用户名: 密码: 验证码:
强碱三元复合驱成垢及化学控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大庆油田经过多年室内研究及矿场试验,证明强碱三元复合驱在大庆一、二类油层增油控水效果明显,与水驱相比可提高采收率20%以上。但在生产过程中暴露出举升工艺结垢严重的问题,造成机采井卡泵,检泵周期缩短(最短13d),是三元复合驱油大面积推广的瓶颈问题之一。因此,研究强碱三元复合驱成垢及化学控制技术具有重要的意义。
     本文对强碱三元复合驱成垢机理、成垢规律、矿场成垢特征以及化学控制技术进行了系统研究。
     1、开展了溶蚀-沉积模拟实验研究,完善了三元复合驱成垢机理。
     碱对储层矿物的溶蚀对象主要是胶结物和粘土矿物,产物主要是硅酸根,溶蚀的速度、程度与其化学组成和空间结构有关。三元复合驱结垢是同一时间多种化学物理规律共同作用的结果,包含有碳酸盐(离子成垢)成垢、无定形二氧化硅(胶体成垢)成垢、硅酸盐化学沉积和多种微粒的共沉积作用(分子成垢)成垢。
     2、对三元复合驱体系中影响硅离子稳定的条件、控制成垢主要因素进行了试验研究,首次研究硅酸盐结垢过程pH值变化特征、结垢离子在成垢过程的竞争反应,解释了成垢的基本规律。
     (1)温度、pH值、钙、镁、铝、钡对硅离子的沉积有促进作用,其中pH值影响最大。聚丙烯酰胺和表活剂对硅离子的稳定有一定的平衡作用,能够降低硅成垢风险。
     (2)随pH值升高,含钙、镁、钡高的采出液成垢速度加快,垢量增加。在体系中的钙离子未达到沉积平衡时,镁离子不发生沉积反应。
     (3)对硅酸盐成垢,pH值降低是成垢的关键性因素。pH越高,越不易形成硅酸盐垢。在碳酸根和硅酸根含量较高的体系中,引起钙、镁、钡成垢的主要因素是碳酸根。
     3、利用红外光谱、光电子能谱、XRD、扫描电镜和电感耦合等离子发射光谱,对三元复合驱矿场垢化学组成、存在形式、沉积特征进行了表征,对三个区块油井结垢特征进行了分析研究。
     (1)机采井采出液pH值、离子组成、聚合物、表活剂、粘度随着注采时间的延长具有一定的变化特征,引起变化的主要原因是注入流体与储层岩石、流体发生了物理作用及化学反应。
     (2)根据油田垢的红外光谱图,能够判断出垢样中是否存在碳酸钙、碳酸钡、二氧化硅、硅酸钙、硅酸镁、硫酸钡、硫酸钙、氧化亚铁、四氧化三铁、氢氧化铁,及其相对含量大小比较。
     (3)处在同一垢样沉积过程中,碳酸盐垢先沉积,碳酸盐的沉积为硅酸盐提供了附着点和晶核,碳酸盐垢的粗糙表面增加了流体与管壁的摩擦,造成硅酸盐的沉积。碳酸盐沉积属于晶体生长式沉积,形成的垢质致密,未经摩擦成垢的氧化硅沉积属于胶体脱水成垢,颗粒间孔隙可见,垢质较疏松。
     4、合成了适合三元复合驱油井防垢的聚环氧琥珀酸钠和MA-AA-SA复合防垢剂,防垢效果85%以上。
     (1)环氧琥珀酸优化合成条件:温度70℃,时间1.5h,催化剂用量3.5%,氢氧化钠与马来酸酐摩尔比2:1,过氧化氢与马来酸酐质量比1.4:1,收率88%。
     (2)聚环氧琥珀酸盐优化聚合条件:聚合温度90℃,聚合时间3h,碱用量12.24%,引发剂用量2.86%。
     (3)MA-AA-SA共聚物优化合成条件:25g马来酸酐,15g丙烯磺酸钠,10g次亚磷酸钠和定量的蒸馏水,升温加热,待固体溶解后时,加入0.2g催化剂,然后向其中滴加50mL30%的过氧化氢和40mL丙烯酸,滴加时间为1.5h,95~100℃反应2小时。
     (4)复合药剂用量在100mg/L时,温度低于55℃、钙离子含量小于80mg/L、硅离子含量小于900mg/L,防垢率85%以上。提高药剂用量,能够提高防垢效果。通过模拟评价建立了加药浓度个性化设计经验公式,有效合理利用了防垢剂,在矿场试验中取得了预期效果。在矿场应用中取得了良好的防垢效果,免修期可达300天以上。
     本文研究成果有助于深入认识强碱三元复合驱结垢问题,可为结垢预测提供理论基础,为合理进行矿场垢预防和控制提供技术基础,为领导决策提供理论依据。
After years of laboratory research and pilot test in DaQing Oil-field, ASP floodingtechnology was demonstrated to dramatically improve the performance of increasing oil anddecreasing water for Class Ⅰo r Ⅱreservoir in Daqing which could enhance oil recoverymore than20%compared with water flooding. However, scaling problems seriously exposedin the system of lifting process as it would cause pumps stucked. As pumps detection periodshortened it would seriously restrict the development of ASP flooding technology. Therefore,research on the scaling theory and chemical control technology of ASP flooding hadimportant significance.
     Dissolution-sedimentation mechanism of reservoir minerals, scaling laws, characteristicsof oil-wells scaling and chemical control technology of ASP flooding were researchedsystematically in this paper.
