用户名: 密码: 验证码:
机械产品概念设计方案生成及评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
概念设计是产品设计过程的起点,也是产品创新的关键阶段,它已成为产品开发创新的核心环节,也是提高产品质量、降低成本和增强企业竞争力的主要手段。从概念设计的过程来看,机械产品概念设计主要包括概念设计方案生成和概念设计方案评价两个主要阶段。随着对概念设计研究的深入,出现了一大批有关这两个方面的解决技术和解决工具,但概念设计过程的智能化一直是制约其发展的瓶颈。近年来,计算智能等智能优化技术得以长足发展,为尝试解决高度智能化、非线性的概念设计的方案生成与评价等关键问题奠定了理论基础。
     本文在前人工作的基础上,从机械产品概念设计的一般过程出发,借助模糊逻辑、神经网络和遗传算法等计算智能技术及物理规划等智能优化技术对概念设计的方案生成,尤其是对不同条件下的概念设计方案评价方法进行了深入的研究,主要内容如下:
     (1)对机械产品概念设计方案生成技术进行了研究。针对简单遗传算法收敛速度慢且容易陷入局部收敛等问题,根据已有文献研究,提出了一种改进的自适应遗传算法。在机械产品功能分析及原理方案组合形态学矩阵的基础上,构建基于改进的自适应遗传算法和BP神经网络的概念设计方案生成的混合优化模型,用改进的自适应遗传算法进行设计空间内解的搜索,并用BP神经网络实现改进遗传算法中解群体的适应度评价,从而避免传统形态学综合过程的组合爆炸和知识表达求解过程困难的问题。
     (2)对评价指标可以量化时的概念设计方案评价和决策问题进行了研究和探讨。针对传统决策矩阵法中权值确定的主观性缺陷,采用Messac教授提出的线性物理规划多属性评价模型对评价指标可以量化时的概念设计方案进行评价和决策,在给定各设计目标满意程度区间的基础上,综合目标函数中使用的权值及各方案的总评价值由线性物理规划决策模型自动计算。
     (3)对评价指标无法量化时的的概念设计方案评价和决策问题进行了研究。针对概念设计过程信息的不完全、不确定及不精确等特点,提出了一种基于RAOGA的模糊神经网络模型对评价指标值无法量化时的概念设计方案进行评价和决策。模糊神经网络模型运用前馈神经网络构造网络结构,利用基于RAOGA的模糊神经网络训练算法来确定神经网络的连接权值和阈值。模糊神经网络评价模型根据模糊集理论对评价指标进行模糊化处理,然后按照一定的推理规则进行模糊决策。
     (4)对评价指标众多,而且评价指标间具有层次结构的概念设计方案评价和决策问题进行了研究。分析了基于线性物理规划的多属性评价模型和基于RAOGA的模糊神
Conceptual design is the beginning of product design process, and is also the key stage of product innovation, which has become the kernel step of product development and innovation. Conceptual design is the main measure to improve the quality and reduce the cost of products, and make the enterprise more competitive. According to the process of conceptual design, conceptual design of mechanical products mainly includes the following two phases: scheme generation and design candidate evaluation. With in-depth research on conceptual design, a number of tools and techniques have been proposed to address scheme generation and evaluation problems in conceptual design of mechanical products. But the intellectualization of conceptual design is always a bottleneck to restrict its development. In the recent years, intelligent optimization techniques have been developed rapidly, which attempt to set a theoretical basis to address the highly intelligentized and nonlinear scheme generation and evaluation problems of conceptual design.In this dissertation, based on the existing works, begin with the general process of conceptual design of mechanical products, scheme generation, especially design evaluation methods under different conditions are studied by using computational intelligence technique of fuzzy logic, neural network and genetic algorithm and intelligence optimization techniques of physical programming. The main research of this dissertation is as follows:(1) A scheme generation technique of conceptual design of mechanical products is studied. In view of the convergence speed of simple genetic algorithm is very low and the exploring process is easy to be trapped into local optimum, according to the known research, a modified adaptive genetic algorithm is proposed. On the basis of function analysis and morphological matrix of solution principles combination, a hybrid optimization model based on modified adaptive genetic algorithm and a BP neural network is constructed to perform the scheme generation of conceptual design process. An improved adaptive genetic algorithm is applied to explore schemes in the searching space of conceptual design, and a BP neural network is used to evaluate the fitness of the population in modified adaptive genetic algorithm. So the combination explosion and solving difficulty in knowledge representation of traditional morphological matrix can be avoided.(2) A design evaluation and decision-making problem when evaluation criteria can be quantified is investigated and discussed. To avoid the main drawback of typical decision
