用户名: 密码: 验证码:
稠油油藏CO_2泡沫蒸汽驱提高采收率技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蒸汽驱技术是稠油开采中的一项主体技术,但由于驱替中蒸汽窜流和重力超覆的影响,降低了蒸汽波及效率。CO_2泡沫蒸汽驱技术可以减缓蒸汽突破,具有调剖和驱油双重作用,具有很大的发展潜力。
     论文针对扶余油田东部存在的问题,利用物理模拟和数值模拟技术,进行了CO_2泡沫蒸汽驱提高采收率技术研究。研究了CO_2泡沫蒸汽驱对油藏的适应性;对起泡剂和泡沫性能进行了系统评价,优化气液比和泡沫剂浓度;进行了CO_2泡沫提高采收率实验,深化采油机理。对先导试验区进行油藏工程优化设计,最后进行了效果预测,为该技术下一步进入现场试验奠定了基础。论文的主要创新性研究成果为:
     1.系统的对耐高温起泡剂和泡沫的性能进行了评价,对注入参数的确定提供了一定依据。
     2.在实验方法上有所创新,研究了CO_2泡沫提高平面波及系数的能力,实验结果表明:CO_2泡沫对次生水体和高水相相对渗透率有调剖效果,可以抑制指进,提高平面波及系数。
     3.根据扶余油田东部具有较丰富CO_2气源、油藏非均质性强、水驱后注蒸汽易突破见水及剩余油分布特征,提出采用CO_2泡沫蒸汽驱方式减缓蒸汽突破,提高油田采收率。首次将CO_2泡沫蒸汽驱应用于先导试验区。以物理模拟为辅,数值模拟为主,优选了合理的注采参数、注入参数、井网井距,为技术进入现场奠定了扎实的理论基础。
     本文的研究成果对于现场应用具有借鉴和指导作用,为我国处于蒸汽驱的油藏提供了一种有效的开发技术。
Steam drive is an agent technique in viscous oil recovery. Due to steam flooding and gravity override, the sweep efficiency of steam was decreased. Carbon dioxide foam steam drive can slowdown steam breakthrough, perform both profile modification and oil displacement, posses great potentialities.
     According to the problem of the development in the east of fuyu oilfield, physical modeling and numerical simulation technique were applied to the research on enhancing oil recovery of carbon dioxide foam steam drive. This work studied the adaptability of this technique to reservoir conditions, evaluated systemically the property of foam agent and carbon dioxide foam, and optimized gas-liquid ratio and foam agent concentration. Based on enhancing oil recovery experiment of carbon dioxide foam, the recovery mechanism was furthered. The reservoir engineering design of the pilot test region was optimized. All of the results above laid a foundation to the pilot test in the field. The main achievements of this innovative research are as follows:
     (1) Did a systemic research on the property of the foam agent and carbon dioxide foam, provided some basis to the injection parameters.
     (2) Through the new method, we studied the capability of improving the horizontal sweep efficiency, the experimental results showed: carbon dioxide foam had profile control effect on secondary water and high water-phase relative permeability formation, restrained fingering.
     (3) According to the characteristics of the east reservoir of fuyu oilfield, Carbon dioxide foam steam drive was first used to the pilot test region. Injection mode, injection parameters, well pattern and well spacing optimized in this paper laid a theory foundation to the field implement.
     The research result of this paper has reference and guidance function to field application, provides an effective developing technology for steam driving reservoir.
引文
[1]张锐.稠油热采技术.北京:石油工业出版社,1999.4:23:16~26
    [2]刘文章.稠油注蒸汽热采工程.北京:石油工业出版社,1997.7:23
    [3] Friedmann, F.et al. Steam Foam Mechanistic Field Trial in the Midway-Sunset Field. SPE 21780
    [4] Mohammadi, S.S. and McCollum, T.J. Steam - Foam Pilot Project in Guadalupe Field,California. SPERE,pp.17~23,Feb.1989.