     1. Experimental research on simulating process of dissolution-sedimentation wasdeveloped. Kind and degree of reservoir minerals dissolution were confirmed. Formationmechanism of ASP flooding mixing scale was improved.
     Dissolution objects were mainly cements or clay minerals in base-rock dissolutionreaction. The main products were silicate and the rate, extent, chemical composition ofdissolution was related to crystalline types and spatial structure. ASP flooding scale wasformed by the interaction actions of physical and chemical reactions at the same timeincluding carbonates, amorphous silica, silicates and co-deposition of different particles.
     2. The main factors affecting the stability of silicon ions, control scaling wasexperimental researched in ASP flooding system. Variational characteristics of pH value, TDS,competing reaction of scaling ions in the process of silicates scaling were researched for thefirst time.
     (1) Temperature, pH value, calcium, magnesium, aluminum, and barium had promotionreaction to the deposition of silicon ions. The maximum influencing factor was pH value.Polyacrylamide and surfactant had a certain equilibrating action on the stability of silicon ions,could reduce the risk of silicon scaling.
     (2) With the increase of pH value, the scaling speed of produced liquid with high calcium,magnesium, barium accelerated and the scale content also increased. Magnesium ions did notdeposit until the calcium ions reached sedimentation equilibrium in the system.
     (3) For the process of silicate scaling, the decrease of pH value was the key factor forscaling. It was difficult to form silicate scale if pH value increased. In the system with high content of carbonate and silicate, the main factor caused calcium, magnesium, barium ions toscale was carbonate.
     3. Chemical composition, existence form, sedimentary characteristics of ASP floodingscale were characterized by infrared spectroscopy, electron spectroscopy, XRD, scanningelectron microscopy and ICP-AES. Scaling characteristics of oilwells in three blocks wereanalyzed.
     (1) PH value, ions composition, polymer, surfactant, viscosity of produced liquid inmechanical recovery well had a certain change characteristics with the increasing ofinjection-production period. The main reason that causes changing was the physical-chemicalreaction between injection liquid and reservoir rocks.
     (2) According to the infrared spectrum of oilfield scale, we could determine whetherthere were calcium carbonate, barium carbonate, silica, calcium silicate, magnesium silicate,barium sulfate, calcium sulfate, ferrous, ferric hydroxide, iron oxide in scale sample andcompare the relative content of scale.