    matrix that the decision maker must specify physically meaningless weights, the linear physical programming (LPP) multi-attribute evaluation model proposed by professor Messac was used to design evaluation and decision making in conceptual design on the condition that the evaluation criteria can be quantified. Based on the specified interval of preference regions of every criterion, the weights used in aggregate objective function and the evaluation values of every design candidate can be calculated by LPP model automatically.(3) A design evaluation and decision-making method when evaluation criteria can't be quantified is studied. The information managed in conceptual design is incomplete, uncertain and imprecise. In most cases, design criteria are difficult to be quantified and are only described with fuzzy linguistic variables. Based on this consideration, a ranking based adaptive evolutionary operator genetic algorithm (RAOGA)-based fuzzy neural network (FNN) model is developed to evaluate design candidates in conceptual design under the condition that design criteria can't be quantified. In FNN model, a feedforward neural network is used to construct the network structure and a RAOGA-based learning algorithm is adopted to adjust fuzzy weights and thresholds with fuzzy inputs and outputs of FNN. Based on fuzzy set theory, evaluation criteria are fuzzified first, and then fuzzy decision-making is performed according to certain reasoning rules by FNN model.(4) A multi-level design evaluation and decision-making problem is studied when too many evaluation criteria and hierarchy of criteria exist. The disadvantages of multi-attribute evaluation model based on LPP and RAOGA-based FNN evaluation model are analyzed when the problems with many hierarchical criteria are evaluated. On the basis of the work of Vanegas and Labib, a multi-level conceptual design evaluation model based on NFWA and fuzzy compromise decision making method is constructed. In the multi-level evaluation model, the group AHP based on fuzzy Delphi method is used to identify the fuzzy number of weights of all the criteria, the NFWA and fuzzy compromise decision making method is applied to calculate the overall desirability of each design alternative level by level. The use of fuzzy Delphi analytical hierarchical process can guarantee expert knowledge is reflected to decision making process and make decision making process more practical. Fuzzy compromise decision making method can calculate relative approach degrees between design candidates and fuzzy ideal solution, which can improve the resolving power of the evaluation model validly.
引文
[1] 韩晓建,邓家裎.机械产品设计的过程建模.北京航空航天大学学报,2000,26(5):604-607.
    [2] Hsu W, Woon I M Y. Current research in the conceptual design of mechanical products. ComputerAided Design, 1998, 5(30): 377-389.
    [3] Paul G, Beitz W. Engineering Design. London: The Design Council, 1984.
    [4] Frence M J. Conceptual Design for Engineerings (2nd Edition). London: The Design Council, 1985.
    [5] 邹慧君,汪利等.机械产品概念设计及其方法综述.机械设计与研究,1998,14(2):9-12.
    [6] 邓家裎,韩晓建,曾硝等.产品概念设计——理论、方法与技术.北京:机械工业出版社,2002.
    [7] 张建明,魏小鹏,张德珍.产品概念设计的研究现状及其发展方向.计算机集成制造系统-CIMS,2003,9(8):613-620.
    [8] 关立文,黄洪钟,赵正佳等.机械产品概念设计:综述与展望.机械设计,2001,18(8):5-9.
    [9] 雷永刚,彭颖红,阮雪榆.机械产品概念设计:综述与分析.机械科学与技术,2000,19(1):18-21.