    [5]程杰成,雷友忠,朱维耀.大庆长垣外围特低渗透扶余油层CO2驱油试验研究.天然气地球科学,2008,19(3):402~409
    [6] Fried, A.N. The Foam-Drive Process for Increasing the Recovery of Oil. Usbm5866,1961
    [7] Hirasaki,G J. .The Steam-Foam Process. JPT,pp.449~456,May 1989
    [8] Sander, P.R., Clark, G, J., and Lau, E.C. Steam-Foam Diversion Process Developed Overcome Steam Override in Athabasca. SPE22630
    [9] Djabbarah, N.F. et al. Laboratory Design and Field Demonstration of Steam Diversion with foam. SPE 20067
    [10] A.W.Fisher,R.W.S Fouiser and S.G.Goodyear etc. Mathermatical Modeling of Foam Flooding. SPE 20915
    [11] H.J.Bertin,O.G.Apaydin,A.r.Kovscek. Foam Flow in Heterogeneous Porous Media. Effect of Crossflow. SPE 39678
    [12] Alexander V.Alexandrov,Peter k.Currie,Quoc P.Nguyen etc. Modeling of Foam Flow in Porous Media Based on Multivariate Statistics. SPE 59288
    [13] Fiedmann.F. and Jensen.J.A.. Some Parameters Influencing the Formation and Propagation of Foams in Pourous Media. SPE 15087
    [14] Isaacs.E.E.,McCarthy,F.C.,Maunder.J.D..Investigation of Foam Ssability in Porous Media at Elevated Temperatures. SPE15647
    [15] Wang, G.C. A Laboratory Study of CO2 Foam Properties and Displacement Mechanism. SPE12645
    [16] Borchardt, J.K. Bright, D.B., Dickson, M.K.,Wellington, S.L.. Surfactants for CO2 FoamFlooding.SPE14394
    [17] Q.P. Nguyen,Peter K. Currie,Pacelli L.J. Zitha. Effect of Crossflow on Foam-Induced Diversion in Layered Formations. SPE Journal,2005,3:54~65
    [18] Q.P.Nguyen,P.L.J.Zitah,P.k.Currie. CT Study of Liquid Diversion With Foam. SPE 93949
    [19] E.M.Ozbayoglu,S.Akin, T. Eren. Foam Characterization Using Image Processing Technigues. SPE 93860
    [20] Y.Liu, R.B. Grigg and R.k.Svec. Co2 Foam Behavior. Influence of Temperature, Pressure, and Concentration of Surfactant. SPE94307
    [21] Y. Liu, R.B. Grigg and B.Bai. Salinity ,PH, and Surfactant Concentration Effects on CO2-Foam. SPE93095
    [22]刘文章,赵郭平.吉林扶余油田注热水氮气起泡剂提高采收率研究.中国石油天然气总公司石油勘探开发科学研究院,1994
    [23]绳德强.蒸汽/泡沫提高稠油采收率技术的试验研究.钻采工艺,1996,19(4):29~33
    [24]谢尚贤,颜五和,韩培慧.泡沫对二氧化碳驱的流度控制.油田化学,1990,7(3):289~294
    [25]郭东红,辛浩川,崔晓东等.稠油热采高温防窜剂的性能研究.精细石油化工进展,2006,7(10):1~3
    [26]曹嫣嫔,刘冬青,唐培忠等.泡沫体系改善草20区块多轮次吞吐热采开发效果技术研究.石油钻探技术,2006,34(2):65~68
    [27]曹正权,马辉,姜娜等.氮气泡沫调剖技术在孤岛油田热采井中的应用.油气地质与采收率,2006,13(5):75~77
    [28]袁土义,刘尚奇,张义堂等.热水添加氮气泡沫驱提高稠油采收率研究.石油学报,2004,25(1):57~61
    [29] Hong K C, Ault J W. Effect of noncomdensable gas injection on oil recovery by steam floodin. JPT, 1984, 36(13): 2160~2170
    [30]程林松,肖双爱.稠油油藏蒸汽-泡沫驱油数值模拟方法.计算物理,2003,20(5):463~466
    [31] Reid B. Grigg, Jyun-Syung Tsau, and F. David Martin. Cost Reduction and Injectivity Improvements for CO2 Foams for Mobility Control. SPE75178
    [32] Chou, S.I. Vasicek, S.L. Pisio, D.L. Jasek, D.E. and Goodgame, J.A. CO2 Foam Field Trial at North Ward-Estes. SPE24643
    [33]田仲强,李淑兰,王志敏,等.注蒸汽加气体开采稠油技术室内研究与现场试验应用.油田化学,2002,19(1):47~50.