     (3) In the process of sedimentation of the same scale, carbonates deposited first. Thedeposition of carbonates provided attachment point and crystal nucleus for silicate. The roughsurface of carbonates increased the friction between the fluid and pipe wall which caused thedeposition of silicate. The deposition of carbonates belonged to crystal growth pattern and thescale was densified. The deposition of silicon oxide belonged to colloid dehydration scalingand the pore of particles was visible, the scale was loose.
     4. PESA and MA-AA-AMPS composite scale inhibitor was synthesized to be suitablefor ASP flooding oil wells. The anti-scaling rate was more than85%.
     (1) The optimum synthesis conditions were as follows: reaction temperature70℃,reaction time1.5h, catalyst dosage3.5%, the molar ratio of sodium hydroxide and maleicanhydride2:1, the mass ratio of hydrogen peroxide and maleic anhydride1.4:1. The yield ofepoxysuccinic acid was88%.
     (2) The optimum polymerization condition of PESA were as follows: polymerizationtemperature90℃, polymerization time3h, sodium hydroxide dosage12.24%, initiator dosage2.86%.
     (3) The optimum synthesis conditions of MA-AA-SA copolymer were as follows: maleicanhydride25g, sodium allylsulfonate15g, sodium hypophosphite10g. Quantitative distilledwater was added, heating until the solids dissolved then adding0.2g catalyst.50mL30%hydrogen peroxide and40mL crylic acid were added dropwise afterwards. The dropwiseadding time was1.5h. Reacted2h at95~100℃.
     (4) The dosage of composite agent was100mg/L, temperature was below55℃, calciumcontent was less than80mg/L, silicon content was less than900mg/L, the anti-scaling rate was more than85%. Increasing the dosage of agent could improve the anti-scale effect.
     The research results of this paper is useful for understanding the scaling problem ofconcentrated alkali ASP Flooding, provide the theoretical basis for the prediction of scaling,provide a technical basis to field scale prevention and removal, provide the theory basis forthe leadership decision-making.
引文
[1]李洪巍.三元复合驱采出液乳化和稳定机理研究[D].哈尔滨:哈尔滨工程大学,2003.
    [2]杨振宇,陈广宇.国内外复合驱技术研究现状及发展方向[J].大庆石油地质与开发,2004,23(5):94-96.
    [3]牟建海,李干佐.三次采油技术的发展现状及展望[J].化工科技市场,2000.(7):17-20.
    [4]王正茂,廖广志.大庆油田复合驱油技术适应性评价方法研究[J].石油学报,2008,29(4):395-398.
    [5]庞丽丽,宁宇清.三次采油化学驱油技术发展现状[J].内蒙古石油化工,2010,8.
    [6]刘祥飞.大庆攻关油田开发核心技术[J].国外测井技术,2008,23(4):22.
    [7]鞠野.一元/二元/三元驱油体系微观驱油机理研究[D].大庆:大庆石油学院,2006.
    [8] Cambridge VH, Wolcott JM, Constant W D. An investigation of the factors influencingransient interfacial tension behavior in crude oil alkaline water systems[J]. Chem.Eng,Commun;1989,84(1):97-111.
    [9]杨振宇,周浩,姜江,等.大庆油田复合驱用表面活性剂的性能及发展方向[J].精细化工,2005,(22):22-23.
    [10]王景良,孙岩,宋育贤.ASP复合驱机理的研究与展望[J].国外油田工程,2001,17(8):15-19.
    [11]张学佳.三元复合驱化学剂意外泄漏对环境影响的研究[D].大庆:大庆石油学院,2008.
    [12]董秀勤,窦云芹,宋会美,等.三次采油复合驱表面活性剂性能概述[J].油气田地面工程,2007,26(9):58-59.
    [13]李道山.三元复合驱表面活性剂吸附及碱的作用机理研究[D].大庆:大庆石油学院,2002.