    [10] Andersson K, Markkonen P, Persson J G. A proposal to a product modeling language to support conceptual design. CIRP Annals, 1995, 44(1): 129-132.
    [11] Gausemeier J, Flath M, Mohringer S. Modelling of functions of mechatronics systems, exemplified by tyre pressurecontrol in automotive systems. International Journal of Vehicle design, 2002, 28(1): 5-17.
    [12] 唐林,童昕.自动化概念设计中机构功能的识别.机械设计,2000,17(12):39-42.
    [13] Lim S, Duffy A H B, Lee B S. Intelligent computational sketching support for conceptual design. 13th International Conference on Engineering design, Glasgow, UK, 2001: 453-460.
    [14] Kusiak A, Szczerbicki E. A formal approach to specifications in conceptual design. Journal of Mechanical Design, 1992, 114(12): 659-666.
    [15] Rudolph S. Visualization and comparison of solution paths with artificial metrics. Proceedings of 2000 ASME Design Engineering Technical Conferences, Baltimore, USA, 2000: 1051-1060.
    [16] 韩晓建,邓家褆.产品概念设计过程的知识表达,制造业自动化,1999,21(10):1-3.
    [17] Yoshioka M, Nakamura M, Tomiyama T, et al. A design process model with multiple design object models. Proceedings of ASME Design Theory and Methodology Conference, New York, USA, 1993: 7-14.
    [18] Martin J L, Roddis W M K. Integrating qualitative and quantitative reasoning in structural engineering. Proceedings of the 5th International Conference on Computing in Civil and Building Engineering, New York, USA, 1993: 1235-1242.
    [19] Tay F E H, Gu J X. Product modeling for conceptual design support. Computers in Industry, 2002, 48(2): 143-155.
    [20] Rao A P. BEAS: expert system for the preliminary design of bearings. Advances in Engineering Software, 1992, 14(2): 163-166.
    [21] Sycara K P, Navinchandra D. Retrieval strategies in a case-based design system. Artificial intelligence in engineering design (Vol. Ⅱ): models of innovative design, reasoning about physical systems, and reasoning about geometry, San Diego, USA, 1992: 145-163.
    [22] Zhang W Y, Tor S B, Britton G A. A prototype knowledge-based system for conceptual synthesis of the design process. The International Journal of Advanced Manufacturing Technology, 2001, 17(8): 549-557.
    [23] 毛权,肖人彬,周济.CBR中基于实例特征的相似实验检索模型研究.计算机研究与发展,1997,34(4):257-263.
    [24] Sen S, Kothari D P, McGown A, et al. Visible ideas: information patterns of conceptual sketch activity. Design Studies, 1998, 19(4): 431-454.
    [25] Kavakli M, Scrivener S A R, Ball L J. Structure of sketching behavior. Design Studies, 1998, 19(4): 485-518.
    [26] Verstijnen I M, van Leeuwen C, Goldschmidt G, et al. Sketching and creative discovery. Design Studies, 1998, 19(4): 519-546.
    [27] Redfieid R C, Krishnan S. Towards automated conceptual design of physical dynamic systems. Journal of Engineering Design, 1992, 3(3): 187-204.
    [28] Ermer G, Goodman E, Hawkins R, et al. Steps toward integrating function-based models and bondgraphs for conceptual design in engineering. Proceedings of Automated Modeling for Design, ASME, DSC-47, New Orleans, USA, 1993: 47-62.
    [29] 曹东兴,范顺成,刘力松等.功率键合图在机械产品概念设计中的应用.机械设计,2002,19(10):44-47.
    [30] 曹东兴,檀润华,耿磊等.基于功能方法树的机械产品概念设计.上海交通大学学报,2004,38(6):888-891.
    [31] 张建军,王晓慧,曹东兴等.一种专用药品封装机的概念设计.机械科学与技术,2000,19(增刊):173-175
    [32] Weber R G, Condoor S S. Conceptual design using a synergistically compatible morphological matrix. Frontiers in Education Conference, Tempe, USA, 1998: 171-176.
