用户名: 密码: 验证码:
缓释辛伐他汀明胶软膏促进牙槽骨再生的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牙槽骨丧失影响颌骨的稳定、功能、容貌及身心健康,严重危害病人的生活质量。他汀类药物能够诱导骨形成蛋白的表达而促进成骨,直接、大量应用辛伐他汀虽可促进牙槽骨再生,却会导致毒、副作用,浪费药物,造成生物利用度过低。
     本研究拟选择可生物降解性聚合物PLGA、明胶作为载体制备载辛伐他汀缓释制剂,促进牙槽骨再生修复,减少用药次数、降低用药总量、降低乃至消除辛伐他汀的毒、副作用,提高生物利用度。
     本研究首先制备了载辛伐他汀缓释微球体系(已获国家发明专利,专利号:ZL200810050306.2)。表征显示,微球为圆形、表面光滑、粒径及药物释放速率可通过制备环节来调控、在PBS中可缓释辛伐他汀。分别以辛伐他汀和载辛伐他汀微球为主要功能成分制备可注射性缓释辛伐他汀明胶软膏,体外质量检测,性能稳定,可缓释辛伐他汀;动物体内研究证实,两类缓释软膏均可促进牙槽骨再生修复。
     本研究的创新点在于首次制备了PLGA载辛伐他汀缓释微球体系,并获国家发明专利;分别将载辛伐他汀微球和辛伐他汀药物与药用辅料复合制备可注射性缓释辛伐他汀软膏;体内、外的系列表征证实两类缓释软膏均具有生物相容性,可促进牙槽骨再生修复;本研究为难溶性药物的剂型选择及应用提供了新的可行性方案。
Alveolar bone repair or regeneration is a common and complicated clinical problem in orthopaedic surgery.Every year, millions of people are suffering from bone defects arising from trauma, tumor or bone diseases and of course several are dying due to insufficient of ideal bone substitute. There is a long history of using autogenic and allogenic bones in the treatment of bone defects. Even though autogenic bone performs better functions in terms of biocompatibility and other factors, it needs secondary surgery to procure donor bone from the patient’s own body. Allogenic bone bears risk of infections and immune responses, which may even intricate other health problems and thus affecting quality of life. As an alternative, synthetic biomaterials have been developed and clinically tested. However, some of those materials implanted into bone defects are often encapsulated by a fibrous tissue and do not adhere to bone due to lack of bioactivity, thus be isolated from the surrounding bone and remains as a foreign body.
     Sustained release delivery of drugs via PLGA polymers as implants, microspheres, and nanoparticles has gained wide acceptance. Availability of a variety of PLGA polymers makes it easy for pharmaceutical scientists to custom-develop a sustained release formulation based on the disease state and the drug indicated. An ideal sustained release formulation should release the entrapped drugs in a slower and continuous manner over desired time periods. Drug release occurs from PLGA microspheres because of drug diffusion from both the intact and degrading microsphere matrix. However, the extent of drug release during each phase and time lag between the two phases could vary considerably among the PLGA polymers possibly because of differences in their lactide/glycolide ratios and molecular weights. PLGA polymers with different molecular weights and lactide/glycolide ratio had been studied for modifying drug release. PLGA is a biocompatible polymer and can degrad finally into CO2 and H2O in physiological envirenments.
     Gelatin is a natural polymer that is derived from collagen, and is commonly used for pharmaceutical and medical applications due to its biodegradability,biocompatibility and relatively lower antigenicity in physiological envirenments. Gelatin contains a large number of glycine, proline and 4-hydroxyproline residues. These characteristics have contributed to gelatin's safety as a component in drug formulations or as a sealant for vascular prostheses. Due to its promising properties, safety and mainly to the possibility of polyion complexation, gelatin is been used in drug delivery for tissue engineering applications targeting several tissues. There are several commercially available gelatin based carriers for drug delivery that are being applied in tissue engineering applications. The properties of gelatin as a typical rigid-chain high molecular weight compound are in many issues analogous to those of rigid-chain synthetic polymers. Gelatin exhibits essentially the same common properties typical of polymeric substances. Thus, in a similar way to linear-chain synthetic polymers, in aqueous solutions gelatin macromolecules assume, at elevated temperatures, the conformation of a statistical coil. Under specific conditions, such as temperature, solvent or pH, gelatin macromolecules present sufficient flexibility to realize a variety of conformations. This makes it possible to vary also all the gelatin characteristics dependent on its molecular structure. Besides, gelatin shows a rather wide molecular weight distribution. Structural diversity of gelatin chain units determines the specific features of gelatin properties. Most synthetic polymers show no such features that are typical of most biopolymers, such as the presence of both acidic and basic functional groups in the gelatin macromolecules. Its easy processability and gelation properties, lead to gelatin be manufactured in a range of shapes including sponges and injectable hydrogels, but the most used carriers are gelatin microspheres which normally are incorporated in a second scaffold such as a hydrogel. The results from these systemic trials show the efficacy and safety of using gelatin based microparticles as carriers for tissue engineering applications.
     Simvastatin (Sim), a member of the statin family of drugs known for primary and secondary prevention of cardiovascular disease that effectively reduce cholesterol by inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase and consequently improve morbidity and mortality. It also has been reported to stimulate bone formation and influence bone activity. Sim induces expression of bone morphogenetic protein 2(BMP-2) in osteoblast and human osteosarcoma cells. The incubation of cultured bone cells with statins enhanced the expression of BMP-2 gene expression. It has also been demonstrated that relatively low doses of Sim induce osteoblast differentiation and increase mineralization in osteoblastic cells. Statins exhibit anti-inflammatory properties. In vitro and animal studies have suggested they may be useful for the treatment of a number of inflammatory conditions. Statins are now recognized as atypical anti-inflammatory agents possessing a variety of immunomodulating effects in addition to their conventional lipid-lowering properties. A number of large studies with statins have noted greater reductions in levels of circulating C-reactive protein (CRP). Investigators demonstrated that Sim reduced inflammation and resorption of bone through suppressing of matrix metalloproteinase 9 (MMP-9) expressions and the inhibitory effect of Sim on the generation of osteoclast was dose and time dependent. Several recent studies indicate a beneficial effect of statins on bone quality as measured by a reduction in hip fracture risk and an increase in hip bone mineral density. Sim has been shown in experimental models to stimulate bone acting growth factors and enhance bone formation. It has been reported that pharmacological doses of statins such as Sim stimulated in vivo bone formation in rodents and increased new bone volume in calvarial cultures in vitro. Some researchers demonstrated that Sim improved fracture healing in mice as judged by histologic and biomechanical analysis. Anothers found that Sim significantly increased serum levels of osteocalcin (OC) but not of bone alkaline phosphatase (ALP). Thus, in the study to improve repair and regeneration of alveolar bone utilizing Sim as a functional drug.
     The aim of this project is to study about injectable gelatin paste for sustained release of Sim manufactured from microspheres loaded-Sim or neat Sim powder with helpful materials for drug, respectively, and then utilize it for repair and regeneration of alveolar bone defect after systemic examinations of pastes quality. The paste could be injected through a 7-gauge soft needle. Microspheres system is prepared from bioresobable composite materials PLGA using a modified oil-in-water emulsion system, and this preparation technology of systemic microspheres in various size ranges is our state invention patent (No:ZL200810050306.2). An initial phase (phase I) consists of drug release from microspheres because of diffusion from surface bound and poorly encapsulated drug. A relatively slower releasing second phase (phase II) is generally attributed to binding of drug molecules to the polymer in case of peptides. Rapid drug release during the third phase is commonly attributed to the faster drug diffusion from the eroding matrix. All three phases are usually not evident for lipophilic drugs, as these molecules can diffuse efficiently across the intact polymer resulting in the loss of phase II. Sim is a hydrophobic molecule and its release manner is not evident three phases. Release-modifying agents such as ethylene glycols, Spans and Tweens have been incorporated into microspheres to induce constant release of drug.