    [14]段文蒙.ASP三元复合驱中各驱油剂的吸附滞留研究[D].成都:西南石油学院,2002.
    [15]张瑞泉.弱碱体系三元复合驱采出液分离技术及机理研究[D].大连:大连理工大学,2007.
    [16]陈瑞.三元复合驱用表面活性剂研究进展[J].日用化学,2008,31(11):23-26.
    [17]徐国民.强碱三元复合驱面临的问题及解决对策[J].油气田地面工,2008(11):70-71.
    [18]胡永亮.三元复合驱技术研究[J].今日科苑,2008,(21):114.
    [19]王志田.世界首例三元复合驱工业化现场试验启动[N].中国石油,2006-11-24(001).
    [20]李伟.三采用表面活性剂和聚合物的动态界面张力研究[D].北京:北京交通大学,2008.
    [21] WANG DEMIN, HAO YUEXING. Results of Polymer Flooding P-ilots in the CentralArea of Daqing Oilfield [C]. SPE264011.
    [22]贾忠伟,杨清彦,侯战捷.油水界面张力对三元复合驱驱油效果影响的实验研究[J].大庆石油地质与开发,2005,24(5):79-81.
    [23] Uren L C, Fahry E H.Petroleum division ALME,1927:318.
    [24] DEZABALA E F,RADKE C J. A nonequilibrium description of alkaline waterflooding[J]. SPE Reservoir Engineering,1986,1(1):29-43.
    [25] Foster W R. A low-tension waterflooding process.JPT,1973:205-210.
    [26] Wagner O R, Leach R O. Effect of interfacial tension on displacement efficiency[J].Soc Petrol Engrs J,1966,6(4):335-344.
    [27] Reed R L, Healy R N. Improved oil recovery by surfactant andpolymer flooding[M].New York-sanfracisco-london,1977.
    [28]李华斌,陈中华.界面张力特征对三元复合驱油效率影响的实验研究[J].石油学报,2007,27(5):96-98.
    [29]葛际江,王东方,张贵才,等.稠油驱油体系乳化能力和界面张力对驱油效果的影响[J].石油学报(石油加工),2009,25(5):690-695.
    [30]张可,秦积舜,王舰,等.弱碱ASP体系驱油效果实验研究[J].特种油气藏,2010,17(1):94-97.
    [31]李国桥,纪海龙,刘杰,等.强碱三元体系界面张力影响因素研究[J].广州化工,2011,39(18):74-75.
    [32]王克亮,廖广志,杨振宇,等.三元复合和聚合物驱油液粘度对驱油效果影响实验研究[J].油田化学,2001,18(4):354-357.
    [33]贾忠伟,杨清彦,哀敏,等.大庆油田三元复合驱驱油效果影响因素实验研究[J].石油学报,2006,27:101-105.
    [34]张尚武.化学剂对复合体系表观粘度影响研究[J].内蒙古石油化工,2012,16:5-6.
    [35]刘正奎,涂爱勇,秦娟.一种高黏性驱油剂配方的研究[J].石油地质与工程,2013,27(1):113-117.
    [36] SUBKNOW P. Process for the removal of bitumen from bituminous deposits: US,2288857[P].1942-07-07.
    [37] ENDER O.Improvement of water flooding of a heavy crude oil by adding of chemicalsto injection water[C].SPE.International Oilfield and Geothermal Chemistry Symposium,1977.
    [38]李世军,杨振宇,宋考平,等.三元复合驱中乳化作用对提高采收率的影响[J].石油学报,2003,24(5):71-73.
    [39]葛际江,王东方,张贵才,等.稠油驱油体系乳化能力和界面张力对驱油效果的影响[J].石油学报(石油加工),2009,25(5):690-695.
    [40]王克亮,廖广志,杨振宇,等.三元复合和聚合物驱油液粘度对驱油效果影响实验研究[J].油田化学,2001,18(4):354-357.
