用户名: 密码: 验证码:
化学预氧化—生化处理油田含聚丙烯酰胺污水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物驱油在提高原油采收率的同时也产生了大量含聚污水,现有污水处理工艺难以对含聚污水进行有效处理。生物处理工艺由于成本较低且处理较彻底,近年来已应用于含油污水处理领域。但含聚污水中大量聚丙烯酰胺的存在导致其可生化性差,直接采用生物处理难度较大。Fenton氧化作为提高污水可生化性的有效手段,具有操作简单、费用较低、处理效率高的优点。因此,本论文采用Fenton预氧化——生化联合处理工艺,研究了其对含聚污水的处理效果。
     从含聚污水中筛选出6株同时降解聚丙烯酰胺与原油的功能降解菌,对菌株降解含聚污水的效果进行评价,优化了其营养及降解条件,并探讨了其降解聚丙烯酰胺、原油的特性;通过添加功能降解菌提高活性污泥的活性应用于含聚污水降解处理,利用Fenton氧化提高含聚污水的可生化性;在优化条件的基础上,对含聚污水进行Fenton预氧化——生化处理小试实验,得出以下结论:
     1)从含聚污水中筛选分离出6株降解菌,分别为Bacillus sp. PAM~(-1)、Bacillussp. PAM-2、Ochrobactrum sp. PAM-3、Acinetobacter sp. PAM-4、Bacillus sp.PAM-5、Bacillus sp. PAM-6。混合菌具有协同作用,对聚丙烯酰胺、原油的降解率分别可达46.1%、47.5%,明显高于单株菌。混合菌在pH5~9、温度30~45℃、盐度5~12.5g·L~(-1)、氧含量4~6mg·L~(-1)条件下对聚丙烯酰胺、原油具有较高的去除率。微量的Fe~(3+)和Mn~(2+)(浓度≤0.01g·L~(-1))可促进微生物的生长代谢。
     2)考察了原油与聚丙烯酰胺共存对各自生物降解的影响。结果表明,在各自较低含量范围内(原油0~5g·L~(-1),聚丙烯酰胺0~1g·L~(-1)),聚丙烯酰胺与原油的共存可促进各自被生物利用的效率;考察了聚丙烯酰胺与原油共存对各自Fenton氧化去除的影响。结果表明,原油的存在降低了聚丙烯酰胺的氧化去除效率,但在其含量较低时(0~600mg·L~(-1))对聚丙烯酰胺的去除影响不大;而聚丙烯酰胺在较低含量时(0~500mg·L~(-1))对原油的氧化去除有促进作用。
     3)在H_2O_215mL·L~(-1)、FeSO_4·7H_2O700mg·L~(-1)、pH5.0、温度30℃、反应时间1h条件下,Fenton氧化对含聚污水的COD、聚丙烯酰胺、原油的去除率可分别达到61.5%、74.0%、47.2%,对悬浮物的去除效率在80%以上,对硫酸盐还原菌的去除率可达98%以上,且可生化性改善明显(BOD_5/COD提高至0.4)。在Fenton氧化反应结束处理后残余的H_2O_2不仅不会抑制细菌生长,反而促进其对有机物的降解。Fenton预氧化——生化联合工艺对COD、聚丙烯酰胺及原油的去除效率分别可达84.7%、92.1%和83.1%。
     4)混合菌对聚丙烯酰胺的降解过程符合一级动力学模型。利用生物降解前后聚丙烯酰胺的红外光谱及飞行时间质谱推测的生物降解后的产物片段结合对混合菌对聚丙烯酰胺生物降解特性,并在已有文献的基础上,推断了在有氧条件下聚丙烯酰胺的生物降解机理。初步认为,混合菌通过生物催化类Fenton反应将聚丙烯酰胺分解为可被其利用的小分子片段作为碳源,利用酰胺水解酶水解聚丙烯酰胺的酰胺基获得可被其利用的氮源,进而促进微生物自身的生长。不同处理后的聚丙烯酰胺样品的扫描电镜、红外光谱及飞行时间质谱分析结果表明,Fenton氧化对聚丙烯酰胺的降解比生物降解更为彻底,降解后的小分子产物生物毒性降低,被微生物利用率提高。
     利用GC-FID及GC-MS对混合菌降解原油的特性进行分析。结果表明,混合菌对原油中的芳烃利用率高于烷烃,且对不同烃利用呈现不同特点。对不同处理后原油样品进行的GC-FID及GC-MS分析结果表明,聚丙烯酰胺的存在提高了生物降解、Fenton氧化以及Fenton预氧化——生化对原油的去除效率。
     5)对从城市污水处理厂取得的好氧污泥在模拟含聚污水中驯化,添加功能降解混合菌群来提高污泥对模拟含聚污水的处理效率。结果表明,功能降解菌添加后的活性污泥对COD去除率提高了30%。
     在连续进水中,考察水解酸化——生物接触氧化对含聚污水的处理,并对进水条件进行了优化。结果表明,进水pH7.0、水力停留时间72h、进水温度30~40℃时生化反应器对含聚污水具有较高的处理效率。反应器稳定运行后对含聚污水COD、聚丙烯酰胺及原油的去除率最高分别可达67.6%、63.7%、58.7%,悬浮物的含量稳定在15~30mg·L~(-1),硫酸盐还原菌含量降至102cell·L~(-1)。
     6)对胜利油田含聚水样进行了Fenton预氧化——生化处理小试实验。结果表明,Fenton预氧化——生化处理对COD、聚丙烯酰胺及原油的去除率分别可达94%、93%、95%,悬浮物与硫酸盐还原菌去除率分别可达90%、99%。采用絮凝处理进一步降低各指标值,絮凝处理后,COD稳定在20mg·L~(-1)左右,聚丙烯酰胺含量低于5mg·L~(-1),原油含量低于2.5mg·L~(-1),悬浮物含量低于5mg·L~(-1),各指标可满足回注或外排的需求。
     采用Fenton预氧化——生化——絮凝对大庆油田含聚污水水样进行处理小试实验。结果表明,COD、聚丙烯酰胺的去除率分别可达97%、98%,可满足DB37/676-2007二级标准;原油去除率可达98%,可满足SY/T5329-94A1级标准及DB37/676-2007一级标准;悬浮物去除率可达97%,可满足SY/T5329-94B级标准;硫酸盐还原菌去除率可达99%,可满足SY/T5329-94最低标准。
Followed by enhancing oil recovery, Polymer flooding also produced large amoutof oil wastewater containing partially hydrolyzed polyacrylamide (HPAM). Theexisting wastewater treatment technology in oilfeild can not effectively deal with thiskind of oil wastewater. The biological treatment process, due to its lower-cost andmore thoroughly treatment has been used in the field of oil wastewater treatment.However, large amount of HPAM existing in this oil wastewater leads to its poorbiodegradability, which makes trouble in its biological processing. Fenton oxidationpretreatment is an effective way to improve the biodegradability of oil wastewatercontaining HPAM, with the advantage of simple operation, low cost and hightreatment efficiency. Therefore, Fenton pre-oxidation&biochemical treatment wasattempted to be used to deal with this kind of oil wastewater in this paper.