     Drug-release of microspheres and paste studies have been performed, and data were fitted to better understanding of various mechanisms involved in Sim release from PLGA microspheres in a controlled and sustained manner and gelatin paste over extended periods of time.The two types of gelatin paste loaded-Sim for sustained release were prepared by mixing neat Sim or PLGA microspheres loaded-Sim with gelatin, glycerin, EDTA and water for injection, respectively, in 37℃bath. In vitro physiological stability of pastes was performed in phosphate buffered saline under physiological condition. Their quality is stable for 5 weeks at least. The release rate of Sim from gelatin pastes could be effectively controlled by altering the loading content of Sim in the microspheres and (or) paste, delivery material quality and its concentration. In vitro/In vivo examinations of paste quality demonstrated that gelatin paste with neat Sim or microspheres loaded-Sim all can in slower controlled manner release the drug up to 14 weeks at least and effectively improve regeneration of alveolar bone in Rats,mandibles as judged by mandible length mearement,soft X ray and histologic analysis. For these pastes, time to start release drug and release rate are different, and effect of drug released from paste on repair and regeneration of alveolar bone defect is different, too. At a local lower concentration of Sim to inhibit resorption of primary bone and at a higher concentration of Sim to active formation, deposition and mineralization of bone matrix newly formed.
     In conclusion, injectable gelatin paste loaded-Sim for sustained release containing neat Sim or PLGA microspheres loaded-Sim has been thoroughly investigated. Two types of paste can improve regeneration of alveolar bone, but effect on repair and regeneration of alveolar bone defect was dose or concentration of Sim in local tissue and release time dependent. Overall, gelatin paste loaded-Sim can be utilized to custom-prepare drug delivery systems meeting specific patient and tissue needs.
引文
[1] Auras R, Harte B, Selke S. An overview of polylactides as packaging materials[J]. Macromolecular bioscience,2004,4(9):835-864.
    [2] Lee T H, Wang J, Wang C H. Double-walled microspheres for the sustained release of a highly water soluble drug: characterization and irradiation studies[J].J Control Rel, 2002, 83(3):437-452.
    [3] Wang J, Wang B M, Schwendeman S P. Characterization of the initial burst release of a model peptide from poly(DL-lactide-co-glycolide) microspheres[J]. J Control Rel ,2002, 82(2):289-307.
    [4] Hickey T, Kreutzer D, Burgess D J,et al. Dexamethasone/PLGA microspheres for continuous delivery of an anti-inflammatory drug for implantable medical devices[J]. Biomaterials,2002,23(7):1649-1656.
    [5] Rezwan K, Chen Q Z, Blaker J J , et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering[J]. Biomaterials. 2006, 27(18) :3413-3431.
    [6] Fonseca C, Simoes S, Gaspar R. Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity[J]. J Control Rel, 2002, 83(2):273-286.
    [7] Sahoo S K, Panyam J, Prabha S,et al. Residual polyvinyl alcohol associated with poly(DL-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake[J]. J Control Rel. 2002,82(1):105-111.
    [8] Mu L, Feng S S. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol): PLGA nanoparticles containing vitamin E TPGS[J]. J Control Rel.,2003, 86(1):33-48.
    [9] Waeckerle-Men Y, Groettrup M. PLGA microspheres for improved antigen delivery to dendritic cells as cellular vaccines[J]. Adv Drug Delivery Rev,2005,57(3):475-482.
    [10] Zolnik B S, Burgess D J. Effect of acidic pH on PLGA microsphere degradation and release[J]. J Control Rel,2007,122(3):338-344.
    [11]马光辉,苏志国,编著.高分子微球材料[M],北京:化学工业出版社,2005.
    [12] Lee T H,Wang J J,Wang C H. Double-walled microspheres for the sustained release of a highly water Soluble drug: characterization and irradiation studies[J]. J Control Rel,2002, 83(3):437-452.
    [13] Rahman N A,Mathiowitz E.Localization of bovine serum albumin in double-walled microspheres[J]. J Control Rel,2004,94 (1):163-175.
    [14] Shi M, Yang Y Y, Chaw C S, et al.Double walled POE/PLGA microspheres: encapsulation of water-soluble and water-insoluble proteins and their release properties[J]. J Control Rel,2003,89(2): 167-177.
    [15] Cui F,Yang M,Jiang Y,et al.Design of sustained-release nitrendipine microspheres having solid dispersion structure by quasi-emulsion solvent diffusion method[J]. J Control Rel,2003,91(3):375-384.
    [16] Kim H K,Park T G.Comparative study on sustained release of human growth hormone from semi-crystalline poly(L-lactic acid) and amorphous poly(D,L-lactic-co-glycolic acid) microspheres: morphological effect on protein release[J]. J Control Rel,2004,98(1): 115-125.
    [17] Yamaguchi Y,Takenaga M, Kitagawa A,et al.Insulin-loaded biodegradable PLGA microcapsules: initial burst release controlled by hydrophilic additives[J]. J Control Rel,2002, 81(2):235-249.
    [18] Wang F J, Wang C H.Sustained release of etanidazole from spray dried microspheres prepared by non-halogenated solvents[J]. J Control Rel,2002,81(2): 263–280.
    [19] Wang J,Wang B M, Schwendeman S P.Mechanistic evaluation of the glucose-induced reduction in initial burst release of octreotide acetate from poly(d,l-lactide-co-glycolide) microspheres[J]. Biomaterials, 2004,25(10): 1919-1927.
    [20] Park M R , Chun C J, Ahn S W,et al. Cationic and thermosensitive protamine conjugated gels for enhancing sustained human growth hormone delivery[J].Biomaterials. 2010,31 (6): 1349–1359.
    [21] Wenk E,Meinel A J, Wildy S, et al.Microporous silk fibroin scaffolds embedding PLGA microparticles for controlled growth factor delivery in tissue engineering [J]. Biomaterials,2009,30 (13): 2571–2581.
    [22] Ogawara K,Furumoto K,Takakura Y.Surface hydrophobicity of particles is not necessarilythe most important determinant in their in vivo disposition after intravenous administration in rats[J]. J Control Rel,2001,77(1):191-198.
    [23] Gaur U,Sahoo S K,De T K,et al. Biodistribution of fluoresceinated dextran using novel nanoparticles evading reticuloendothelial system [J]. Int J Pharm,2000,202(1):1-10.
    [24] Hoarau D, Delmas P, David S, et al. Novel long-circulating lipid nanocapsules[J]. Pharm Res,2004,21(10):1783-1789.
    [25] Mosqueira V C F,Legrand P,Morgat J L,et al.Biodistribution of Long-Circulating PEG-Grafted Nanocapsules in Mice:Effects of PEG Chain Length and Density[J]. Pharm Res,2001,18(10):1411-1419.
    [26] Avgoustakis K,Beletsi A,Panagi Z.Effect of copolymer composition on the physicochemical characteristics, in vitro stability, and biodistribution of PLGA–mPEG nanoparticles[J].Int J Pharm,2003, 259(1):115-127.
    [27] Moghimi S M.Chemical camouflage of nanospheres with a poorly reactive surface:towards development of stealth and target-specific nanocarriers[J]. Biochimica et Biophysica Acta,2002,1590(1):131-139.
    [28] Abe S,Otsuki M.Styrene maleic acid neocarzinostatin treatment for hepatocellular carcinoma[J].Curr.Med. Chem.Anticancer Agents, 2002, 2(6):715-726.