    [41]卢志刚.三元复合驱集输系统抗沉积剂的开发研究[D].大庆:大庆石油学院,2009.
    [42] Gao Shutang, Li Huabin, Yang Zhenyu, et al. The alkaline/surfactant/polymer pilotperformance of saertu, west central, Daqing oilfield[J]. Soc Petrol Engrs Reserv Engng,1996,11(3):181-188.
    [43] Meeyers J J, Pitts M J, Wyatt K.Alkaline-surfactant-polymerflooding of the west Kiehl,Minnelusa Unit[Z]. SPE/DOE24144,1992:22-24.
    [44]杨振宇,陈广宇.国内外复合驱技术研究现状及发展方向[J].大庆石油地质与开发,2004,5:47-51.
    [45]顾永强,解宝双,魏志高.孤东油田聚合物驱工业化应用效果分析[J].中外能源,2008.
    [46]杨志钢.三次采油技术及进展[J].化工进展,2011,30.
    [47]江隆拯.新型复合驱油技术在超稠油开发中的应用[J].内蒙古石油化工,2011,11:86-87.
    [48]唐丽.三元复合驱用表面活性剂产业化存在的问题及对策[J].承德石油高等专科学校学报,2010,12(3):31-34.
    [49]程杰成,廖广志,杨振宇,等.大庆油田三元复合驱矿场试验综述[J].大庆石油地质与开发,2001,20(2):46-47.
    [50]廖广志,杨振宇,刘奕,等.三元复合驱中超低界面张力影响因素研究[J].大庆石油地质与开发,2001,20(1):40-42.
    [51]张学佳,纪巍,康志军,等.三元复合驱采油技术进展[J].杭州化工,2009,39(2):5-8.
    [52]程杰成,王德民,李群,等.大庆油田三元复合驱矿场试验动态特征[J].石油学报,2002,23(6):37-40.
    [53] MEEYERS J J, PITTS M J, WYATTK. Alkaline-Surfactan-t Polymer Flood of the WestKiehl Minnelusa Unit [R]. SPEPDOE24144.
    [54] PITTS M J, SURKALOH, WYATTK. Design and Field Implementation ofAlkaline-Surfactant-Polymer Flood Chemical Enhanced Oil Recovery Sys-tems [C].Presented at the6th UNITAR International Conference on Heavy Crudeand Tar Sands,Houston,1995.
    [55]王志田.世界首例三元复合驱工业化现场试验启动[N].中国石油报,2006-11-24(001).
    [56]杨振宇,周浩,姜江,等.大庆油田复合驱用表面活性剂的性能及发展方向[J].精细化工,2005,(22):22-23.
    [57]崔明玥.北东块二类油层三元复合驱油试验阶段效果及认识[J].科学技术与工程,2011,11(27):26-28.
    [58]刘群.大庆油田二类油层三元驱矿场试验全面见效[N].大庆油田报,2007-5-17(002).
    [59] WANG DEMIN, CHENG JIECHENG1Summary of ASP Pilots in Daqing Oilfield [C].SPE572881
    [60]沈迪成,艾万诚,盛曾顺,等.抽油泵[M].北京:石油工业出版社,1994:154.
    [61]候吉瑞,张淑芳,杨锦宗,等.复合驱过程中化学剂损失与超低界面张力有效作用距离[J].大连理工大学学报,2005,45(4):496-500.
    [62]唐琳.强碱三元复合驱注入系统结垢行为研究[D].大庆:东北石油大学,2012.
    [63]姜大明.浅析强碱体系下三元复合驱成垢机理和判断方法[J].中国石油和化工标准与质量,2011,(5):26.
    [64]闫雪,王宝辉,隋欣,等.弱碱三元复合驱硅质垢形成影响因素与机理研究[J].南京师范大学学报(工程技术版),2009,9(3):42-46.
    [65]杨冰.强碱三元复合驱采出井结垢特征[J].技术纵横,2011,30(9):93.