    [33] Al-Salka M A, Cartmell M P, Hardy S J. A framework for a generalized computer-based support environment for conceptual engineering design. Journal of Engineering Design, 1998, 9(1): 57-88.
    [34] Strawbridge Z, McAdams D A, Stone R B. A computational approach to conceptual design. Proceedings of ASME 2002 Design Engineering Technical Conference, Montreal, Canada, 2002: 1-11.
    [35] 张德珍.基于状态空间方法的机械运动方案设计的理论基础.计算机集成制造系统,2005,11(1):127-132.
    [36] 张德珍.基于状态空间方法的机械运动方案设计的综合求解及算法实现.计算机集成制造系统,2005,11(2):251-256.
    [37] 王德伦,张德珍,马雅丽等.机械运动方案设计的状态空间方法.机械工程学报,2003,39(3):21-27
    [38] Sun J, Kalenchuk D K, Xue D, et al. Design candidate identification using neural network-based fuzzy reasoning. Robotics and Computer Integrated Manufacturing, 2000, 16(5): 383-396.
    [39] Chen J L. Liau C. A simple life cycle assessment method for green product conceptual design. Proceedings of 2nd International Symposium on Environmentally Conscious Design and Inverse Manufacturing, Tokyo, Japan, 2001: 775-780.
    [40] Seo K K, Park J H, Jang D S, et al. Approximate estimation of the product life cycle cost using artificial neural networks in conceptual design. The Internationaal Journal of Advanced Manufacturing Technology, 2002, 19(6): 461-471.
    [41] 王小同,范立础.智能设计系统的IDS模型.模式识别与人工智能,1996,19(2):112-118.
    [42] Lees B, Hamza M, Irgens C. Case-based reasoning support for engineering design. Proceedings of SPIE Conference on Intelligent Systems in Design and Manufacturing (Vol. Ⅲ), Boston, USA, 2003: 394-402.
    [43] Fok S C, Yap W P. A case-based design system for the conceptual design of electrical connectors. The International Journal of Advanced Manufacturing Technology, 2002, 20(11): 787-798.
    [44] 孔凡国,邹慧君.方案设计两级实例推理过程模型及系统结构的研究.机械设计与研究,1999,15(2):17-20.
    [45] 宋慧君,林志航,王凯波.机械产品概念设计方案生成技术研究及软件系统开发.机械设计,2002,19(5):1-3.
    [46] 宋玉银,蔡复之,张伯鹏等.基于实例推理的产品概念设计系统.清华大学学报,1998,38(8):5-8.
    [47] Han Y, Lee K. Using sign algebra for qualitative spatial reasoning about the configuration of mechanisms. Computer-Aided design, 2002, 34(11): 835-848.
    [48] 赵克,李向宁,石莉.定性推理在产品概念设计中的应用研究.机械科学与技术,2002,21(6):1028-1030.
    [49] Tong C, Gomory A. A knowledge-based computer environment for the conceptual design of small electromechanical appliance. Computers, 1993, 26(1): 69-71.
    [50] 罗仕鉴,朱上上,孙守迁等.基于集成化知识的产品概念设计技术研究.计算机辅助设计与图形学学报,2004,16(3):261-266.
    [51] Koski J. Multicriteria optimization in structural design: State of art. Proceedings of the 19th Annual ASME Design Automation Conference, Albuquerque, USA, 1993: 621-6129.
    [52] Wu G, Zhu X X. Design of integrated refrigeration systems. Industrial & Engineering Chemistry Research, 2002, 41(3): 553-571.
    [53] Zhang W Y, Tor S B, Britton G A, et al. EFDEX: A knowledge-based expert system for functional design of engineering systems. Engineering with Computers, 2001, 17(4): 339-353.
    [54] 王玉新,朱殿华,李乃华.基于设计规则细化的机构方案生成方法,天津大学学报,2002,35(2):175-178.