     6bacteria were isolated from oil wastewater containing HPAM, who canbiodegrade both HPAM and crude oil. The evaluation of the degradation effect of oilwastewater containing HPAM by the6strains was done, the nutrition and degradationconditions of the6complex strains were optimized, and the characteristics ofpolyacrylamide and crude oil biodegradation by the6complex strains wereinvestigated. In order to enhance the activity of activated sludge, the6complex strainswere added to the activated sludge system, and Fenton oxidation was applied toimprove the biodegradability of the wastewater. The Fenton oxidation combined withbiochemical treatment of the wastewater was carred out in small scale experimentsbased on the optimal treatment conditions. All the conclusions were as follows:
     1)6fuction degradation bacteria were screening from the wastewater containingHPAM. The6bacteria were Bacillus sp. PAM, Bacillus sp. PAM-2, Ochrobactrum sp.PAM-3, Acinetobacter sp. PAM-4, Bacillus sp. PAM-5and Bacillus sp. PAM-6. The6complex bacteria had a synergistic effect on the degradation of both HPAM andcrude oil. The biodegradation efficiencies of HPAM and crude oil were higher than asingle strain, which were up to46.1%and47.5%. The6complex bacteria werecultivatied well and had higher HPAM and crude oil removal efficiencies under theconditions of pH of5-9, temperature of30-45℃, salinity of5~(-1)2.5g·L~(-1). Smallamount of Fe~(3+)and Mn~(2+)(≤0.01g·L~(-1)) can promote microbial growth and metabolism in wastewater biodegradtion.
     2) The effect of coexistence of crude oil and HPAM on HPAM/crude oilbiodegradation was exploared. The results showed that the coexistence of crude oilcan promote the two substances biodegradation, respectively, in their lower contentrange (0~5g·L~(-1)crude oil,0~1g·L~(-1)HPAM). The effect of coexistence of crude oiland HPAM on Fenton oxidation of HPAM or crude oil was also explored. The resultsshowed that the presence of crude oil reduced the oxidation removal efficiency ofHPAM, however, in the lower content range (0~600mg·L~(-1)), this effect was slight.While, the presence of HPAM in the lower content range (0~500mg·L~(-1)) couldpromote the oxidation removal of crude oil.
     3) The removal rate of chemical oxygen demand (COD), HPAM and crude oil inoil wastewater containing HPAM by Fenton oxidation can be up to61.5%,74.0%and47.2%, under the Fenton oxidation conditions of H_2O_2of15mL·L~(-1)、FeSO_4·7H_2O of700mg·L~(-1), pH of5.0, temperature of30℃and reaction time of1h. More than80%of suspended solids (SS) and98%sulfate-reducing bacteria (SRB) in thewastewater were also removed during this process. After Fenton oxidation treatment,the biodegradbality of the wastewater was improved obviously (the value of BOD_5/COD was up to0.4). The residual H_2O_2after the Fenton oxidation treatment not onlydid not inhibit bacterial growth, but also promoted the biodegradation of the organicmatter in the wastewater. After Fenton pre-oxidation and biodegradation coupledtreatment, the removal efficiencies of COD, polyacrylamide and crude oil inwastewater were up to84.7%,92.1%and83.1%, respectively.