    [29] Smart J D.The basics and underlying mechanisms of mucoadhesion[J].Adv Drug Deliv Rev,2005, 57(11): 1556-1568.
    [30] Bernkop-Schnurch A, Guggi D, Pinter Y. Thiolated chitosans: development and in vitro evaluation of a mucoadhesive, permeation enhancing oral drug delivery system[J].J Control Rel,2004,94(1): 177-186.
    [31] Lele B S,Hoffman A S.Mucoadhesive drug carriers based on complexes of poly(acrylic acid) and PEGylated drugs having hydrolysable PEG-anhydride-drug linkages[J].J Control Rel,2000, 69(2): 237-248.
    [32] Bies C,Lehr C M,Woodley J F.Lectin-mediated drug targeting: history and applications[J].Adv Drug Deliv Rev,2004,56(4): 425-435.
    [33] Vasir J K,Tambwekar K,Garg S.Bioadhesive microspheres as a controlled drug delivery system[J].Int J Pharm,2003,255(1):13-32.
    [34] Thomas T P,Majoros I J,Kotlyar A,et al. Targeting and Inhibition of Cell Growth by anEngineered Dendritic Nanodevice[J].J Med Chem,2005,48(11):3729-3735.
    [35] Thomas T P,Patri A K,Myc A, et al.In Vitro Targeting of Synthesized Antibody-Conjugated Dendrimer Nanoparticles[J]. Biomacromolecules, 2004, 5(6):2269-2274.
    [36] Wildemann B , Sander A, Schwabe P,et al. Short term in vivo biocompatibility testing of biodegradable poly(D,L-lactide)—growth factor coating for orthopaedic implants[J]. Biomaterials, 2005,26(18): 4035-4040.
    [37] Voltairas P A,Fotiadis D I,Michalis L K.Hydrodynamics of magnetic drug targeting [J].J Biomech,2002,35(6):813–821.
    [38] Hadgraft J.Skin deep[J].Eur.J.Pharm.Biopharm,2004,58(2):291-299.
    [39] Geroski D H , Edelhauser H F.Transscleral drug delivery for posterior segment disease[J].Adv Drug Deliv Rev,2001,52(1):37-48.
    [40] Fenske D B, Cullis P R. Liposomal nanomedicines[J]. Expert Opin. Drug Deliv,2008,5(1):25–44.
    [41] Brasnjevic I, Steinbusch H, Schmitz C,et al. Delivery of peptide and protein drugs over the blood–brain barrier[J]. Progress in Neurobiology,2009, 87(4): 212–251.
    [42]李志强,任彦荣.微胶囊技术及其应用研究进展[J].化学推进剂与高分子材料,2004,6(1):19-31.
    [43]孟庆圆,崔福斋,朱宁,等.电纺丝方法制备卵磷脂改性聚乳酸血管组织工程支架材料[J].生物骨科材料与临床研究,2009,6(1):42-45.
    [44] Sugiyama M, Kodama T, Konishi K. Compactin and simvastatin, but not pravastatin, induce bone morphogenetic protein-2 in human osteosarcoma cells[J]. Biochem Biophys Res Commun, 2000, 271(3):688-692.
    [45] Jeon J H, Puleo D A. Alternating release of different bioactive molecules from a complexation polymer system[J].Biomaterials, 2008,29 (26) :3591–3598.
    [46] Sugiyama M,Kodama T,Konishi K, et al.Compactin and simvastatin,but not pravastatin,induce bone morphogenetic protein-2 in human osteosarcoma cells[J].Biochem Biophys Res Commin,2000, 271(3): 688-692.
    [47] Ohnaka K,Shimoda S,Nawata H,et al.Pitacastatin enhanced BMP-2 and osteocalcin expression by inhibition of Rho-associated kinase in human osteoblasts[J].BiochemBiophys Res Commun,2001,287(2): 337-342.
    [48] Maeda T,Kaeane T,Horiuchi N.Statins augment vascular endothelial growth factor expression in osteoblastic cells via inhibition of protein prenylation[J]. Endocrinology, 2003,144(2):681-692.
    [49] Wang X,Tokuda H,Hatakeyama D, et al.Mechanism of sinvastatin on induction of heat shock protein in osteoblasts[J].Biochem Biophys, 2003,415(1):6-13.
    [50] Hwang R, Lee E K, Kin M H, et al. Calcyclin,a Ca2+ ion-binding protein,contributes to the anabolic effects of sinvastatin on bone[J].J Biol Chem,2004,279(20):21239-21247.
    [51] Thunyakitpisal P D,Chaisuparat R.Sinvastatin,an HMG-CoA reductase inhibitor reduced the expression of matrix metalloproteinase-9 (Gelatinase B) in osteoblastic cells and HT1080 fibrosarcoma cells[J].J phaumacol Sci,2004,94(4):403-409.
    [52]李蕴聪,李晓红,高陶磊等.辛伐他汀对大鼠颅骨成骨细胞生物学特性的影响[J].上海口腔医学,2009,18(6):624-629.
    [53] Woo J T,Kasai S,Stern P H,et al.Compactin suppresses bone resorption by inhibitiong the fusion of prefusion osteoclasts and disrupting the actin ring in osteoclasts[J].J Bone Miner Res, 2000,15(4):650-662.
    [54] Junqueira J C,Mancini M N,Carvalho Y R,et al.Effects of sinvastatin on bone regeneration in the mandibles of ovariectomized rats and blood cholesterol levels[J].J Oral Sci,2002,44(3):117-124.
    [55] Michael R,Thylin,Jay C ,et al.Effects of sinvastatin gels on murine calvarial bone[J].J Periodontol,2002,73(10):1141-1148.
    [56] Stein D,Lee Y,Schmid M J,et al.Local sinvastatin effects on mandibular bone growth and inflammation[J].J Periodontol,2005,76(11): 1861-1870.
    [57] Ayukawa Y,Okamura A,Koyano K.Sinvastatin promotes osteogenesis around titanium inplants[J].Clin Oral Inplants Res,2004,15(3):346-350.
    [58] Yao W,Farmer R,Cooper R,et al.Simvastatin did not prevent nor restore ovariectomy-induced bone loss in adult rats[J]. J Musculoskelet Neoronal Interact,2006, 6(3):277-283.
    [59] Adamopoulos O,Papadopoulos T.Nanostructured bioceramics for maxillofacialapplications[J].J Mater Sci: Mater Med,2007,18 (8):1587–1597.
    [60] Murugan R, Rao K P, Kumar,T S S.Heat-deproteinated xenogeneic bone from slaughterhouse waste: Physico-chemical properties[J]. Bull.Mater. Sci, 2003, 26 (5):523–528.
    [61] Murugan R, Kumar T S S, Rao K P.Fluorinated bovine hydroxyapatite:Preparation and characterization[J]. Mater. Lett,2002, 57 (2): 429–433.
    [62] Murugan R, Ramakrishna S.Coupling of therapeutic molecules onto surface modified coralline hydroxyapatite[J]. Biomaterials, 2004,25 (15): 3073–3080.
    [63] Murugan R,Rao K P, Kumar T S S. Microwave synthesis of bioresorbable carbonated hydroxyapatite using goniopora[J]. Bioceramics,2002,15 (1):51–54.
    [64] Webster T J, Siegel R W, Bizios R. Enhanced functions of osteoblasts on nanophase ceramics[J]. Biomaterials,2000, 21 (17): 1803–1810.
    [65] Lee H H ,Hong S J,Kim C H,et al.Preparation of hydroxyapatite spheres with an internal cavity as a scaffold for hard tissue regeneration[J]. J Mater Sci: Mater Med,2008,19 (9):3029–3034.
