothermal potential of the Colli Albani area, Latium region, Italy[J]. Applied Geochemistry, 1988,3(5):475-486.
    [84]Mazor, E, and Fournier, R O. More on noble gases in Yellowstone National Park hot waters[J]. Geochimica et Cosmochimica Acta,1973,37(3):515-525.
    [85]Richet, P, Bottinga, Y, and Janoy, M. A review of hydrogen, carbon, nitrogen, oxygen, sulphur, and chlorine stable isotope enrichment among gaseous molecules[J]. Annual Review of Earth and Planetary Sciences,1977,5:65-110.
    [86]Arnorsson, S, and Gunnlaugsson, E. New gas geothermometers for geothermal exploration—calibration and application[J]. Geochimica et Cosmochimica Acta,1985,49(6): 1307-1325.
    [87]Arnorsson, S, Bjornsson, S, Muna, Z W, et al. The use of gas chemistry to evaluate boiling processes and initial steam fractions in geothermal reservoirs with an example from the olkaria field, Kenya[J]. Geothermics,1990,19(6):497-514.
    [88]W F, G. Soil gas and related methods for natural resource exploration:R.W. Klusman,1993. Wiley, Chichester[J]. Earth-Science Reviews,1994,36(3-4):270-271.
    [89]Mariner, R H, Evans, W C, Presser, T S, et al. Excess nitrogen in selected thermal and mineral springs of the Cascade Range in northern California, Oregon, and Washington: sedimentary or volcanic in origin? [J]. Journal of Volcanology and Geothermal Research, 2003,121(1-2):99-114.
    [90]Forrest, M J, Ledesma-Vazquez, J, Ussler Iii, et al. Gas geochemistry of a shallow submarine hydrothermal vent associated with the El Requeson fault zone, Bahia Concepcion, Baja California Sur, Mexico[J]. Chemical Geology,2005,224(13):82-95.
    [91]Joseph, E P, Fournier, N, Lindsay, J M, et al. Gas and water geochemistry of geothermal systems in Dominica, Lesser Antilles island arc[J]. Journal of Volcanology and Geothermal Research,2011,206(1-2):1-14.
    [92]Mutlu, H, Gulec, N, Hilton, D R, et al. Spatial variations in gas and stable isotope compositions of thermal fluids around Lake Van:Implications for crust-mantle dynamics in eastern Turkey[J]. Chemical Geology,2012,300301(0):165-176.
    [93]Rissmann, C, Christenson, B, Werner, C, et al. Surface heat flow and CO2 emissions within the Ohaaki hydrothermal field, Taupo Volcanic Zone, New Zealand[J]. Applied Geochemistry,2012,27(1):223-239.
    [94]Stadler, S, Sultenfuβ, J, Hollander, H M, et al. Isotopic and geochemical indicators for groundwater flow and multi-component mixing near disturbed salt anticlines[J]. Chemical Geology,2012,294295(0):226-242.
    [95]Italiano, F, Sasmaz, A, Yuce, G, et al. Thermal fluids along the East Anatolian Fault Zone (EAFZ):Geochemical features and relationships with the tectonic setting[J]. Chemical Geology,2013,339(0):103-114.
    [96]Zaher, M A, Saibi, H, Nishijima, J, et al. Exploration and assessment of the geothermal resources in the Hammam Faraun hot spring, Sinai Peninsula, Egypt[J]. Journal of Asian Earth Sciences,2012,45:256-267.
    [97]Xing, L, H, Guo, and Y, Zhan. Groundwater hydrochemical characteristics and processes along flow paths in the North China Plain[J]. Journal of Asian Earth Sciences,2013, 70 71(0):p.250-264.
    [98]Majumdar, N, A L. Mukherjee, and R K. Majumdar. Mixing hydrology and chemical equilibria in Bakreswar geothermal area, Eastern India[J]. Journal of Volcanology and Geothermal Research,2009,183(3-4):201-212.
    [99]Bakari, S S, Aagaard, P, Vogt, R D. et al. Strontium isotopes as tracers for quantifying mixing of groundwater in the alluvial plain of a coastal watershed, south-eastern Tanzania[J]. Journal of Geochemical Exploration,2013,130(0):1-14.
    [100]Lyons, W B, Tyler, S W, Gaudette, H E, et al. The use of strontium isotopes in determining groundwater mixing and brine fingering in a playa spring zone, Lake Tyrrell, Australia[J]. Journal of Hydrology,1995,167(14):225-239.