    [55] Qian L, Gero J S. Function-behavior-structure paths and their role in analogy-based design. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 1996, 10(4): 289-312.
    [56] 陈建国,潘云鹤.基于空间搜索的创造性设计方法的研究.计算机辅助设计与图形学学报,2000,12(6):441-445.
    [57] 刘占伟,邓四二,滕弘飞.复杂工程系统设计方案评价方法综述.系统工程与电子技术,2003,25(12):1488-1491.
    [58] Vanegas L V, Labib A W. Fuzzy approaches to evaluation in engineering design. ASME Journal of Mechanical Design, 2005, 127(1): 24-33.
    [59] Antonsson E K, Otto K N. Imprecision in engineering design. Journal of Mechanical Design, 1995, 117(B): 25-32.
    [60] Hsiao S W. Fuzzy logic based decision model for product design. International Journal of Industrial Ergonomics, 1998, 21(2): 103-116.
    [61] Thurston D L, Carnahan J V. Fuzzy ratings and utility analysis in preliminary design evaluation of multiple attributes. Journal of Mechanical Design, 1992, 114(4): 648-658.
    [62] Carnahan J V Thurston D L, Liu T. fuzzing ratings for multiattribute design decision-making. ASME Journal of Mechanical Design, 1994, 116(2): 511-521.
    [63] Wang J. A fuzzy outranking method for conceptual design evaluation. International Journal of Production Research, 1997, 35(4): 995-1010.
    [64] Zhou M. Fuzzy logic and optimization models for implementing QFD. Computers and Industrial Engineering, 1998, 35(1): 237-240.
    [65] Vanegas L V, Labib A W. Application of new fuzzy-weighted average (NFWA) method to engineering design evaluation. International Journal of Production Research, 2001, 39(6): 1147-1162.
    [66] Liu H, Wu Z. Automated scheme adjustment for conceptual aircraft design and optimization. 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, USA, 2005: 10-13.
    [67] 汪利,邹慧君.机械运动方案的三级模糊综合评价.机械设计与研究,1998,14(1):9-11.
    [68] 成经平.机械系统概念设计的机构选型模糊综合评价.机械设计与研究,2001,17(4):15-17.
    [69] Saaty T L, Vargas L G. Decision Making in Economic, Political, Social, and Technological Environments with the Analytic Hierarchy Process. Pittsburgh: RWS Publications, 1994.
    [70] Chan F T S, Abhary K. Design and evaluation of automated cellular manufacturing systems with simulation modelling and AHP approach: a case study. Integrated Manufacturing Systems, 1996, 7(6): 39-52.
    [71] Ayag Z. An integrated approach to evaluating conceptual design alternatives in a new development environment. International Journal of Production Research, 2005, 43(4): 687-713.
    [72] Yeo S H, Mak M W, Balon S A P. Analysis of decision-making methodologies for desirability score of conceptual design. Journal of Engineering Design, 2004, 15(2): 195-208.
    [73] 李善仓,李宗斌.加工中心概念设计方案的综合评判法.机械设计与研究,2003,19(5):13-15.
    [74] Kawakami H, Katai O, Sawaragi T, et al. Knowledge acquisition method for conceptual design based on value engineering and axiomatic design theory. Artificial Intelligence in Engineering, 1996, 10(3): 187-202.
    [75] 邓琳,昝昕武,黄茂林等.基于需求——功能映射分析的概念设计.重庆大学学报,2002,25(12):4-6.
    [76] 邹慧君.机械系统概念设计.北京:机械工业出版社,2003.
    [77] 李善仓,李宗斌,唐凤鸣.钻铣镗类加工中心的概念设计与方案评估研究.计算机辅助设计与图形学学报,2003,15(4):480-487.
    [78] Zhang L, Subbarayan G. An evaluation of back-propagation neural networks for the optimal design of structureal systems: Part Ⅰ. Training procedures. Computer Mehods in Applied Mechanics and Engineering, 2002, 191 (25-26): 2873-2886.