    [34] Chung T H, Jones R A. Measurements and Correlations of the Physical Properties of CO2-Heavy Crude Oil Mixtures. SPE 15080
    [35] David H.-S. Disposal of Carbon Dioxide, a Greenhouse Gas, for Pressure Maintenance in a Steam- Based Thermal Process for Recovery of Heavy Oil and Bitumen. SPE 86958
    [36] David Agiddi and Brent Davenport, Helver Hernandez and Rusty Lockman. New Fluid Technology Improves Well Productivity in the Western 31S Stevens Oil Zone in the Elk Hills Field. SPE 86994
    [37]郭万奎,廖广志,邵振波,等.注气提高采收率技术.北京:石油工业出版社,2003:110
    [38] PATIST A, AXELBERD T, SHAH D O. Effect of long chain alcohols on micellar relaxation time and foaming properties of sodium dodecylsulfate solutions[J]. J colloid Interface Sci, 1998,208(1): 259~265
    [39]吕广忠,张建乔.稠油热采氮气泡沫调剖研究与应用.钻采工艺,2006,29(4):88~90
    [40]王其伟,宋新旺,周国华,等.聚合物驱后泡沫驱提高采收率技术试验研究.江汉石油学院学报,2004,26(1):105~107
    [41]李治龙,钱武鼎.我国油田泡沫流体应用综述.石油钻采工艺,1993,15(6):88~94
    [42]广敏,李家龙,何纶.欠平衡泡沫流体钻井工艺技术.天然气工业,2001,21(1): 72~74
    [43]李松岩,李兆敏,孙茂盛,等.水平井泡沫流体冲砂洗井技术研究.天然气工业,2007,27(6):71~74
    [44]赵正龙,李建国,杨朝辉,等.CO2泡沫压裂工艺技术在中原油田的实践.钻采工艺,2006,29(2):54~56
    [45] Bautista,L.S. and Waninger, E.A. The Effects of Steam Foam Injection in a Steamflood Experiencing Downdip Steam Migration. SPE 25783.
    [46] Friedmann, F.et al. Steam Foam Mechanistic Field Trial in the Midway-Sunset Field. SPE 21780
    [47] Mohammadi, S.S. and McCollum, T.J. Steam - Foam Pilot Project in Guadalupe Field,California. SPERE,pp.17-23,Feb.1989.
    [48] Djabbarah, N.F. et al. Laboratory Design and Field Demonstration of Steam Diversion with foam. SPE 20067
    [49]沈崇棠,刘鹤年.非牛顿流体力学及其应用.北京:高等教育出版社,1989:25~35
    [50]郭万奎,廖广志,邵振波,等.注气提高采收率技术.北京:石油工业出版社,2003:124~128
    [51] Tanzil D,Hirasaki G J,Miller C A.Conditions for Foam Generation in Homogeneous Porous Media. SPE 75176
    [52] Q Li,Rossen W R.Injection Strategies for Foam Generation in Homogeneous and Layered Porous Media.SPE 96116
    [53] Chen M ,Yortsos Y C,Rossen W R.A Pore-Network Study of the Mechanisms of Foam Generation SPE 90939
    [54]郭尚平.孔隙介质中油一气一水一发泡剂一泡沫渗流微观机理.北京:中国大百科全书出版社,1997:35~43
    [55]王志伟,张毅,魏淋生.孔隙介质中泡沫形成机理研究进展.石油地质与工程,2008,22(3):8~11
    [56]廖广志,李立众,孔繁华,等.常规泡沫驱油技术.北京:石油工业出版社,1999:14~16
    [57]郭万奎,廖广志,邵振波,等.注气提高采收率技术.北京:石油工业出版社,2003:106~107
    [58]赵晓东.泡沫稳定性综述.钻井液与完井液.1992,9(1):7~14
    [59] M.Evren Ozbayoglu, Ergun Kuru, Stefan Miska, et al. A Comparative Study of Hydraulic Models for Foam Drilling. SPE 65489
    [60] Raterman K T. An Investigation of Oil Destabilization of Nitrogen Foams in Porous Media. SPE19692
    [61] Hanssen J E, Dalland M. Foams for Effective Gas Blockage in the Presence of Crude Oil. SPE 20193
    [62]樊西惊.原油对泡沫稳定性的影响.油田化学,1997,14(4):384~388
    [63]沈德煌,张义堂,张霞,等.稠油油藏蒸汽吞吐后转注CO2吞吐开采研究.石油学报,2005,26(1):83~86
    [64] Mahesh Shrichand Picha. Enhanced Oil Recovery by Hot CO2 Flooding. SPE 105425
    [65] Secaeddin Sahin, Ulker Kalfa, and Demet Celebioglu. Bati Raman Field Immiscible CO2 Application: Status Quo and Future Plans. SPE 106575
    [66] Heron Gachuz Muro, Luis O. Alcazar Cancino and Jose A. Quebrache-A Natural CO2Reservoir: A New Source for EOR Project in Mexico. SPE 107445
    [67]叶仲斌,罗平亚等.用微泡沫/聚合特驱油体系大幅度提高近海油田采收率.我国近海油气勘探开发高技术发展研讨会文集:164~171
    [68]姚凯,王志刚,郭洪全.蒸汽泡沫调剖技术在稠油开采中的试验研究及其应用.特种油气藏,1996,3(3):44~48
    [69] Shin - Hsien Chang, Martin F.D. and Grigg R.B..Effect of Pressure on CO2 Foam Displacements: A Micromodel Visualizaton Study. SPE 27784
    [70] Mohammadi, S.S. et al. Test of Steam-Foam Process for Mobility Control in S.Casper Creek Reservoir. Paper No.CIM and AOSTRA 91-77 ,presented at Petroleum Society of CIM and AOSTRA Meeting ,1991
    [71] Gauglitz,P.A.et al. Field Optimization of Steam-Foam for profile CONTROL: Midway-sunset 26C. presented at the 2nd International Symposium on Thermal Operations, Bakersfield, CA, February 8-10, 1993.
