用户名: 密码: 验证码:
适于硬组织修复钙磷类生物材料的构建与性能调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人体硬组织的损伤修复与重建一直是现代医学力求解决的难题。本论文针对目前钙磷类组织修复材料降解速度难以调控、在体内易被冲刷而难以固化,固液两相分层而致悬浮体系失稳等关键问题,以可控降解和微创治疗为切入点,设计构建了三种适于硬组织修复的钙磷基生物材料,考察了其基本性能,并对其进行了初步的生物学研究。
     多孔聚磷酸钙骨修复材料的结构及其性能研究——通过重力二次烧结法制备了多孔、高孔隙率聚磷酸钙(calcium polyphosphate, CPP);从CPP的链结构、晶相结构和聚合基团结构展开,揭示材料合成过程中影响结构变化的主要因素,并探讨聚合磷酸钙的聚合磷酸链中的端部基团(Q1)的比例、晶相结构、烧料粒径对CPP材料降解性能的调控作用;通过细胞培养研究其生物学性能。研究表明:具有线性链状结构的CPP中的Q’随着烧结温度的升高而不断下降。采用高温原位XRD并结合DI JADE XRD分析软件技术,揭示了CPP在煅烧过程中的相转变规律。材料的降解速率随烧料粒径的增大、Q1含量增高而加快,同时探讨了CPP的降解机理,将其用作骨组织支架材料显示出较好的细胞亲和性。
     水相高效抗溃散快速固化可注射钙磷基骨水泥的研究——在确保浆体具有良好可注射性的基础上,制备了高效抗溃散性的可注射钙磷基骨水泥(anti-washout injectable calcium phosphate cement, aw-ICPC),同时研究抗溃散剂的加入对材料可注射性、固化时间、流变性能、抗压强度、物相成分和显微结构等的影响。研究表明:5wt%羟丙基甲基纤维素/8wt%羧甲基纤维素钠、0.8wt%黄原胶和4wt%白糊精的加入均能取得良好的抗溃散效果,其中白糊精抗溃散效果最佳。抗溃散剂不影响体系的水化固化反应,但均在不同程度上延缓了体系的固化时间。
     通过在固相引入磷酸镁(magnesium phosphate cement, MPC)和调整固液比调控aw-ICPC的固化性能,并对其快速固化机理进行初步探索;通过细胞培养评价材料的体外细胞相容性。研究表明MPC的引入不仅明显缩短了浆体的固化时间,且显著改善了抗溃散性;通过调节MPC在浆体中的比例可调控体系的各项理化性能参数。液固比的增加提高了浆体的可注射性但延缓了固化时间。以新西兰大白兔为动物模型,体内实验表明制备的水相高效抗溃散快速固化可注射钙磷基骨水泥(fast setting and anti-washout injectable calcium phosphate-based cement, fa-ICMB)具有良好的细胞相容性、生物降解性并能修复股骨缺损。
     非水相高效悬浮稳定的钙磷基浆体及其在牙根管填充中的应用研究——以与水互溶的非水相溶液为固化液,采用与粉末预先混合法制备出能在注射器中长期稳定保存而在体内快速固化的可注射非水相磷酸钙(non-aqueous injectable calcium-phosphate based cement, n-ICPC)。系统研究了非水相固化液性质、固相颗粒粒径、固液比对糊剂的流变性、固化时间、可注射性和抗压强度等的影响,重点探讨了n-ICPC的固化调控方式。研究表明:采用预混法制备的n-ICPC能在水中自行固化,但固化时间明显延长。以1,2-丙二醇为固化液的体系粘度低、触变性好、固化快且抗压强度高。随着颗粒粒径的减小,n-ICPC的粘固化时间缩短且可注射性、抗压强度提高,但当颗粒粒径≤75μm时,体系粘度不降反升,触变性明显提高,有利于体系的静置稳定。
     采用浓缩体系全功能稳定分析仪,考察了固相颗粒粒径、气相二氧化硅及其含量对n-ICPC悬浮稳定性的影响,初步探讨了n-ICPC体系悬浮稳定的机理。结果表明:含粒径≤75μm的颗粒的体系透射光和背散射衰减变化幅度均较小,沉降速率为0.27 mm/d。加入1wt%水溶性气相二氧化硅后,体系沉降速率从0.27 mm/d降至0.029mm/d,悬浮稳定性提高10倍。
     将10 wt% CTSAC加入到n-ICPC中,明显改善了n-ICPC的显影性能和可注射性,并赋予体系对常见致龈菌优异的抑菌性能。CTSAC的添加并不影响n-ICPC原有的固化特性和剪切稀化特性。
     体外实验结果表明:非水相高效悬浮稳定的钙磷基浆体生物相容性好。将浆体注射到离体牙根管后,发现浆体能固化,与周围牙本质结合紧密,无收缩现象,具有优良的根封性能,有望作为一种新型的根管填充材料得到应用。
Human hard tissue repair and reconstruction has been hard to solve for modern medicine. Unfortunately, most current calcium-phosphate based biomaterials could not be biodegradated controllablly, be collapsed in the fluid and difficult to set, and loss suspension stability caused by solid-liquid separation. With controllable degradation and minimally invasive treatment for the entry point, the goal of the research presented in this dissertation is to reconstruct three kinds of calcium-phosphate based biomaterials for hard tissue repair and, the properties investigation and the preliminary research on their biological properties had been performed.