    [66] Dorozhkin S V.Calcium orthophosphate cements for biomedical application[J]. J Mater Sci, 2008, 43 (9):3028–3057.
    [67] Ginebra M P, Traykova T, Planell J A. Calcium phosphate cements: Competitive drug carriers for the musculoskeletal system[J]. Biomaterials, 2006, 27 (10):2171-2177.
    [68] Ginebra M P, Traykova T, Planell J A. Calcium phosphate cements as bone drug delivery systems: A review[J]. J Control Release,2006,113 (2):102-110.
    [69] Kisanuki O, Yajima H, Umeda T,et al. Experimental study of calcium phosphate cement impregnated with dideoxy-kanamycin B[J]. J Orthop Sci,2007,12 (3):281- 288.
    [70] Li D X, Fan H S, Zhu X D, et al. Controllable release of salmon-calcitonin in injectable calcium phosphate cement modified by chitosan oligosaccharide and collagen polypeptide[J]. J Mater Sci Mater Med, 2007, 18 (11):2225-2231.
    [71] Fei Z, Hu Y, Wu D, et al. Preparation and property of a novel bone graft composite consisting of rhBMP-2 loaded PLGA microspheres and calcium phosphate cement[J]. J Mater Sci Mater Med,2008, 19 (3):1109-1116.
    [72] Bodde E W H, Boerman O C, Russel F G M,et al. The kinetic and biological activity of different loaded rhBMP-2 calcium phosphate cement implants inrats[J]. J Biomed Mater Res A ,2008,87 (3): 780-791.
    [73] Blazsek J , Nagy C D , Blazsek I, et al.Aminobisphosphonate Stimulates Bone Regeneration and Enforces Consolidation of Titanium Implant into a New Rat Caudal Vertebrae Model[J]. Pathol. Oncol. Res,2009, 15 (4):567–577.
    [74] Alexander H, Parsons J R, Ricci J L,et al. Calcium based ceramics and composites in bone reconstruction[J]. ICRC Critical Reviews in Biocompatibility ,1987,4(1): 43-77.
    [75] LeGeros R Z. Properties of osteoconductive biomaterials: Calcium phosphates[J]. Clin Orfhop Rel Res,2002,395(1): 81-98.
    [76] Shirtliff V J,Hench L L .Bioactive materials for tissue engineering, regeneration and repair[J]. J Materials Science,2003,38 (23):4697– 4707.
    [77] Bouhadir K H, Mooney D J. Promoting angiogenesis in engineered tissues[J]. J Drug Target ,2001,9(6):397–406.
    [78] Murakami S, Takayama S, Kitamura M, et al. Recombinant human basic fibroblast growth factor (bFGF) stimulates periodontal regeneration in class II furcation defects created in beagle dogs[J]. J. Periodont. Res,2003,38(1):97–103.
    [79] Wozney J M, Rosen V. Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair[J]. Clin Orthop Relat Res, 1998,346(1):26–37.
    [80] Ahn S H, Kim C S, Suk H J, et al. Effect of recombinant human bone morphogenetic protein-4 with carriers in rat calvarial defects[J]. J Periodontol, 2003,74(6):787-797.
    [81] Jin Q M, Zhao M, Economides A N, et al. Noggin gene delivery inhibits cementoblast-induced mineralization[J]. Connect Tissue Res, 2004, 45(1):50-59.
    [82] Wikesj U M, Sorensen R G, Kinoshita A, et al. Periodontal repair in dogs: effect of recombinant human bone morphogenetic protein-12 (rhBMP-12) [J]. J Clin Periodontol, 2004, 31(8):662-670.
    [83] Letic-Gavrilovic A,Piattelli A,Abe K. Nerve growth factor B (NGFB) delivery via a collage/hydroxyapatite (Col/HAp)composite and its effects on new bone ingrowth[J]. J Material science :Material in medicine,2003,14(2):95-102.
    [84] Wozney J M, Rosen V. Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair[J]. Clin Orthop Relat Res,1998,346(1):26–37.
    [85] Campisi P, Hamdy R C, Lauzier D,et al. Expression of bone morphogenetic proteins during mandibular distraction osteogenesis[J]. Plastic Reconstr Surg,2003,111(1), 201–210.
    [86] Campisi P, Hamdy R C, Lauzier D,et al. Overview of the radiology, histology, and bone morphogenetic protein expression during distraction osteogenesis of the mandible[J].J. Otolaryngol,2002,31(5), 281–286.
    [87] Schrier J A, Fink B F, RodgersJ B,et al. Effect of a Freeze-Dried CMC/PLGA Microsphere Matrix of rhBMP-2 on Bone Healing[J]. AAPS PharmsciTech,2001,2 (3) :73-80.
    [88] Deppe H , Stemberger A.Effects of laser-modified versus osteopromotively coated titanium membranes on bone healing: a pilot study in rat mandibular defects[J]. Lasers in Medical Science,2004 ,18 (4): 190–195.
    [89] Lee A Z, Jiang J, He J, et al. Stimulation of cytokines in osteoblasts cultured on enamel matrix derivative[J]. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 2008,106(1): 133-138.
    [90] Weishaupt P, Bernimoulin J P, Trackman P,et al.Stimulation of osteoblasts with Emdogain increases the expression of specific mineralization markers[J].Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology,2008,106(2) : 304-308.
    [91] Sculean A, Berakdar M, Windisch P, et al. Immunohistochemical investigation on the pattern of vimentin expression in regenerated and intact monkey and human periodontal ligament[J].Archives of Oral Biology, 2003, 48( 1):77-86.
    [92] Bhatnagar R S, Qian J J, Wedrychowska A,et al.Design of biomimetic habitats for tissue engineering with P-15, a synthetic peptide analogue of collagen[J]. Tissue Eng, 1999,5 (1):53–65.
    [93] Nguyen H, Qian J J, Bhatnagar R S,et al.Enhanced cell attachment and osteoblastic activity by P-15 peptide-coated matrix in hydrogels[J].Biochemical and Biophysical Research Communications, 2003, 311(1):179-186.
    [94] Chang S C N, Wei F C, Chuang H, et al. Ex vivo gene therapy in autologous critical-sizecraniofacial bone regeneration[J]. Plast Reconstr Surg ,2003, 112(7) : 1841-1850.
    [95] Chang S C N, Chuang H L, Chen Y R, et al. Ex vivo gene therapy in autologous bone marrow stromal stem cells for tissue-engineered maxillofacial bone regeneration[J]. Gene Ther,2003,10(24):2013–2019.
    [96] Franceschi R T, Wang D, Krebsbach P H,et al. Gene therapy for bone formation: In vitro and in vivo osteogenic activity of an adenovirus expressing BMP7[J]. J Cell Biochem, 2000,78(3):476–486.
    [97] Musgrave D S, Bosch P, Ghivizzani S,et al.Adenovirus-mediated direct gene therapy with bone morphogenetic protein-2 produces bone[J]. Bone, 1999, 24(6):541–547.
    [98] Kang Q, Sun M H, Cheng H , et al. Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery[J]. Gene Ther ,2004,11(17): 1312–1320.
    [99] Li J Z, Li H, Sasaki T, et al. Osteogenic potential of five different recombinant human bone morphogenetic protein adenoviral vectors in the rat[J]. Gene Ther, 2003,10(20): 1735–1743.
    [100] Baltzer A W, Lattermann C, Whalen J D, et al.Potential role of direct adenoviral gene transfer in enhancing fracture repair[J]. Clin Orthop,2000,379:120–125.