     4) A first-order reaction dynamic model could be used to describe thebodegradation characteristics of HPAM by the complex strains. The mechanism ofHPAM biodegradation under aerobic condition was preliminarily proposed based onthe results of HPAM infrared spectra and time-off-light mass (TOF-MS) spectrabefore and after bodegradation, the characteristics of HPAM bodegradation by thecomplex strains and others’ research results. The complex bacteria ultilzed the smallmolecules fragments as carbon sources, which obtained from HPAM biologicalcatalysis degradation (Fenton-like process), the amino-group as nitrogen source,which obtained from HPAM hydrolysis by amidohydrolase. These obtained cabornand nitrogen sources maintained the microbe growth. The HPAM samples by differenttreatment were analysed by scanning electron microscope, IR spectrometry and TOF-MS spectrometry. It showed that HPAM was degraded more thoroughly by Fenton oxidation than that by biodegradation. After Fenton oxidation, HPAM transformed tosmall molecule products, which were lower biotoxicity lead to improve the utilizationeffiency by these microorganisms.
     The characteristics of crude oil biodegradtion by the complex strains wereexplored via GC-FID and GC-MS ananysis. The results showed that the complexbacteria prefered to utilized aromatics, other than alkanes. The utilization of differenthydrocarbons by the bacteria presented different characteristics. The GC-FID andGC-MS analysis results of crude oil samples by different treatments showed that theexistence of HPAM improved the crude oil removal efficiency in biodegradation,Fenton oxidation and Fenton preoxidation&biochemical processes.
     5) The actived sludge, which obtained was domesticated in oil wastewatercontaining HPAM from municipal sewage plant. The6complex strains were added tothe activated sludge to enhance the activity of activated sludge. After domestication,the COD removal efficiency of actived sludge adding the complex bacteria wasincreased by30%than that of the common activated sludge.
     In the continuous feed water conditions, the wastewater was treated by hydrolyticacidification-biological contact oxidation processes, and the water flow conditionswere optimized. The results showed that the removal rates of COD, HPAM and crudeoil in oil wastewater containing HPAM by hydrolytic acidification-biological contactoxidation processes can be up to67.6%,63.7%and58.7%, under the water flowconditions of pH of7.0, hydraulic retention time (HRT) of72h, and temperature30~40℃. The SS content maintained15~30mg·L~(-1), SRB content dropped to102cell·L~(-1)during this process.
     6) The Fenton pre-oxidation combined with biochemical treatment of the oilwastewater sample containing HPAM sampling from Shengli Oilfeild was carred outin small scale experiments. It showed that the removal rate of COD, HPAM and crudeoil was up to94%,93%and95%, respectively. The removal rates of SS and SRBcould reach90%and99%. Flocculation treatment was also carried out to furtherreduce the content of pollutants. After flocculation treatment, COD mantained about20mg·L~(-1), the HPAM content was less than5mg·L~(-1), the content of crude oil was lessthan2.5mg·L~(-1), and the SS content was less than5mg·L~(-1), which could meet there-injection or efflux demand.
     The Fenton pre-oxidation&bio-treatment coupled with flocculation treatment ofthe oil wastewater sample containing HPAM sampling from Daqing Oilfeild was also carred out in small scale experiments. After treatment, the removal rate of COD andHPAM reached97%and98%, which met the secondary standards of DB37/676-2007.The crude oil removal rate of was up to98%, which met the A1-class of SY/T5329-94and the primary standards of DB37/676-2007. The SS removal efficiency of was up to97%, which meet the B class of SY/T5329-94. The SRB removal efficiency was up to99%, which can meet the minimum standards of SY/T5329-94.
引文
[1]本刊摘编.化学添加剂在油田上的应用[J].火炸药,1986,(1):58-59.
    [2]陈进富,刘洪达,黄军荣.常用油田化学剂对污水化学需氧量的影响及其可生化性研究[J].石油大学学报(自然科学版),2001,25(4):88-90.
    [3]徐炽焕.丙烯酰胺均聚物和共聚物的应用[J].化工时刊,1994,(7):16-18.
    [4]汪多仁.丙烯酰胺均聚物和共聚物的开发应用拓展[J].江苏造纸,2001,(3):37-42.
    [5]代璐,赵安莎,黄楠.水溶性高分子聚合物在钻井工程中的应用[J].沈阳建筑大学学报(自然科学版),2011,27(1):95-99.
    [6]王允雨,聂容春,申秀梅,罗乐.两性离子型聚丙烯酰胺的研究进展[J].安徽化工,2010,36(6):12-15.
    [7] Hollimana PJ, Clarka JA, Williamson JC, et al. Model and field studies of the degradation ofcross-linked polyacrylamide gels used during the revegetation of slate waste [J]. Sci. TotalEnviron.,2005,336(1-3):13–24.
    [8] Blend R. Water-based glycol systems acceptable substitute for oil-based muds [J]. Oil Gas J.,1992,90(28):54-59.
    [9]彭振斌,曾祥熹.聚丙烯酰胺适度交联冲洗液的机理探讨[J].1983,(8):55-59.
    [10]何佳,贾碧霞,徐海涛,等.调剖堵水技术最新进展及发展趋势[J].青海石油,2011,29(3):59-63.
    [11]喻琴,蒋鑫浩.聚丙烯酞胺微球在油田调剖堵水中的应用研究进展.精细石油化工进展,2011,(7):13-16.
    [12]崔明月.水基压裂液添加剂的应用与评价[J].油田化学,1997,14(4):377-383.
    [13]张万忠,张竹青,李绵贵,等.阳离子聚丙烯酰胺处理油田含油污水的实验[J].工业水处理,2003,23(8):33-35.