    [72]张小波.蒸汽–二氧化碳–助剂吞吐开采技术.研究石油学报,2006,27(2): 80~83
    [73]李兆敏,孙茂盛,林日亿,等.泡沫封堵及选择性分流实验研究.石油学报,2007,28(4):115~118
    [74] Alvarez J M, Rivas H J, Rossen M R. Unified model for steady state foam behavior at high and low foam qualities. SPE56825
    [75] Hamed Panahi. Improving the Recovery Factor of Heavy Crude Reservoirs by Co-injecting CO2 and Other Convertional Gaseous Injecting Materials at Immiscibility Condition with Foam. SPE92011.
    [76]钱昱,张思富,吴军政等.泡沫复合驱稳定性及影响因素研究.大庆石油地质与开发,2001,20(2):33~35
    [77]刁素,蒲万芬,黄禹忠等.新型耐温抗高盐驱油泡沫体系的确定.西南石油大学学报,2007,29(3):91~93
    [78]赵国玺,朱步瑶.表面活性剂作用原理.北京:中国轻工业出版社,2003
    [79]张锐,王瑞和,邱正松等.利用光散射原理评价泡沫钻井液的稳定性.石油学报,2005,26(1):105~108
    [80]燕永利,张宁生,屈撑囤等.胶质液体泡沫(CLA)的形成及其稳定性研究.化学学报,2006,64(1):54~60
    [81]吕广忠,刘显太,尤启东等.氮气泡沫热水驱油室内实验研究.石油大学学报(自然科学版),2003,27(5):51~53
    [82] Konopnicki,D.T.; Traverse, E.F.; Brown, A.; Deibert, A.D. Design and Evaluation of the Shiells Canyon Field Steam-Distillation Drive Pilot Project. SPE7086
    [83]陈月明.注蒸汽热力采油.山东东营:石油大学出版社.2002:210~216
    [84] Friedmann, Francois. Chen, W.H.;Gauglitz, P.A.. Experimental and Simulation Study of High-Temperature Foam Displacement in Porous Media. SPE17357
    [85] Ettinger, R.A. Radke, C.J.. Influence of Texture on Steady Foam Flow in Berea Sandstone. SPE19688
    [86] Kovacek, Anthony R. Patzek, Tadeusz W. Radke, Clayton J.. Mechanistic Foam Flow Simulation in Heterogeneous and Multidimensional Porous Media. SPE39102
    [87] FISHER A W and FOULSER R W S and GOODYEAR,S.C.. Mathematical Modeling of Foam Flooding. SPE20195
    [88] Chang,S-H,Grigg,Reid B..Foam Displacement Modeling in CO2 Flooding Processes. SPE 35401
    [89] Rossen, W.R. Zeilinger, S.C. Shi, Jianxin;Lim, M.T.. Mechanistic Simulation of Foam Processes in Porous Media. SPE28940
    [90] Shi, J.-X. Rossen, W.R.. Simulation and Dimensional Analysis of Foam Processes in Porous Media. SPE35166
    [91]沈德煌.浅层稠油油藏蒸汽驱注尿素调驱机理及技术研究.[博士学位论文],中国石油勘探开发研究院,北京:2005
    [92]陈民峰,郎兆新,姜汉桥.热力—表面活性剂复合驱油研究.西安石油大学学报(自然科学版),2005,20(2):46~51
    [93]程浩,张文亮,贺艳梅.泡沫驱数值模拟进展.断块油气田,2000,7(5):26~30
    [94]张烈辉,胡勇,涂中,等.泡沫驱经验模型及其应用.西南石油学院学报,2000,22(3):50~52
    [95]吕广忠,张建乔,孙业恒.氮气泡沫热力驱数值模拟研究.水动力学研究与进展,2005,20(4):531~537
    [96]王玉斗,商永涛.高温泡沫驱油技术的数学模型及应用.水动力学研究与进展,2008,23(4):379~384
    [97]李平科,张侠,岳清山.蒸汽驱中主要工艺参数对开发效果的影响.特种油气藏,1996, 3(2):13~17
    [98]蒋明煊.确定渗透率变异系数方法的分析和讨论.江汉石油学院,1996,18(6):89~90
    [99]李子甲,宋杰,钱杰.渗透率变异系数不同计算方法的对比分析.新疆石油地质,2007,28(5):612~614
    [100]马德胜,吴淑红,蒋有为,等.扶余油田东区热采二次开发评价.北京海泰石油新技术开发中心,2008,7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700