    [79] Zhang L, Subbarayan G. An evaluation of back-propagation neural networks for the optimal design of structureal systems: Part Ⅱ. Numerical evaluation. Computer Mehods in Applied Mechanics and Engineering, 2002, 191 (25-26): 2887-2904.
    [80] Wang J. Ranking engineering design concepts using a fuzzy outranking preference model. Fuzzy Sets and Systems, 2001, 119(1): 161-170.
    [81] Thielman J, Ge P, Wu Q, et al. Evaluation and optimization of general atomics' GT-MHR reactor cavity cooling system using an axiomatic design approach. Nuclear Engineering and Design, 2005, 235(13): 1389-1402.
    [82] Hans G S. Proceedings of the Workshop Universal Design Theory. Aachen: Shaker Verlag, 1998.
    [83] 俞杰,耿卫东,潘云鹤.面向产品创新设计的CAD方法综述.计算机辅助设计与图形学学报,1999,11(2):186-188.
    [84] Sushkov V V, Mars N J I, Wognum P M. Introduction to TIPS: a theory for creative design. Artificial Intelligence in Engineering, 1995, 9(3): 177-189.
    [85] 孙守迁,包恩伟,陈蘅等.计算机辅助概念设计研究现状和发展趋势.中国机械丁程,1999,10(6):697-701.
    [86] 中国机械设计大典编委会.中国机械设计大典(第1卷),现代机械设计方法.南昌:江西科学技术出版社,2002.
    [87] 关立文.基于计算智能的产品概念设计研究[博士后出站报告].大连:大连理工大学,2001.
    [88] 罗海玉.基于功能分析的概念设计.机械研究与应用,2002,15(4):65-67.
    [89] Suh N P. The Principles of Design. London: Oxford University Press, 1990.
    [90] 宋慧军,林志航.公理化设计支持的概念设计产品模型.计算机辅助设计与图形学学报,2002,14(7):632-636.
    [91] Richard B C, Nicholas J A, Robert F J. Production and Operations Management: Manufacturing and Services(8cn Edition,).北京:机械工业出版社,1998.
    [92] (美)史蒂文森,张群译.生产与运作管理.北京:机械工业出版社,2000.
    [93] Lee N, Aguayo I H. A new model of the conceptual design process using QFD/FA/TRIZ. TRIZ Journal, July, 1998, http://www.triz-journal.com.
    [94] 林志航,车阿大.质量功能配置研究现状及进展兼谈对我国QFD研究与应用的看法.机械科学与技术,1998,17(1):119-121.
    [95] Stratton R, Mann D. Systematic innovation and the underlying principles behind TRIZ and TOC. Journal of Materials Processing Technology, 2003, 139(1): 120-126.
    [96] 檀润华.创新设计——TRIZ:发明问题解决理论.北京:机械工业出版社,2002.
    [97] 黄洪钟,余其兵,薛立华.基于BP神经网络的TRIZ理论冲突矩阵.四川大学学报(工程科学版),2005,37(3)127-132.
    [98] 黄洪钟.模糊设计.北京:机械工业出版社,1999.
    [99] 焦李成.神经网络系统理论.西安:两安电子科技大学出版社,1990.
    [100] 谢庆生,尹健,罗延科.机械工程中的神经网络方法.北京:机械工业出版社,2003.
    [101] Holland J H. Adaptation in Natural and Artificial System. Ann Arbor: University of Michigan Press, 1975.
    [102] Adeli H, Cheng N T. Integrated genetic algorithm for optimization of space structures. Journal of Aerospace Engineering, 1993, 6(4): 315-328.
    [103] Mathews J, Fafiq M Y. Adaptive search for decision support in the preliminary design of structural systems. Adaptive Computing in Engineering Design and Control-'94 Proceedings of the Second International Conference, Plymouth, UK, 1994: 287-290.
    [104] Ng T T H, Leng G S B. Application of genetic algorithms to conceptual design of a micro-air vehicle. Engineering Applications of Artificial Intelligence, 2002, 15(5): 439-445.