    [66]梁伟,赵修太,韩有祥,等.油田含污水处理与利用方法技术探讨[J].工业水处理,2010,30(10):1-4.
    [67]张亚亚,丁馨,惠立,等.油田结垢原因分析及防垢措施研究[J].西安石油大学,2011,40(1):69-71.
    [68]陈健斌,马自俊,刘大锰,等.三元复合驱阻垢剂的研究及应用[J].中国地质大学能源学院,2011,31(5):13-16.
    [69]肖曾利,蒲春生.磁防垢技术及应用发展现状[J].断块油气田,2010,17(1):121-125.
    [70]秦国治.清洗剂综述[J].石油化工腐蚀与防护,1995,(4):3-7.
    [71]李德智.国外油气田防垢技术的应用简介[J].国外油气田技术调查,1989(3):44-49.
    [72]杨丹丹,陈中兴.天然水处理剂单宁的改性及性能研究[J].东理工大学学报,2001,27(4):388-391.
    [73]周达江,彭伟,谢家理.改性腐植酸-膦基丙烯酸阻垢级释剂的制备及性能研究[J].化学研究与应用,2003,15(2):194-196.
    [74] Godlew ski IreneT Schuck.Polymers for use in water treatment: US,9577[P].1977-06-14.
    [75] Masler,WilliamF,Amjad,etal Scale inhibition in water system:US,566973[P].1986-01-28.
    [76]刘汉玉,陈武,梅平.阻垢剂的合成剂应用研究进展[J].化学与生物工程,2006,(4):7-9.
    [77]吉文博.油田结垢处理技术研究[D].大庆:东北石油大学,2012.
    [78] Patel S, Nicol N J. Developing of cooling water inhibitor with mutil-functional depositcontrol properties [J]. Materials Performance,1996,(6):41-46.
    [79]梅平,吴卫霞,李良红.含膦磺酸基共聚物PAMPS的合成及阻垢性能研究[J].油气田环境保护,2005,15(23):25-27.
    [80]梅平,肖俊霞.膦酸亚基聚丙烯酸的合成及性能研究[J].工业水处理,2005,25(3):36-38.
    [81]高清河,李睿,陈新萍,等.三元复合驱机采井缓释防垢技术[J].油气田地面工程,206,5(2)13.
    [82]熊蓉春,魏刚,周娣,等.绿色阻垢剂聚环氧琥珀酸的合成[J].工业水处理,1999,19(3):11-13.
    [83]熊蓉春,董雪玲,魏刚.绿色生物高分子聚天冬氨酸的合成及其阻垢性能研究[J].工业水处理,2001,21(1):17-20.
    [84]王春荣.环氧琥珀酸与丙烯酸共聚物的合成及性能研究[D].北京:北京化工大学,2008.
    [85] Darling D,Rakshpal R. Green chemistry applied to corrosion and scale inhibitors[C]∥NACE International1998. San Diego Ca.,1998.
    [86] Koskan L P, Low K C. Polyaspartic acid as a calcium sulfate and abarium sulfateinhibitors: US,5116513[P].1992-05-26.
    [87]安钢.聚天冬氨酸阻垢作用的研究[J].天津理工学院学报,2006,18(3):34-36.
    [88]张建刚,张丽,丁庆伟,等.水处理阻垢剂聚天冬氨酸的改性研究[J].辽宁化工,2005,34(1):20-21.
    [89]刘卫国,刘建东,李国富.磁处理的防垢除垢机理研究[J].节能技术,2005,23(4):312-314.
    [90]马志梅.超声波阻垢与除垢技术研究进展[J].中外能源,2008,13(4):92-96.
    [91]黄征青,鲁国彬.电磁处理防垢的研究与应用展望[J].工业用水与废水,2003,34(5):10-12.
    [92]周军,窦照英.绿色防垢技术[M].北京:化学工业出版社,2004:223-262.