    [14]孙玉丽,钱晓琳,吴文辉.聚合物驱油技术的研究进展[J].精细石油化工进展,2006,7(2):26-29.
    [15]于德水.聚丙烯酰胺驱油机理[J].油气田地面工程,2003,(8):27.
    [16]张云普.大庆油田优化聚合物驱油技术,三次采油产量连续十年保持千万吨[EB/OL].(2012-02-07)[2012-03-15].中国石油网http://www.hqcec.com/cn/xwzx/sykj/%E5%A4%A7%E5%BA%86%E6%B2%B9%E7%94%B0%E4%BC%98%E5%8C%96%E8%81%9A%E5%90%88%E7%89%A9%E9%A9%B1%E6%B2%B9%E6%8A%80%E6%9C%AF.htm.
    [17]网站转载.胜利油田原油产量突破10亿吨.[EB/OL].(2011-06-16)[2012-03-15].阿里巴巴http://info.china.alibaba.com/news/detail/v0-d1017988777.htm.
    [18]荆国林,于水利,韩强.聚合物驱采油污水处理技术研究进展[J].工业用水与废水,2004,35(2):16-18.
    [19]骆克峻.聚合物降解菌的筛选评价及在油田污水生化处理中的应用[D].青岛:中国海洋大学,2008.
    [20]王海峰.稠油污水回用于热采锅炉处理技术研究[D].青岛:中国海洋大学,2009.
    [21]张晖,赵丽,郑大铳,等. OPS-X型含油污水处理装置现场试验[J].油气田地面工程,2010,29(12):3-4.
    [22]曹怀山,姜红,谭云贤,等.胜利油田回注污水处理技术现状及发展趋势[J].油田化学,2009,26(2):220-221.
    [23]李希明.胜利油田污水生化处理技术进展[J].石油钻采工艺,2008,30(2):97-99.
    [24]李军.微生物与水处理工程[M].北京:化学工业出版社,2002:1-158
    [25]胡纪萃.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社,2003:58-69.
    [26] Suzuki J, Hukushima K, and Suzuki S. Effect of ozone treatment upon biodegradability ofwater-soluble polymers [J]. Envir. Sc. Technol.,1978,12:1180-1183.
    [27] Schumann H, Kunst S. Elimination von14C-markierten Polyelecktrolyten in biologischenAbwasserreinigungsprozessen [J]. Gas-Wasserfach, Wasser/Abwasser,1991,132:376-383.
    [28] Kay-Shoemake JL, Watwood ME, Sojka RE, et al. Polyacrylamide as a substrate formicrobial amidase in culture and soil [J]. Soil Biol. Biochem.,1998,30(13):1647-1654.
    [29] Kay-Shoemake JL, Watwood ME, Lentz RD, et al. Polyacrylamide as an organic nitrogensource for soil microorganisms with potential effects on inorganic soil nitrogen in agriculturalsoil [J]. Soil Biol. Biochem.1998,30(8/9):1045-1052.
    [30] Haveroen ME, MacKinnon MD, Fedorak PM. Polyacrylamide added as a nitrogen sourcestimulates methanogenesis in consortia from various wastewaters [J]. Water Res.,2005,39(14):3333-3341.
    [31] Grula MM, Huang M and Sewell G. Interactions of certain polyacrylamides with soil bacteria[J]. Soil Sci.,1994,158:291-300.
    [32] Chang LL, Raudenbush DL, and Dentel SK. Aerobic and anerobic biodegradability of aflocculant polymer [J]. Water Sci. Technol.2001,44(2/3):461-468.
    [33] Hollimana PJ, Clarka JA, Williamson JC, et al. Model and field studies of the degradation ofcross-linked polyacrylamide gels used during the revegetation of slate waste. Sci. TotalEnviron.,2005,336(1-3):13-24.
    [34] Sojka RE and Entry JA. Influence of polyacrylamide application to soil on movement ofmicroorganisms in runoff water [J]. Environ. Pollut.2000,108(3):405-412.
    [35] Sojka RE, Entry JA, Fuhrmann JJ, et al. The influence of high application rates ofpolyacrylamide on microbial metabolic potential in an agricultural soil [J]. Appl. Soil Ecol.,2006,32(2):243–252.
    [36] Caesar-TonThat TC, Busscher WJ, Novak JM, et al. Effects of polyacrylamide and organicmatter on microbes associated to soil aggregation of Norfolk loamy sand [J]. Appl. Soil Ecol.,2008,40(2):240-249.
    [37] Kunichika N and Shinichi K. Isolation of Polyacrylamide-Degrading Bacteria. J.Fermen. andBioeng.,1995,80(4):418-420.
    [38] Sutherland GRJ, Haselbach J. Biodegradation of crosslinked acrylic polymers by a white-rotfungus [J]. Environ. Sci. Pollut. Res.,1997,4:16-20.
    [39] Wen QX, Chen ZQ, Zhao Y, et al. Biodegradation of polyacrylamide by bacteria isolatedfrom activated sludge and oil-contaminated soil [J]..2010, J. Hazard. Mater.,175(1-3)955-959.
    [40] Bao MT, Chen QG, Li YM, et al. Biodegradation of partially hydrolyzed polyacrylamide bybacteria isolated from production water after polymer flooding in an oil field [J]. J. Hazard.Mater.,2010,184(1-3):105-110.