    [101] Baltzer A W, Lattermann C, Whalen J D, et al.Genetic enhancement of fracture repair: healing of an experimental segmental defect by adenoviral transfer of the BMP-2 gene [J].Gene Ther,2000,7(9):734–739.
    [102] Dunn C A, Jin Q, Taba M,et al. BMP gene delivery for alveolar bone engineering at dental implant defects[J].Mol Ther, 2005,11(2):294–299.
    [103] Bonadio J, Smiley E, Patil P,et al. Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration [J]. Nat Med ,1999,5(7):753–759.
    [104] Krebsbach P H, Gu K, Franceschi R T,et al. Gene therapy-directed osteogenesis: BMP-7-transduced human fibroblasts form bone in vivo[J]. Hum Gene Ther ,2000, 11(8):1201–1210.
    [105] Anusaksathien O, Webb S A, Jin Q M, et al. Gene therapy of bone morphogenetic protein for periodontal tissue engineering[J].Tissue Eng,2003, 9(4):745- 756.
    [106] Jin Q, Anusaksathien O, Webb S A, et al. Engineering of tooth-supporting structures by delivery of PDGF gene therapy vectors[J]. Mol Ther,2004,9(4):519- 526.
    [107] Anusaksathien O, Jin Q, Zhao M, et al. Effect of sustained gene delivery of platelet-derived growth factor or its antagonist (PDGF-1308) on tissue-engineered cementum[J]. J Periodontol,2004, 75(3):429- 440.
    [108] Zhang Y, Cheng X, Wang J, et al. Novel chitosan/collagen scaffold containing transforming growth factor-beta1 DNA for periodontal tissue engineering[J].Biochem Biophys Res Commun, 2006, 344(1):362- 369.
    [109] de Jonge L T, Leeuwenburgh S C G, Wolke J G,et al. Organic–Inorganic Surface Modifications for Titanium Implant Surfaces[J]. Pharmaceutical Research,2008, 25(10): 2357- 2369.
    [110] Lee C H, Singla A, Lee Y. Biomedical applications of collagen[J]. Int. J. Pharm,2001,221 (1): 1–22.
    [111] Nimni M E , Harkness F D, Nimni M E. Molecular structures and functions of collagen[J]. Collagen Biochemistry, 1988,1 (1):1–79.
    [112] Ahn E S, Gleason N J, Nakahira A,et al. Nanostructure processing of hydroxyapatite-based bioceramics[J]. Nano Lett,2001, 1 (1): 149–153.
    [113] Berghoff W J, Pietrzak W S, Rhodes R D. Platelet-rich plasma application during closure following TKA: A retrospective study[J]. Orthopedics,2006,29(7): 590–606.
    [114] Hanna R, Trejo P M, Weltman R L. Treatment of intrabony defects with bovinederived xenograft alone and in combination with platelet-rich plasma: a randomized clinical trial[J]. J Periodontol,2004,75(12): 1668–1677.
    [115] Jenis L G, Banco R J, Kwon B. A prospective study of Autologous Growth Factors(AGF) in lumbar interbody fusion[J]. Spine J ,2006,6(1):14–20.
    [116] Wiltfang J, Schlegel K A, Schultze-Mosgau S, et al.Sinus floor augmentation with beta-tricalciumphosphate (beta-TCP): does plateletrich plasma promote its osseous integration and degradation [J]? Clin Oral Implants Res,2003,14(2):213–218.
    [117] Pietrzak W S, Eppley B L. Platelet rich plasma: biology and new technology[J].J Craniofac Surg ,2005,16(6):1043–1054.
    [118] Anitua E, Andia I, Ardanza B,et al. Autologous platelets as a source of proteins forhealing and tissue regeneration[J]. Thromb Haemost ,2003, 91 (1):4–15.
    [119] Eppley B L, Woodell J E, Higgins J. Platelet quantification and growth factor analysis from platelet-rich plasma: implications for wound healing[J]. Plast Reconstr Surg, 2004,114(6):1502–1508.
    [120] Kubota S, Kawata K, Yanagita T,et al. Abundant retention and release of connective tissue growth factor (CTGF/CCN2) by platelets[J]. J Biochem (Tokyo),2004, 136(3):279–282.
    [121] Weibrich G, Hansen T, Kleis W,et al. Effect of platelet concentration in platelet-rich plasma on peri-implant bone regeneration[J]. Bone,2004,34(4):665–671.
    [122] Kawase T,Okuda K,Saito Y,et al. Platelet-rich plasma provides nucleus for mineralization in cultures of partially differentiated periodontal ligament cells.In vitro cell[J]. Dev.Biol, --Animal, 2005,41(1):171-176.
    [123] Kalfas I H. Principles of bone healing[J]. Neurosurg Focus,2001,10(4),1-10.
    [124] Rengachary S S. Bone morphogenetic proteins: basic concepts[J]. Neurosurg Focus,2002,13(6):e2.
    [125] Pilitsis J G, Lucas D R, Rengachary S R. Bone healing and spinal fusion[J]. Neurosurg Focus,2002,13(6):e1-6
    [126] Bormann N, Pruss A, Schmidmai G ,et al. In vitro testing of the osteoinductive potential of diVerent bony allograft preparations[J].Arch Orthop Trauma Surg,2010, 130 (1): 143–149.
    [127] Windisch P , Szendr?i-Kiss D , Horváth A,et al.Reconstructive periodontal therapy with simultaneous ridge augmentation. A clinical and histological case series report[J]. Clin Oral Invest,2008,12 (2):257–264.
    [128] Camelo M, Nevins M L, Lynch S, et al. Periodontal regeneration with an autogenous Bone-Bio-Oss composite graft and a Bio-Gide membrane[J]. Int J Periodontics Restor Dent,2001, 21 (1):109–119.
    [129] Mellonig J. Human histologic evaluation of a bovinederived xenograft in the treatment of periodontal osseous defects[J]. Int J Periodontics Restor Dent, 2000,20 (1):19–29.
    [130] Nevins M L, Camelo M, Lynch S E, et al.Evaluation of periodontal regeneration following grafting intrabony defects with Bio-Oss collagen: a human histologic report[J].Int J Periodontics Restor Dent,2003,23 (1):9–17.
    [131] Sculean A, Stavropoulos A, Windisch P, et al.Healing of human intrabony defects following regenerativeperiodontal therapy with a bovine-derived xenograft and guided tissue regeneration[J]. Clin Oral Investig, 2004,8 (1):70–74.
    [132] Zitzmann N U, Sch?rer P, Marinello C P, et al. Alveolar ridge augmentation with Bio-Oss: a histologic study in humans[J]. Int J Periodontics Restorative Dent,2001, 21 (2):289–295.
    [133]王俊国,曹斌.丹参促进骨折愈合的研究进展[J].中国骨伤, 2003,16(10) : 637-638.
    [134] Ramamurthv N S, Rifkin B R , Greenwald R A , et al. Inhibition of matrix metalloproteinase-mediated periodontal bone loss in rats: a comparison of 6 chemically modified tetracyclines [J].J Periodontol, 2002,73(7):726.
    [135]史炜镔,符诗聪,杜宁,等.丹参有效部位对骨折愈合过程中胶原基因表达的影响[J].中国中西医结合杂志,2000,20(4) :269-271.
    [136]刘国良,黄孝庆,刘渝,等.丹参对大鼠成骨细胞增殖和分化的影响[J].重庆医科大学学报,2006,31(6):865-867.
    [137]林润台,王忠,刘立波,等.丹参促进下颌骨骨折愈合的超微结构研究[J].中华口腔医学杂志,1992,27(4):215-216.