    [93]李文忠,曹建国,王文江,等.声学防垢技术的发展和应用[J].清洗世界,2006,22(12):30-34.
    [94] Marin Cikes. A Successful Treatment of Formation Damage Caused by High-DensityBrine. Soc Petrol Engrs Production Eng,1990,5(2):175-179.
    [95]马广彦.有机络合剂在油气田除垢技术中的应用[J].油田化学,1997,14(2):180-185.
    [96]肖曾利,蒲春生.磁防垢技术及应用发展现状[J].断块油气田,2010,17(1):121-125.
    [97]何俊,赵宗泽,李跃华,等.物理方法除垢阻垢技术的研究现状及进展[J].工业水处理,2010,30(9):5-9.
    [98]秦国治.清洗剂综述[J].石油化工腐蚀与防护,1995,(4):3-7.
    [99]孙赫,陈颖,钱慧娟.油田除垢技术研究进展[J].化学试剂,2012,34(11):991-994.
    [100] Stimulation fluids dissolve oil field scale[J]. Pet. EngrInt,1997,70(1):36-38.
    [101]陈新萍,高清河,杨世海.大庆外围低渗透油田结垢分析及解决措施[J].大庆师范学院学报,2005,25(4):1-2.
    [102]孙海虹,邓皓,张欣.油气田除垢机理与应用技术探讨[J].断块油气田,1999,6(5):46-48.
    [103]陈凯.油水井硫化亚铁垢的形成机理及防治技术[J].石油化工腐蚀与防护,2009,26(增刊):4-7.
    [104] Ford W G F. Solvent removes downhole NORM-contanmi-nated BaSO4Scale.OilGas[J],1996,94(17):65-68.
    [105]陈荣圻.环保型有机螯合剂产品[J].印染,2010,36(19):40-43.
    [106]周厚安.油气田开发中硫酸盐垢的形成及防垢剂和除垢剂研究与应用进展[J].石油与天然气化工,1999,28(3):212-214.
    [107]周厚安.油气田开发中硫酸盐垢的形成及防垢剂和除垢剂研究与应用进展[J].石油与天然气化工,1999,28(3):212-214.
    [108]钟玉凤.有机螯合剂在环境保护中的应用[J].江西科学,2007,25(3):351-354.
    [109] Aslam J, Alsalat T. High Pressure Water Jetting: An Effective Method to RemoveDrilling Damage[J]. SPE58780,2000,2:23-24.
    [110] J Gutzeit. Controlling Crude Unit Overhead Corrosion-Rules of Thumb for BetterDesalting. NACEC on ference, Corrosion/2007, Paper No.07567,(2007).
    [111] Fred Vermeulen, Bruce McGee. In-Situ Electro magnetic Heating for HydrocarbonRecovery and Environmenta Remediation[J].JoumalofCanadian.petroleum Technolgy,2000,39(8):25-29.
    [112]马广彦.有机络合剂在油气田除垢技术中的应用[J].油田化学,1997,14(2):180-185.
    [113]王志嫒,张自勤.谈水垢的清洗[J].农机使用与维修,2008,(1):67.
    [114] PUTNIS A, PUTNIS C V, PAUL J M.The efficiency of aDTPA-based solvent in thedissolution of barium sulfatescale deposits[C]. SPE29094,1995,(14-17):773-785.
    [115]马广彦.几种钡垢清除剂的室内评价[J].油田化学,1994,11(3):241-243.
    [116]宋爱军.聚合物母液在管道流动剪切过程中熟化机理研究[D].北京:中国石油大学.
    [117]许韵华,等.酸性介质对硅酸聚合胶凝的影响[J].武汉大学学报(理学版),2005,51(2):177-180.
    [118]王东升,汤鸿霄.三类氧化硅的形态分布及其转化特性[J].环境化学,1997,16(6):515-521.
    [119]黄毅.细颗粒泥沙絮凝沉积机理初探[J].水道港口,1988,10(1):39-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700