    [41]孙晓君,王志平,刘莉莉.处理油田含聚废水的微生物研究[J].科技导报,2005,23(7):38-40.
    [42]包木太,骆克峻,耿雪丽,等.聚丙烯酰胺降解菌的筛选及降解性能评价[J].西安石油大学学报,2008,23(2):71-74.
    [43]李蔚,刘如林,梁凤来,等.一株聚丙烯酰胺降解菌降解聚丙烯酰胺及原油性能研究[J].环境科学学报,2004,24(6):1116-1121
    [44]韩昌福,郑爱芳,李大平.聚丙烯酰胺生物降解研究[J].环境科学,2006,27(1):151-153.
    [45]高年发,杨磊,魏呐,等.部分水解聚丙烯酰胺生物降解的初步研究[J].天津科技大学学报,2006,21(4):41-44.
    [46]张英筠,魏呐,李凤凯,等.高效复合微生物菌剂对聚丙烯酰胺的无害化降解[J].油气田环境保护,2005,15(4):28-31.
    [47]李宜强,沈传海,景贵成,等.微生物降解HPAM的机理及其应用[J].石油勘探与开发,2006,33(6):738-743.
    [48]刘永建,郝春雷,胡绍斌,等.一株聚丙烯酰胺降解菌的降解性能和机理[J].环境科学学报,2008,28(11):2221-2227.
    [49]郝春雷,刘永建,王大威,等.复合菌降解聚丙烯酰胺的性能和机理研究[J].油田化学,2008,25(2):175-180.
    [50]廖广志,石梅,李蔚,等.以部分水解聚丙烯酰胺和原油为营养源的微生物筛选及性能评价[J].石油学报,2003,24(6):59-63.
    [51]舒福昌,佘跃惠周玲革,等.聚丙烯酰胺降解菌的分离和鉴定[J].油气田环境保护,2007,17(2):1-3.
    [52]佘跃惠,周玲革,舒福昌.七株聚丙烯酰胺降解菌对HPAM的降解性能评价[J].生物技术,2005,15(5):63-66.
    [53]高玉格,张忠智,高伯南,等.一组混合菌降解水解聚丙烯酰胺和石油的研究[J].工业水处理,2008,28(9):62-65.
    [54]黄峰,卢献忠.腐生菌对水解聚丙烯酞胺降解过程的研究[J].石油炼制与化工,2002,33(3):6-9.
    [55] Haveroen ME, MacKinnon MD, Fedorak PM. Polyacrylamide added as a nitrogen sourcestimulates methanogenesis in consortia from various wastewaters [J]. Water Res.,2005,39(14):3333-3341.
    [56] Wei, L, Ma, F, Zhao, LJ, et al. The molecular biology identification of a hydrolyzedpolycrylamide (HPAM) degrading bacreria strain H5and biodegradation product analysis [J].J. Biotechnol.,2008,136S:S669.
    [57]程林波,张鸿涛.废水中聚丙烯酰胺的生物降解试验研究初探[J].工程与技术,2004,1:20-23.
    [58]黄峰,范汉香,董泽华,等.硫酸盐还原菌对水解聚丙烯酞胺的生物降解性研究[J].石油炼制与化工,1999,(1):33-36.
    [59]黄峰,卢献忠.硫酸盐还原菌在含水解聚丙烯酰胺介质中的生长繁殖[J].武汉科技大学学报(自然科学版).2002,25(1):45-48.
    [60]黄峰,卢献忠.驱油用水解聚丙烯酰胺生物降解性研究[J].武汉科技大学学报(自然科学版),2001,24(1):34-36.
    [61]刘永健,郝春雷,胡绍斌,等.聚合物驱后油藏驱油菌种的性能和作用机理[J].石油学报,2008,29(5):717-722.
    [62]魏利,马放.一株聚丙烯酰胺降解菌的分离鉴定及其生物降解[J].华东理工大学学报(自然科学版),2007,33(1):57-60.
    [63]魏利,马放,陈忠喜,等.聚丙烯酰胺降解菌株分离及其系统发育分析[J].哈尔滨工业大学学报,2007,39(8):1262-1265.
    [64]魏利,马放,张忠智,等.一株聚丙烯酰胺降解菌株的分离培养及其系统发育分析[J].湖南科技大学学报(自然科学版),2007,22(4):122-125.
    [65]孙红英,陈红祥,李金波,等.聚丙烯酰胺溶液粘度的影响因素[J].精细石油化工进展,2005,6(9):1-3.
    [66]陈庆国.聚丙烯酰胺降解菌的筛选及降解含聚丙烯酰胺污水的室内研究[D].青岛:中国海洋大学,2009.
    [67] El-Mamouni R, Frigon JC, Hawari J, et al. Combining photolysis and bioprocesses formineralization of high molecular weight polyacrylamides[J]. Biodegradation,2002,13(4):221-227.
    [68] Eubeler JP, Bernhard M, Zok S, et al. Environmental biodegradation of synthetic polymers I.Test methodologies and procedures [J]. TrAC, Trends Anal. Chem.,2009,28(9):1057-1072.
    [69] Bao MT, Wang N. Improvement of Biodegradability of Oil Wastewater Contained PAM byPretreatment with Fenton Oxidation, in Proceedings of the Thirty-first AMOP TechnicalSeminar on Environmental Contamination and Response[C]. Environment Canada, Alberta2008.2:639-649.