    [138]唐琪,陈莉丽,严杰.骨碎补提取物促小鼠成骨细胞株MC3T32E1细胞增殖、分化和钙化作用的研究[J].中国中药杂志, 2004,29(2):164-167.
    [139]唐琪,王仁飞,王维倩,等.骨碎补提取液及柚皮甙对小鼠成骨细胞MC3T3-E1基质矿化作用影响的比较研究[J].口腔医学, 2009,29(8):403-408.
    [140]陈莉丽,唐琪,严杰.骨碎补提取液对实验性牙槽骨吸收疗效的研究[J].中国中药杂志,2004,29(6):549-553.
    [141]王新,苗宗宁,黄伟,等.双黄补对牙周病中牙周膜细胞的增殖分化的调控[J].中国交通医学杂志,2005,19(3):387-389.
    [142]丁佩惠,唐琪,陈莉丽,等.中药地龙提取液的促成骨作用及对实验性牙槽骨吸收疗效的研究[J].浙江大学学报(理学版), 2008,35(6):684-689.
    [143] Lee S H , Shin H.Matrices and scaffolds for delivery of bioactive molecules in bone andcartilage tissue engineering[J]. Advanced Drug Delivery Reviews ,2007,59 (4-5): 339–359.
    [144] Wozney J M, RosenV, Celeste A J, et al.Novel regulators of bone formation: molecular clones and activities[J]. Science ,1988,242 (4885) : 1528–1534.
    [145] Celeste A J, Iannazzi J A, Taylor R C, et al.Identification of transforming growth factor beta family members present in bone-inductive protein purified from bovine bone[J]. Proc. Natl. Acad. Sci. U. S. A,1990,87 (24) :9843–9847.
    [146] Erlebacher A, Filvaroff E H, Ye J Q,et al. Osteoblastic responses to TGF-beta during bone remodeling[J].Mol. Biol. Cell, 1998,9(7) : 1903–1918.
    [147] Ehrhart N P, Hong L, Morgan A L, et al.Effect of transforming growth factor-beta1 on bone regeneration in critical-sized bone defects after irradiation of host tissues[J].Am. J. Vet. Res,2005,66 (6):1039–1045.
    [148] Ramoshebi L N, Matsaba T N, Teare J, et al.Tissue engineering: TGF-beta superfamily members and delivery systems in bone regeneration[J]. Expert Rev. Mol. Med,2002,2002(1) :1–11.
    [149] Broderick E, Infanger S, Turner T M,et al. Depressed bone mineralization following high dose TGF-beta1 application in an orthopedic implant model[J]. Calcif. Tissue Int, 2005,76 (5) :379–384.
    [150] Mc Kinney L, Hollinger J O. A bone regeneration study: transforming growth factor-beta 1 and its delivery [J]. J. Craniofac. Surg, 1996,7 (1) :36–45.
    [151] Critchlow M A, Bland Y S, Ashhurst D E.The effect of exogenous transforming growth factor-beta 2 on healing fractures in the rabbit[J].Bone, 1995,16 (5): 521–527.
    [152]赵淑贤,王强,程政,等.转化生长因子β1诱导鼠牙槽骨缺损修复的实验研究[J].中华口腔医学杂志,2000,35(4):292-293.
    [153] Young S , Wong M , Tabata Y,et al.Gelatin as a delivery vehicle for the controlled release of bioactive molecules[J]. J Control Rel ,2005,109 (1-3) :256– 274.
    [154] Holland T , Tabata A Y, Mikos A G.In vitro release of transforming growth factor-beta1 from gelatin microparticles encapsulated in biodegradable, injectable oligo(poly (ethylene glycol) fumarate) hydrogels[J]. J. Control. Rel,2003,91 (3) : 299–313.
    [155] Holland T A, Tessmar J K V, TabataY, et al.Transforming growth factor-beta1 releasefrom oligo(poly(ethylene glycol) fumarate) hydrogels in conditions that model the cartilage wound healing environment[J].J. Control. Rel, 2004,94 (1) :101–114.
    [156] Li R H ,Wozney J M.Delivering on the promise of bone morphogenetic proteins[J]. Trends in Biotechnology,2001,19(7): 255-265.
    [157] Winn S R, Uludag H , Hollinger J O.Sustained release emphasizing recombinant human bone morphogenetic protein-2[J]. Advanced Drug Delivery Reviews ,1998,31 (3): 303–318.
    [158] Freilich M, PatelC M, Wei M,et al.Growth of new bone guided by implants in a murine calvarial model[J].Bone , 2008,43 (4): 781–788.
    [159]孙杰,卞翠荣,王世立,等.重组人骨形态发生蛋白-7复合体对牙槽骨再生的影响[J].中国生物制品学杂志,2007,20(4):282-284.
    [160] Geiger M, Li R H, Friess W.Collagen sponges for bone regeneration with rhBMP- 2[J]. Advanced Drug Delivery Reviews,2003,55 (12): 1613– 1629.
    [161] Li B, Yoshii T, Hafeman A E,et al.The effects of rhBMP-2 released from biodegradable polyurethane/microsphere composite scaffolds on new bone formation in rat femora[J]. Biomaterials, 2009,30 (35) :6768–6779.
    [162]李宁毅,高宁,商红国,等.聚乳酸、rhBMP一2复合体在牙槽骨修复中作用的实验研究[J].现代口腔医学杂志,2006,20(2):161-163.
    [163] Issa J P M, do Nascimento C , Bentley M V L B,et al.Bone repair in rat mandible by rhBMP-2 associated with two carriers[J].Micron, 2008,39 (4) :373–379.
    [164] Smeets R, Maciejewski O, Gerressen M,et al.Impact of rhBMP-2 on regeneration of buccal alveolar defects during the osseointegration of transgingival inserted implants[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod ,2009,108:e3-e12.
    [165] Akagawa Y, Kubo T, Koretake K,et al.Initial bone regeneration around fenestrated implants in Beagle dogs using basic fibroblast growth factor–gelatin hydrogel complex with varying biodegradation rates[J]. Journal of Prosthodontic Research, 2009,53 (1): 41–47.
    [166] Holland T A, Tabata Y, Mikos A G,et al.Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering[J]. J. Control. Release, 2005,101 (1): 111–125.
    [167] Schmidmaier G, Wildemann B, Stemberger A, et al.Biodegradable poly(D,L-lactide) coating of implants for continuous release of growth factors[J]. J. Biomed. Mater. Res, 2001,58 (4):449-455.
    [168] Dunn C A, Jin Q, Taba M,et al. BMP gene delivery for alveolar bone engineering at dental implant defects[J]. Mol Ther,2005, 11(2) :294–299.
    [169] Bonadio J, Smiley E, Patil P,et al. Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration[J]. Nat Med, 1999,5(7):753–759.
    [170] Fang J, Zhu Y Y, Smiley E, et al. Stimulation of new bone formation by direct transfer of osteogenic plasmid genes[J]. Proc Natl Acad Sci U S A, 1996,93(12):5753–5758.
    [171] Krebsbach P H, Gu K, Franceschi R T,et al. Gene therapy-directed osteogenesis: BMP-7-transduced human fibroblasts form bone in vivo[J]. Hum Gene Ther 2000, 11(8): 1201–1210.
    [172] Rutherford R B, Moalli M, Franceschi R T,et al. Bone morphogenetic protein- transduced human fibroblasts convert to osteoblasts and form bone in vivo[J]. Tissue Eng, 2002,8(3):441–452.
    [173]刘牧菲.四环素骨诱导活性材料整复牙槽缺损的实验研究[J].口腔医学纵横杂志,2000,16(3):190-192.
    [174]胡彬彬.异体牙根颗粒修复牙周病骨缺损的临床观察[J].现代医药卫生,2006,2(21):57-58.