    [101]Werner, C, Hurwitz, S, Evans, W C, et al. Volatile emissions and gas geochemistry of Hot Spring Basin, Yellowstone National Park, USA[J]. Journal of Volcanology and Geothermal Research,2008,178(4):751-762.
    [102]陈墨香,旺集旸,和邓孝.中国地热资源-形成特点和潜力评估.北京:科学出版社,1994,176-187.
    [103]周长进和扬继湘.广东省丰顺县的地热资源及开发利用[J].自然资源学报,1992,7(2):152-160.
    [104]冯绚敏,王莉娅,和林伟.广东地下热水的某些物理化学特征及其映震的地球化学条件[J].地震,1993,(03):64-67.
    [105]叶闻文.广东三坑地热田形成条件及开发潜力分析[J].水文地质工程地质,2000,(03):16-18.
    [106]张珂,马浩明,和蔡剑波,华南沿海温泉成因探讨[J].中山大学学报(自然科学版),2002,(01):82-86.
    [107]邱剑华.河源地区地热资源特征及成因浅析[J].广东建材,2006,(9):158-160.
    [108]彭淑琼.恩平市温泉水部分重金属元素的检测[J].旅行医学科学,2006,12(4):28-30.
    [109]徐巧娟.广东潮安沙溪热矿水(地热)水文地质条件简介[J].西部探矿工程,2006,126(10):02-03.
    [110]周海燕,周训,柳春晖等.广东省从化温泉热矿水水化学与同位素特征[J].自然资源学报,2008,(04):705-712.
    [111]刘忠珍,许桂芝,欧俊等.广东地热水资源农用适宜性评价[J].自然资源学报,2011,(01):128-134.
    [112]梁池生.广东阳东新洲地热田地球化学特征[J].广东地质,1993,8(3):55-62.
    [113]陈培中.广东阳江新洲地热田热储分布规律及其特征[J].勘察科学技术,1990,(04):3-7.
    [114]王双.广东阳江新洲地热田地热资源特征及其开发利用建议[J].地下水,2013,(01):42-43+78.
    [115]秦鹏.广东省近40多年来极端温度和降水的变化规律分析[博士学位论文].南京:南京信息工程大学,2006.
    [116]林本海,杨树庄,朱伯善等.广东省地质构造与岩土工程基本特征[J].岩石力学与工程学报,2006,(S2):3337-3346.
    [117]曹建劲.广东沿海地区及海南岛中新生代基性岩脉地球化学与岩石圈演化[博士学位论文].北京:中国科学院研究生院(地球化学研究所),2006
    [118]黄耀丽,储茂东.广东地质构造特征及其与地貌发育的关系[J].云南地理环境研究,1995,(02):85-89.
    [119]张英.珠江三角洲地区地下水环境背景值研究[硕土学位论文].北京:中国地质科学院,2011.
    [120]袁玉松,马永生,胡圣标等.中国南方现今地热特征[J].地球物理学报,2006,(04):1118-1126.
    [121]胡圣标,何丽娟,和汪集肠.中国大陆地区大地热流数据汇编(第三版).地球物理学报,2001,(05):611-626.
    [122]汪集旸和黄少鹏.中国大陆地区大地热流数据汇编(第二版).地震地质,1990,(04):351-363+366.
    [123]马瑞.碳酸盐岩热储隐伏型中低温热水的成因与水—岩相互作用研究[博士学位论文].武汉:中国地质大学,2007.
    [124]沈立成.中国西南地区深部脱气(地质)作用与碳循环研究[博士学位论文].重庆:西南大学,2007
    [125]肖荣阁,大井隆夫,蔡克勤等.硼及硼同位素地球化学在地质研究中的应用[J].地学前缘,1999,(02).
    [126]张人权,梁杏,靳孟贵等.水文地质学基础[第四版].北京:地质出版社,2011,52-70.
    [127]廖示庭,吴甲添,和刘建雄.广东东莞盆地第四纪地质研究新进展[J].广东地质,2001,16(4):48-58.
    [128]徐彦泽.沧州市地下水的水文地球化学与稳定同位素[博士学位论文].北京:中国地质大学,2009.
    [129]赵慧.关中盆地地下热水地球化学及其开发利用的环境效应研究[博士学位论文].西安:长安大学,2009.
    [130]赵慈平,冉华,和陈坤华.由相对地热梯度推断的腾冲火山区现存岩浆囊[J].岩石学报,2006,(06):1517-1528.
    [131]赵慈平,冉华,和王云.腾冲火山区的现代幔源氦释放:构造和岩浆活动意义[J].岩石学报,2012,(04):1189-1204.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700