    [70] Eubeler JP, Bernhard M, Knepper TP. Environmental biodegradation of synthetic polymers II.Biodegradation of different polymer groups [J]. TrAC, Trends Anal. Chem.,2010,29(1):84-100.
    [71] Kajitvichyanukul P, Suntronvipart N. Evaluation of biodegradability and oxidation degree ofhospital wastewater using Photo-Fenton process as the pretreatment method [J]. J. Hazard.Mater.,2006,138(2):384-391.
    [72] Morais J L, Zamora P P, Patricio P Z. Use of advanced oxidation processes to improve thebiodegradability of mature landfill leachates [J]. J. Hazard. Mater.,2005,123(1-3):181-186.
    [73] Lopes A, Pagano M, Volpe A, et al. Fenton's pre-treatment of mature landfill leachate [J].Chemosphere,2004,54(7):1005-1010.
    [74]吴坚扎西,张科杰. Fenton试剂处理酸性玫瑰红B的研究[J].环境保护科学,2005,31(131):27-30.
    [75]杨新萍,王世和. Fenton试剂处理有机氯农药废水的研究[J].环境污染治理技术与设备,2006,7(6):60-64.
    [76]曹扬,华兆权,陈坚. Fenton预处理提高聚乙烯醉可生化性[J].食品与生物技术学报,2005,24(5):33-37.
    [77]刘琼玉,李太友,李华禄,等.太阳光助Fenton体系氧化降解苯酚废水的研究[J].重庆环境科学,2003,25(41):23-32.
    [78]钟理,陈建军.高级氧化处理有机污水技术进展[J].工业水处理,2002,22(1):1-5.
    [79]罗刚,黄君礼,孙红.活性炭吸附/Fenton试剂氧化法处理造纸厂污冷凝水的研究[J].哈尔滨建筑大学学报,1999,32(6):59-62..
    [80] Xu Xi R, Li H B, Wang W H, et al. Degradation of dyes solutions by the Fenton process [J].Chemosphere,2004,57(7):595-600.
    [81]包木太,陈庆国,王娜,等.油田污水中聚丙烯酰胺的降解机理研究[J].高分子通报,2008,(2):1-9.
    [82] Ramsden D K, McKay K. Degradation of Polyacrylamide in Aqueous Solution Induced byChemically Generated Hydroxyl Radicals: Part I—Fenton's Reagent. Polym. Degrad. Stabil.,1986,14(3):217-229.
    [83] Ramsden D K, McKay K. The Degradation of Polyacrylamide in Aqueous Solution Inducedby Chemically Generated Hydroxyl Radicals: Part Ⅱ—Autoxidation of Fe2+. Polym. Degrad.Stabil.,1986,15(1):15-13.
    [84]邵强,闫光绪,王嘉麟,等. Fenton试剂氧化降解聚丙烯酰胺污水及其反应动力学研究[J].2007,29(10):754-758.
    [85]王嘉麟,邵强,闫光绪,等. Fenton试剂氧化处理聚丙烯酰胺污水[J].石油化工安全环保技术,2007,23(2):60-64.
    [86]韩冰,李崴,肖于,等. Fenton试剂去除聚丙烯酰胺的实验研究[J].云南冶金,2010,39(5):78-80.
    [87]韩冰,李崴,肖于,等. Fenton试剂去除聚丙烯酰胺的实验研究.云南冶金,2010,39(5):78-80.
    [88] Milliolia V S, Freirea D D C, Cammarota M C. Petroleum oxidation using Fenton’s reagentover beach sand following a spill [J]. J. Hazard. Mater.,2003,103(1–2):79–91.
    [89]陈学政,李辉,王羽.油田含油污水Fenton氧化处理方法的研究[J].环境保护科学.2010,36(4):30-32.
    [90]陈竹云,王国柱,樊鹏军,等.油田含油污水高级氧化技术研究[J].油气田环境保护,2010,20(3):36-39.
    [91]郦和生,陈新芳,刘伟,等. Fenton试剂处理含油废水的实验研究[J].北京化工大学学报,2007,34(3):238-240.
    [92]陈国华,史春莲,齐春惠. Fenton试剂处理乳化含油废水[J].应用基础与工程科学学报,2007,15(2):156-162.
    [93] Wang X J, Song Y, Mai J S. Combined Fenton oxidation and aerobic biological processes fortreating a surfactant wastewater containing abundant sulfate [J]. J. Hazard. Mater.2008,160(2-3),344–348.
    [94]徐颖,陈磊,周俊晓. Fenton氧化-生化组合工艺处理染料中间体废水[J].环境工程学报2007,1(4):57-60.
    [95]陈思莉,汪晓军,顾晓扬. Fenton氧化-生物接触氧化工艺处理甲醛和乌洛托品废水.化工环保,2007,27(2):121-124.
    [96]邓征宇,杨春平,曾光明,等. Fenton-水解酸化-接触氧化工艺处理含苯酚制药废水.工业水处理,2010,30(7):68-71.
    [97]冯斐,许振良,游文婷,等. Fenton氧化-水解酸化-活性污泥工艺处理增塑剂废水工程实例.给排水,2009,35(10):58-60.
    [98]许劲,赵绪光,洪国强,等. Fenton—水解酸化—厌氧接触—接触氧化工艺处理高盐生产废水.给排水,2011,37(2):54-56.