    [175]陈江,杨进,黄文秀,等.胶原膜联合自体骨髓基质细胞及富血小板血浆修复牙槽骨缺损的实验研究[J].中国修复重建外科杂志,2007,21(5):523-527.
    [176] Fontana S, Olmedo D G, Linares J A,et al.Effect of platelet-rich plasma on the peri-implant bone response: an experimental study[J]. Implant Dent,2004,13 (1):73-78.
    [177] Sanchez A R, Sheridan P J, Eckert S E,et al. Regenerative potential of platelet-rich plasma added to xenogenic bone grafts in peri-implant defects: a histomorphometric analysis in dogs[J]. J. Periodontol,2005,76(10):1785-1792.
    [178] Warnke P H, Bolte H, Nemann K S,et al.Endocultivation: Does delayed application of BMP improve intramuscular heterotopic bone formation [J]? J Cranio-Maxillo Surgery, 2010, 38 (1):54-59.
    [179] Dorozhkin S V.Calcium orthophosphate cements for biomedical application[J].J Mater Sci, 2008,43 (9):3028–3057.
    [180] Weir M D, Xu H H K. High-strength, in situ-setting calcium phosphate composite with protein release[J]. J Biomed Mater Res A, 2008, 85(2):388-396.
    [181] Kisanuki O, Yajima H, Umeda T, et al. Experimental study of calcium phosphate cement impregnated with dideoxy-kanamycin B[J]. J Orthop Sci, 2007,12(3):281-288.
    [182] Otsuka M, Matsuda Y, Suwa Y,et al. A novel skeletal drug delivery system using s elf-setting bioactive calcium phosphate cement 2: Physicochemical properties and drug release of the cement-containing indomethacin[J]. J Pharm Sci, 1994,83(5):611-615.
    [183] Link D P, van den Dolder J, van den Beucken J J, et al. Bone response and mechanical strength of rabbit femoral defects filled with injectable CaP cements containing TGF-beta 1 loaded gelatin microparticles[J]. Biomaterials, 2008, 29(6): 675-682.
    [184] Ruhe P Q, Boerman O C, Russel F G M, et al. In vivo release of rhBMP-2 loaded porous calcium phosphate cement pretreated with albumin[J] .J Mater Sci Mater Med, 2006,17(10):919-927.
    [185] Kisanuki O, Yajima H, Umeda T, et al. Experimental study of calcium phosphate cement impregnated with dideoxy-kanamycin B[J].J Orthopaedic Sci, 2007,12(3): 281-288.
    [186]贺鹏,段莉.联合应用胶原膜与生物活性玻璃引导牙槽骨再生的X射线能谱分析[J].广东牙病防治,2005,13(3):210-211.
    [187] Tanigo T, Takaoka R, Tabata Y.Sustained release of water-insoluble simvastatin from biodegradable hydrogel augments bone regeneration[J]. J .Control. Rel, 2010.
    [188] Mundy G, Garrett R, Harris S, et al.Stimulation of bone formation in vitro and in rodents by statins[J].Science,1999,286 (5446) :1946–1949.
    [189] Ghosh-Choudhury N, Mandal C C, Choudhury G G,et al. Statin-induced Ras activation integrates the phosphatidylinositol 3-kinase signal to Akt and MAPK for bone morphogenetic protein-2 expression in osteoblast differentiation[J]. J Bio Chem, 2007,282 (7) :4983–4993.
    [190] Shi M,Kretlowa J D,Nguyen A, et al. Antibiotic-releasing porous polymeth- ylmethacrylate constructs for osseous space maintenance and infection control[J]. Biomaterials , 2010,31(14) :4146–4156.
    [191] Shitara Y ,Sugiyama Y.Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: Drug–drug interactions and interindividual differences in transporter and metabolic enzyme functions [J].Pharm & Ther ,2006,112(1):71-105.
    [192] Hu H, Sung A, Zhao G,et al. Simvastatin enhances bone morphogenetic protein receptor type II expression[J].Biochemical and Biophysical Research Communications, 2006, 339(1) :59-64.
    [193] Sugiyama M, Kodama T, KonishiK, et al.Compactin and simvastatin,but not pravastatin, induce bone morphogenetic protein-2 in human osteosarcoma cells[J].Biochemical and biophysical research communications,2000,271(3):688-692.
    [194] Montagnani A, Gonnelli S, Cepollaro C,et al. Effect of simvastatin treatment on bone mineral density and bone turnover in hypercholesterolemic postmenopausal women: a 1-year longitudinal study[J]. Bone,2003, 32( 4 ) :427-433.
    [195] von Knoch F, Wedemeyer C, Heckelei A,et al. Promotion of bone formation by simvastatin in polyethylene particle-induced osteolysis[J]. Biomaterials, 2005,26(29): 5783- 5789.
    [196] Oxlund H, Andreassen T T.Simvastatin treatment partially prevents ovariectomy- induced bone loss while increasing cortical bone formation[J]. Bone,2004,34: 609– 618.
    [197] Song C, Guo Z, Ma Q,et al. Simvastatin induces osteoblastic differentiation and inhibits adipocytic differentiation in mouse bone marrow stromal cells[J]. Biochemical and Biophysical Research Communications,2003,308(3):458-462.
    [198] Ming A J, Hyun W, Friess D, et al. The use of simvastatin in rabbit posterolateral lumbar intertransverse process spine fusion[J].The Spine J, 2006, 6 (3) :391–396.
    [199] Wong R W K, Orth M, OrthMRCSEd,et al. Statin collagen grafts used to repair defects in the parietal bone of rabbits[J]. British Journal of Oral and Maxillofacial Surgery , 2003,41( 4 ): 244-248.
    [200] Wong R W K,Rabie A B M. Early healing pattern of statin-induced osteogenesis[J]. British Journal of Oral and Maxillofacial Surgery , 2005,43 (1): 46-50.
    [201] Sato T, Morita I, Murota S. Involvement of cholesterol in osteoclast-like cell formation via cellular fusion[J]. Bone, 1998,23(2) : 135-140.
    [202] von Knoch F, Heckelei A, Wedemeyer C,et al. The effect of simvastatin on polyethylene particle-induced osteolysis[J].Biomaterials, 2005,26(17):3549-3555.
    [203] Fisher J E, Rogers M J, Halasy J M, et al.Alendronate mechanism of action geranylgeraniol, an intermediate in the mevalonate pathway, prevents inhibition of osteoclast formation, bone resorption, and kinase activation in vitro[J]. Proc Natl Acad Sci USA,1999, 96 (1): 133–138.
    [204] van beek E, Lowik C, van der P G,et al .The role of geranylgeranylation in bone resorption and its suppression by bisphosphonates in fetal bone explants in vitro a clue to the mechanism of action of nitrogen-containing bisphosphonates[J]. J Bone Miner Res,1999, 14(5):722–729.
    [205] Mundy G, Garrett R, Harris S, et al.Stimulation of bone formation in vitro and in rodents by statins[J]. Science ,1999,286 (5446): 1946–1949.
    [206] Luckman S P, Hughes D E, Coxon F P, et al.Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras[J]. J Bone Miner Res,1998,13(4): 581–589.
    [207] Staal A, Frith J C, French M H, et al.The ability of statins to inhibit bone resorption is directly related to their inhibitory effect on HMG-CoA reductase activity[J].J Bone Miner Res, 2003,18(1):88–96.
    [208] Djaldetti M, Salman H, Bergman M,et al.Effect of pravastatin, simvastatin and atorvastatin on the phagocytic activity of mouse peritoneal macrophages[J]. Experimental and Molecular Pathology,2006 , 80 (2) 160– 164.