    [105] Kundu S A multicriteria genetic algorithm to solve optimization problems in structural engineering design. Information Processing in Civil and Structural Engineering Design, Glasgow, UK, 1996: 225-233.
    [106] Park K W, Grierson D E. Pareto-optimal conceptual design of the structural layout of buildings using a multicriteria genetic algorithm. Computer-Aided Civil and Infrastructure Engineering, 1999, 14(3): 163-170.
    [107] 陆金桂,李谦,王浩等.遗传算法原理及其工程应用.北京:中国矿业大学出版社,1997.
    [108] Raid A M. A process-oriented system design methodology with genetic algorithm search and simulation-based evaluation [Doctoral dissertation]. Detroit: Wayne State University, 2000.
    [109] Michalewicz Z. Genetic algorithms + data structure = evolution programs (2nd extended edition). Berlin: Springer-Verlag, 1994.
    [110] 黄洪钟,赵正佳,姚新胜等.遗传算法的原理、实现及其在机械工程中的应用研究与展望.机械设计,2000,17(3):1-6.
    [111] Senthil K A, Subramaniam V, Scow K C. Conceptual design of fixtures using genetic algorithms. International Journal of Advanced Manufacturing Technology, 1999, 15(2): 79-84.
    [112] Miles J C, Sisk G M, Moore C J. The conceptual design of commercial buildings using a genetic algorithm. Computers and Structures, 2001, 79(17): 1583-1592.
    [113] 黄洪钟,赵正佳,关立文等.基于遗传算法的方案智能优化设计.计算机辅助设计与图形学学报,2002,14(5):437-441.
    [114] Srinivas M, Patnaik L M., Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Transactions on Systems and Cybernetics, 1994, 24(4): 656-667.
    [115] Wu Q H, Cao Y J, Wen J Y. Optimal reactive power dispatch using an adaptive genetic algorithm. Electronic Power and Energy Systems, 1998, 20(8): 563-569.
    [116] 徐璐,涂承宇.一种新的改进遗传算法及其性能分析.电子学报,2001,29(7):902-904.
    [117] 张立明.人工神经网络的模型及其应用.上海:复旦大学出版社,1993.
    [118] 王福轩.基于顺序过程模型的机床夹具设计[硕士论文].天津:河北工业大学,2000.
    [119] 徐鸿本.机床夹具设计手册.沈阳:辽宁科学技术出版社,2004.
    [120] 严大力,郑严霞.起重机械.郑州:郑州大学出版社,2003.
    [121] 《起重机设计手册》编写组.起重机设计手册.北京:机械工业出版社,1980.
    [122] 韩立岩,汪培庄.应用模糊数学.北京:首都经济贸易大学出版社,1998.
    [123] Mullur A A, Mattson C A, Messac A. Pitfalls of the typical construction of decision matrices for concept selection. The 41st Aerospace Sciences Meeting and Exhibit, Reno, USA, 2003: 1-12.
    [124] 刘新宪,朱道立.选择与判断——AHP(层次分析法)决策.上海:上海科学普及出版社,1990
    [125] Weck M, Klocke F, Schell H, et al. Evaluating alternative production cycles using the extended fuzzy AHP method. European Journal of Operational Research, 1997, 100(2): 351-366.
    [126] Leung L C, Cao D. On consistency and ranking of alternatives in fuzzy AHP. European Journal of Operational Research, 2000, 124(1): 102-113.
    [127] Sun J G, Ge P Q, Liu Z C. Two-grade fuzzy synthetic decision-making system with use of an analytic hierarchy process for performance evaluation of grinding fluids. Tribology International, 2001, 34(10): 683-688.
    [128] Kuo R J, Chi S C, Kao S S. A decision support system for selecting convenience store location through integration of fuzzy AHP and artificial neural network. Computers in Industry, 2002, 47(2): 199-214.
    [129] 梁杰,侯志伟.主观指标评价的模糊神经网络法.沈阳工业大学学报,2000,22(3):257-260.