    [99]徐星. Fenton氧化一厌氧一好氧工艺处理苯胺农药废水的研究[D].南昌:南昌大学,2007
    [100]田凯勋,戴友芝,唐受印,等.有机废水厌氧水解酸化工艺研究与工业应用现状[J].工业水处理,2003,23(3):24-26
    [101]中国油气田开发标准委员会. SY/T5329-94.碎屑岩油藏注水水质推荐指标及分析方法[S].北京:中国石油天然气总公司,1995-01-18
    [102]山东省环保局. DB37/676-2007.山东省半岛流域水污染物综合排放标准部分指标[S].济南:山东省环保局,2007-08-07
    [103]武汉大学.分析化学(第五版)[M].北京:高等教育出版社,2006:224-225.
    [104]国家环保总局. HJ/T399-2007水质化学需氧量的快速测定——快速消解分光光度法[S].北京:中国环境科学出版社,2007-12-07.
    [105] Lu J H, Wu L S. Spectrophotometric determination of substrate-borne polyacrylamide [J]. J.Agric. Food Chem.2002,50(18)5038-5041.
    [106]中华人民共和国国家技术监督局. GBI2005.6-89.部分水解聚丙烯酰胺水解度测定方法[S].北京:中国标准出版社,1989-12-25.
    [107]中国油气田开发标准委员会. SY/T0530-93.油田污水中含油量测定方法分光光度法[S].北京:中国石油天然气总公司,1994-01-06.
    [108]国家环保局水和废水监测分析方法编委会.水和废水监测分析方法[M].北京:中国环境科学出版社,1989,368-370.
    [109] Sun P Y, Bao M T, Li G M, et al. Fingerprinting and source identification of an oil spill inChina Bohai Sea by gas chromatography-flame ionization detection and gaschromatography–mass spectrometry coupled with multi-statistical analyses [J]. J. Chromatogr.A,2009,1216(5):830-836.
    [110] Wang Z D, Fingas M. Developments in the analysis of petroleum hydrocarbons in oils,petroleum products and oil-spill-related environmental samples by gas chromatography. J.Chromatogr. A,1997,774(1-2):51-78.
    [111]闫广彬.水解酸化-MBR处理稠油污水的实验研究[D].青岛:中国海洋大学,2011.
    [112]李玉辉.厌氧折流板反应器处理含聚丙烯酰胺污水的试验研究[D].青岛:中国海洋大学,2011.
    [113]李玲玲.高盐度废水生物处理特性研究[D].青岛:中国海洋大学,2006.
    [114]陆金仁.采油污水COD化学组成剖析及归趋模型[D].青岛:中国海洋大学,2003.
    [115]丁庆云,许雄飞,彭利,等.改进取样方法提高含油废水中CODCr值的准确度[J].环境科学与管理,2007,32(12):138-139.
    [116]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社.2001,242-398.
    [117] J. G.霍尔特.简明第八版伯杰细菌鉴定手册[M].济南:山东大学出版社.1988,180~224.
    [118] Bao M T, Chen Q G, Liu Z Y, et al.. Research on viscous crude oil degradation by fourbacteria strains, in Proceedings of the Thirty-third AMOP Technical Seminar onEnvironmental Contamination and Response[C]. Environment Canada, Ottawa,2010,1:429-448.
    [119]孙远军.降解石油烃优势菌的筛选、分离及性能研究[D].西安:西安建筑科技大学,2006.
    [120]范晓宁.烃降解菌的选育及其对海洋溢油生态修复室内模拟研究[D].青岛:中国海洋大学,2009.
    [121]陈熹兮,李堃宝,李道棠.低温微生物及其在生物修复领域中的应用[J].自然杂志,2001,23(3):163-167.
    [122]张景来.海水中原油生物的降解[J].北京科技大学学报,2003,25(5):410-413.
    [123]吉国栋,周波,高红亮,等.溶氧浓度对微生物谷氨酰胺转胺酶发酵的影响[J].西北农林科技大学学报(自然科学版),2006,34(1):75-79.
    [124]李苗,郭平.油田硫酸盐还原菌的危害与防治[J].石油化工腐蚀与防护,2007,40(2):49-51.
    [125]苏荣国,牟伯中,王修林,等.微生物对石油烃的降解机理及影响因素[J].2001,21(4):205-208
    [126] Jones D M, Head I M, Gray N D et al. Crude-oil biodegradation via methanogenesis insubsurface petroleum reservoirs [J]. Nature,2008,451(7175):176-180.
    [127]张秀霞,单宝来,张剑杰,等.降解菌HJ-1降解石油动力学[J].中国石油大学学报(自然科学版),2009,33(5):140-143.
    [128]项正心,张丽丽,陈建孟.好氧颗粒污泥及其高效菌株降解苯胺的试验研究[J].环境科学,2009,30(11):3336-3341.
    [129]孟令芝,龚淑玲,何永炳.有机波谱分析(第三版)[M].武汉,武汉大学出版社,2009,243-299.
    [130]孟令芝,龚淑玲,何永炳.有机波谱分析(第三版)[M].武汉,武汉大学出版社,2009,10-80.
    [131]詹亚力,杜娜,郭绍辉.聚丙烯酰胺水溶液的氧化降解作用研究[J].石油大学学报(自然科学版),2005,29(2):109-120.