    [209] Grigioni F, Carigi S, Potena L,et al.Long-Term Safety and Effectiveness of Statins for Heart Transplant Recipients in Routine Clinical Practice[J]. Transplantation Proceedings, 2006,38 (5):1507-1510.
    [210] Faria T J, Campos A M, Senna E L. Preparation and Characterization of Poly(D,L-Lactide)(PLA) and Poly (D,L- Lactide) -Poly(Ethylene Glycol)(PLA-PEG) Nanocapsules Containing Antitumoral Agent Methotrexate.Macromol[J]. Symp, 2005, 229(2): 228–233.
    [211] Moffatt S ,Cristiano R J .PEGylated J591 mAb loaded in PLGA-PEG-PLGA tri-block copolymer for targeted delivery: In vitro evaluation in human prostate cancer cells[J]. IntJ Pharm,2006,317 (1) 10–13.
    [212] Jagur-Grodzinski J.Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies[J].Polym. Adv. Technol,2006; 17(6): 395–418.
    [213] Corre P L,Guevello P L,Gajian V,et al. Prepration and characterization of bupivacaine-loaded polylactide and polylactide-co-glycolide microspheres[J]. Int J Pharm, 1994,107(1):41-49.
    [214] Duvvuri S, Janoria K G,Mitra A K .Effect of Polymer Blending on the Release of Ganciclovir from PLGA Microspheres[J]. Pharm Res,2006,23(1):215-223.
    [215] Garbayo E,Ansorena E,Lanciego J L,et al. Sustained release of bioactive glycosylated glial cell-line derived neurotrophic factor from biodegradable polymeric microspheres[J]. Eur J Pharm Biopharm, 2008,69 ( 3) : 844–851
    [216] Mizushima Y,Ikoma T,Tanaka J,et al. Injectable porous hydroxyapatite microp- articles as a new carrier for protein and lipophilic drugs[J].J. Control. Rel, 2006,110 (2) : 260– 265.
    [217] Hatefi A, Amsden B.Biodegradable injectable in situ forming drug delivery systems[J].J. Control. Rel, 2002,80 (1) :9–28.
    [218] Jackson J K , Liang L S,Hunter W L,et al.The encapsulation of ribozymes in biodegradable polymeric matrices[J]. Inter.J.Pharm, 2002,243 (1) :43–55.
    [219] Murugan R,Ramakrishna S.Bioresorbable composite bone paste using polysacc- haride based nano hydroxyapatite[J].Biomaterials , 2004,25 (17) :3829–3835.
    [220] Springate C M , Jackson J K ,Gleave M E ,et al. Clusterin antisense complexed with chitosan for controlled intratumoral delivery[J]. Inter J Pharm, 2008,350 (1): 53–64.
    [221] Djagny K B,Wang Z,Xu S.Gelatin: a valuable protein for food and pharmaceutical industries: review[J]. Crit. Rev. Food Sci. Nutr,2001,41 (6):481–492.
    [222] Ross-Murphy S B.Structure and rheology of gelatin gels: recent progress[J].Polymer, 1992,33 (12): 2622–2627.
    [223] Malafaya P B ,Silva G A, Reis R L.Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications[J]. Advanced DrugDelivery Reviews, 2007,59 (4) :207–233.
    [224] Holland T A, Tabata Y,Mikos A G.In vitro release of transforming growth factor-beta1 from gelatin microparticles encapsulated in biodegradable, injectable oligo (poly (ethylene glycol) fumarate) hydrogels[J].J. Control. Rel, 2003,91(3): 299–313.
    [225] Holland T A, Tessmar J K V,Tabata Y,et al. Transforming growth factor-beta1 release from oligo(poly(ethylene glycol) fumarate) hydrogels in conditions that model the cartilage wound healing environment[J].J. Control. Rel, 2004,94 (1): 101–114.
    [226] Holland T A, Tabata Y, Mikos A G.Dual growth factor delivery from degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds for cartilage tissue engineering[J].J. Control. Rel, 2005,101 (1) :111–125.
    [227] Jackson J K, Zhang X, Llewellen S,et al.The characterization of novel polymeric paste formulations for intratumoral delivery[J]. Inter. J. Pharm, 2004,270 (1-2): 185–198.
    [228] Carcaboso A M , Chiappetta D A, Hocht C,et al.In vitro/in vivo characterization of melt-molded gabapentin-loaded poly(epsilon-caprolactone) implants for sustained release in animal studies[J]. Euro. J. Pharm. Biopharm, 2008,70 (2): 666–673.
    [229] Brien S O , Wang Y J, Vervaet C,et al.Starch phosphates prepared by reactive extrusion as a sustained release agent[J]. Carbohydrate Polymers, 2009,76 (4) :557–566.
    [230]关玉晶,丁平田,姜建华.乙氧苯柳胺软膏体外释放方法的研究[J].中国药剂学杂志, 2006,4(4):147-151.
    [231] Duvvuri S, Janoria K G,Mitra A K.Effect of polymer blending on the release of ganciclovir from PLGA microspheres[J]. Pharm. Res, 2006 ,23(1):215-223.
    [232] Matschke C, Isele U, van Hoogevest P,et al Sustained-release injectables formed in situ and their potential use for veterinary products[J].J. Control. Rel, 2002,85 (1): 1–15.
    [233] Sankalia J M , Sankalia M G, Mashru R C.Drug release and swelling kinetics of directly compressed glipizide sustained-release matrices: Establishment of level A IVIVC[J].J. Control.Rel, 2008,129 (1): 49–58.
    [234]吴哲,孙宏晨,刘树泰,等.聚乳酸-羟基乙酸-辛伐他汀对拔牙术后剩余牙槽嵴吸收影响的实验研究[J].中华口腔医学杂志,2006,41(12):747-750.
    [235]刘树泰,孙宏晨,臧光祥,等.Simvastatin抑制实验性牙周组织吸收的体内研究[J].实用口腔医学杂志,2008,24(1):145-147.
    [236] Grigioni F, Carigi S, Potena L, et al. Long-Term Safety and effectiveness of statins for heart transplant recipients in routine clinical practice[J]. Transplantation Proceedings, 2006,38 (5 ):1507–1510.
    [237] Oxlund H , Andreassen T T. Simvastatin treatment partially prevents ovariectomy -induced bone loss while increasing cortical bone formation[J]. Bone, 2004 ,34 (12 ): 609– 618.
    [238] von Knoch F , Wedemeyer C, Heckelei A, et al.Promotion of bone formation by simvastatin in polyethylene particle-induced osteolysis[J]. Biomaterials, 2005, 26(29) : 5783-5789.
    [239] Hu H, Sung A, Zhao G,et al. Simvastatin enhances bone morphogenetic protein receptor type II expression[J]. Biochem and Biophy Res Comm,2006,339 (1) :59–64.
    [240] Zolnik B S, Burgess D J. Effect of acidic pH on PLGA microsphere degradation and release[J]. J Controlled Release ,2007,122(3):338-344.
    [241] Henriksen K, Neutzsky-Wulff A V,Bonewald L F,et al. Local communication on and within bone controls bone remodeling[J]. Bone ,2009,44 (6) :1026–1033.
    [242] Ong K L,Day J S,Kurtz S M,et al. Role of surgical position on interface stress and initial bone remodeling stimulus around Hip resurfacing arthroplasty[J]. J Arthroplasty,2009, 24 (7):1137-1142.
    [243] Djaldetti M, Salman H, Bergman M,et al. Effect of pravastatin, simvastatin and atorvastatin on the phagocytic activity of mouse peritoneal macrophages[J]. Exper. Mol. Pathology ,2006,80 (2) :160– 164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700