    [130] Messac A. Physical programming: effective optimization for computational design. AIAA Journal, 1996, 34(1): 149-158.
    [131] 黄洪钟,田志刚,关立文.基于神经网络的交互式物理规划及在机械设计中的应用研究.机械工程学报,2002,38(4):51-57.
    [132] Tappeta R V, Renaud J E, Messac A, et al. Interactive physical programming: tradeoff analysis and decision making in multicriteria optimization. AIAA Journal, 2000, 38(5): 917-926.
    [133] 田志刚.智能多目标优化理论及工程应用研究[硕士论文].大连:大连理工大学,2000.
    [134] Chen W, Sahai A, Messac A, et al. Exploration of the effectiveness of physical programming in robust design. Journal of Mechanical Design, 2000, 122(2): 155-163.
    [135] Messac A, Sundararaj G J. Physical programming's ability to generate a well-distributed set of Pareto points. The 41st AIAA/ASME/ASCE/AHS/ASC Structures, Structural dynamics and Materials Conference and Exhibit, Atlanta, USA, 2000: 1742-1754.
    [136] Messac A, Gupta S, Akbulut B. Linear physical programming: A new approach to multiple objective optimization. Transactions on Operational Research, 1996, 8(10): 39-59.
    [137] Mullur A A, Mattson C A, Messac A. New decision matrix based approach to concept selection using linear physical programming. The 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Norfolk, USA, 2003: 1-11.
    [138] 黄纯颖,高志,于晓红等.机械创新设计.北京:高等教育出版社,2000.
    [139] 阎书文.机械式挖掘机设计(修订本).北京:机械工业出版社,1991.
    [140] 王士同.模糊系统、模糊神经网络及应用程序设计.上海:上海科学技术文献出版社,1998.
    [141] Aliev R A, Fazlollahi B, Vahidov R M. Genetic algorithm-based learning of fuzzy neural networks. Part 1: Feed-forward fuzzy neural networks. Fuzzy Sets and System, 2001, 118(2): 351-358.
    [142] Kuo R J, Xue K C. An intelligent sales forecasting system through integration of artificial neural network and fuzzy neural network. Computers in Industry, 1998, 37(1): 1-15.
    [143] Ishibuchi H, Kwon K, Tanaka H. A learning algorithm of fuzzy neural networks with triangular fuzzy weights. Fuzzy Sets and Systems, 1995, 71 (3): 277-293.
    [144] 宋爱国,陆佶人.一种基于排序操作的进化算子自适应遗传算法.电子学报,1999,27(1):85-88.
    [145] Roychowdhury S, Pedrycz W. A survey of defuzzification strategies. International Journal of Intelligent System, 2001, 16(6): 679-695.
    [146] 王凡.模糊数学与工程应用.哈尔滨:哈尔滨船舶工程学院出版社,1988.
    [147] Xue D, Dong Z. Coding and clustering of design and manufacturing features for concurrent design. Computers in Industry, 1997, 34(1): 139-153.
    [148] Klir G J. Fuzzy Sets: An Overview of Fundamentals, Applications and Personal Views. Beijing: Beijing Normal University Press, 2000.
    [149] Hsu T H. The fuzzy Delphi analytic hierarchy process. Journal of the Chinese Fuzzy Systems Association, 1998, 4(1): 59-72.
    [150] 吴宪斌.新型道路交通工程设施设置决策之讨论[硕士论文].台南:国立成功大学,2003.
    [151] Masud A S M, Dean E B. Using fuzzy sets in quality function deployment. Proceedings of the 2nd Industrial Engineering Research Conference, Los Angeles, USA, 1993: 270-274.
    [152] 吴国华,潘德惠.一种消费者品牌偏好的模糊排序方法.系统工程理论与实践,2004,24(9):28-32.
    [153] Wang J. A fuzzy outranking method for conceptual design evaluation. International Journal of Production Research, 1997, 35(4): 995-1010.
    [154] 李荣钧.模糊多准则决策理论与应用.北京:科学出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700