    [132]王玉秋,何锡文. Fenton反应及其可能的活性产物[J].生物化学与生物物理进展,1997,24(6):513-517.
    [133]王镜岩,朱圣庚,徐长法.生物化学(第三版)[M].高等教育出版社,2007:401-405.
    [134] Halliwell B, GutteridgeJ M C. Free Radicals in Biology and Medicine (4ed)[M]. OxfordOxford Univers. Press,2007.
    [135] Zhu B Z, Shan G Q, Huang C H, e t a1. Metal-independent decomposition of hydroperoxidesby halogenated quinones: Detection and identification of aquinones ketoxy radical [J]. Proc.Natl. Acad. Sci. USA,2009,106(28)11466-11471.
    [136]朱本占.一种新型羟基自由基产生分子机理的研究[J].科学通报,2009,54(12):1673-1680.
    [137]朱本占,覃浩,黄春华.新型羟基和醌碳自由基产生的分子机理[J].波谱学杂志,2011,28(4):479-489.
    [138]滕玉勤.脂肪酸的a-氧化与Refsum综合征.内蒙古医学院学报,1976,(Z1):137-141.
    [139]解用红.不饱和脂肪酸的β氧化[J].生命的化学,199414(2):46-48.
    [140] Rahman KSM, Banat IM, Thahira J, et al. Bioremediation of gasoline contaminated soil by abacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant [J].Bioresour. Technol.2002,81(1):25-32.
    [141] San Sebastián Martínez N., Fíguls Fernández J. Font Segura X., et al. Pre-oxidation of anextremely polluted industrial wastewater by the Fenton’s reagent [J]. J. Hazard. Mater.2003,101(3)315-322.
    [142]郭峰山,丁兰英,杨华明.碘化钾与过氧化氢协同杀菌作用的试验观察[J].中国消毒学杂志,1994,11(4):214-218.
    [143] Lukow T, Dunfield PF, Liesack W. Use of the T-RFLP technique to assess spatial andtemporal changes in the bacterial community structure within an agricultural soil planted withtransgenic and non-transgenic potato plants [J]. FEMS Microbial Ecol.,2000,32(3):241-247
    [144] Dunbar J, Ticknor L0, Kuske CR. Phylogenetic specificity and reproducibility and newmethod for analysis of terminal restriction fragment profiles of16SrRNA genes frombacterial communities [J]. Appl. Environ. Microbiol.,2001,67(1):190-197.
    [145] Wu XL, Chin KJ, Conrad R. Effect of temperature stress on the structure and function of themethanogenic archaeal community in a rice field soil [J]. FEMS Microbiol. Ecol.,2002,39(3):211-218.
    [146] Marsh TL. Terminal restriction fragment length polymorphism (T-HELP): an emergingmethod for characterizing diversity among homologous populations of amplification products[J]. Curr Opin Microbiol,1999,2(3):323-327.
    [147] Clement BG, Kehl LE, DeBord KL, et al. Terminal restriction fragment patterns (TRFPs), arapid, PCR-based method for the comparison of complex bacterial communities [J]. J.Microbial. Methods,1998,31(3):135-142.
    [148] Liu WT, Marsvh TL, Cheng H, et al. Characterization of microbial diversity by determiningterminal restriction fragment length polymorphisms of genes encoding16SrRNA [J]. Appl&Environ Micro6iol,1997,63(11):4516-4522.
    [149] Eschenhagena M, Schupplerb M, Roske I. Molecular characterization of the microbialcommunity structure in two activated sludge systems for the advanced treatment of domesticeffluents [J]. Water Res.,2003,37(13):3224-3232.
    [150] Edel-Hermann V, Dreumont C, Perez-Piqueres A, et al. Terminal restriction fragment lengthpolymorphism analysis of ribosomal HIYA genes to assess changes in fungal communitystructure in soils [J]. EMS Microbiol. Ecol.,2004,47(3):397-404.
    [151] Rousseaux S, Hartmann A, Rouard N, Soulas G. A simplied procedure for terminal restrictionfragment length polymorphism analysis of the soil bacterial community to study the effectsof pesticides on the soil microflora using4,6-dinitroorthocresol as a test case [J]. Biol. Fertil.Soils,2003,37(4):250-254.
    [152]吴亚嫚,谷峻,谭燕,等.油井采出液中微生物群落结构的T-RFLP分析[J].土壤学报,2009,46(5):878-886.
    [153]王晓慧,文湘华,丁鵾,等. T-RFLP方法分析城市污水处理厂中细菌群落的动态变化[J].环境科学,2010,31(5):1307-1312.
    [154]史青,柏耀辉,李宗逊,等.应用T-RFLP技术分析滇池污染水体的细菌群落[J].环境科学,2011,32(6):1786-1792.
    [155]余素林,吴晓磊,钱易.环境微生物群落分析的T-RFLP技术及其优化措施[J].应用与环境生物学报,2006,12(6):861-868.
    [156]孙庆华,柏耀辉,赵翠,等. DGGE、T-RFLP、LH-PCR对两种活性污泥的微生物种群多样性分析的比较[J].环境工程学报,2009,3(8):1365-1370.
    [157]王胜新,丁昊明,戴彩丽,等.吉林油田稠油热采污水处理絮凝剂实验研究[J].油气田环境保护,2011,21(4):8-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700