     Structure and properties of poprous calcium polyphosphate (CPP)——porous, high porosity of CPP was prepared by gravity sintering. Main factors affecting the structure change were explored from the viewpoint of chain structure, crystalline structure and group structure, and the degradation mechanism of CPP was investigated. Investigation of properties showed that the proportion of hydrolytic groups (QI groups) in polyphosphate chain was decreased as the sintering temperature increased. By controlling sintering temperature and particle size and altering the proportion of Q1 groups, CPP could be obtained respectively with different degradation rate. Cell viability test results showed that porous CPP exerted biocompatibility on C2C12 cells.
     Study on aqueous fast setting and anti-washout injectable calcium phosphate-based cement (fa-ICPC)——Based on the good injectability of the paste, anti-washout injectable calcium phosphate-based cement (aw-ICPC) was fabricated by introducing of anti-washout agents, and their effects on injectability, setting time, compressive strength, phase composition and microstructure were researched. The results showed that all the anti-washout agents studied in the dissertation imparted an effective anti-washout property to the ICPC, while prolonged the setting time. The aw-ICPC with white dextrin showed the best overall performance including anti-washout property.
     The setting time of aw-ICPC was adjusted by incorporating magnesium phosphate cement (MPC) and altering the ratio of solid to liquid, and the fast-setting mechanism was explored. It was found that MPC not only shortened the setting time but also significantly improved the anti-washout of the paste. The physical and chemical properties of the fa-ICPC could be regulated by adjusting the ratio of MPC to CPC. The increase of the ratio of liquid to solid would improve the injectability but declay the setting time. Biological experiment indicated that fa-ICMB was biocompatible and biodegradable, and showed the good ability to repair defects of the femur.
     High suspension stability of non-aqueous injectable calcium-phosphate based cement (n-ICPC) and its application in root canal filling——To meet the requirements of root canal therapy, nonaqueous but water-soluble organic liquid and calcium phosphate cement (CPC) powders were mixed to form n-ICPC which is stable in syringe and hardens in vivo. Focus on the setting mechanism, the effects of nonaqueous liquid, particle size and the ratio of solid to liquid on the setting time, injectability, rheology and compressive strength were systematic explored. It was found that n-ICPC could be set in SBF, although the setting time was much longer than that of the aqueous ICPC. n-ICPC with propylene glycol as a setting liquid had low viscosity, good thixotropy, shortened setting time which was in favor of injection. Reduction of particle size could effectively improve suspension stability of the n-ICPC.
     The effects of particle size, fumed silica and its content on the suspension behavior of n-ICPC were also investigated by concentrated system with fully functional stability analyzer. The results showed that 1 wt% fumed silica increased suspension stability by 10 times. The change rates of transmission light and back-scattering attenuation in n-ICPC with particle diameter≤75μm were small, and the sedimentation rate was only 0.27 mm/d. The addition of 10 wt% CTSAC improved the radiopacity and injectability of the n-ICPC significantly. In addition, CTSAC imparted excellent antibacterial property against common bacteria induced by gingival. Furthermore, the addition of CTSAC did not affect the setting characteristic and shear thinning behavior of the n-ICPC.
     In extracted teeth experiment, n-ICPC showed better sealability and were close intergrated with detine. Cytotoxicity results showed that n-ICPC were noncytotoxic and possess good biocompatibility. The developed n-ICPC could meet the requirements of root canal filling with a proper setting time, easy injection, improved suspension stability, potent radiopacity and effective antibacterial properties. The results obtained would provide basic data for the application of the n-ICPC in the root canal filling field.
引文
[1]Giannoudis PV, Dinopoulos H, Tsiridis E, Bone substitutes:An update, Injury 2007 (365):520-527
    [2]Zhang YP, Gao JC, Wang Y, Research and development of world science and technology,2008,22:47-52
    [3]Baroli B, From Natural Bone Grafts to Tissue Engineering Therapeutics: Brainstorming on Pharmaceutical Formulative Requirements and Challenges. J Pharm Sci,2009,98(4):1317-1375
    [4]Vallet-Regi M, Gonzalez-calbet JM, Calcium phosphates as substitution of bone tissues. Prog, solid state chem,2004,32:1-31
    [5]陈启明,主译.骨关节肌肉系统生物学和生物力学[M],第2版,北京:人民卫生出版社,2001:146.
    [6]李玉宝主编,生物医用材料,化学工业出版社,2003
    [7]Hench LL, Polak JM, Third-generation biomedical materials, Science, 2002(295):1014-1017
    [8]张兴栋,如何应对生物医用材料产业挑战,新材料产业,2005(12):32-38.
    [9]Kurashina KKH, Wu Q, et al, Ectopic osteogenesis with biphasic ceramics of hydroxyapatite and tricalcium phosphate in rabbits. Biomaterials,2002;23:407-412
    [10]WiedmannAM, Gutwald R, Gellrich NC, et.al. Search for ideal biomaterials to cultivate human osteoblast-like cells for reconstructive surgery. J Mater. Sci-Mater Med. 2005,16(1):57-66.
    [11]Griffith LG, Naughton G, Tissue engineering-current challenges and expanding opportunity, Science,2002,295 (5557):1009-1015
    [12]Zandonella C. Tissue engineering:the beat goes on. Nature,2003,421(6926):884-886
    [13]Risso PA, Cunha AJLA, Araujo MCP, Luiz RR. Postobturation pain and associated factors in adolescent patients undergoing one-and two-visit root canal treatment, J Dent. 2008,36:928-934
    [14]Taylor JK, Je ansonne BQ, LemonR R, Coronal leakage:effects of smear layer, obturation technique, and sealer, J Endod,1997,23 (8):508-512
    [15]Comb MD, Smith DC, A preliminary scanning electron microscopic study of root canals after endodontic procedures, J Endod,1975,1(7):238-242
    [16]Vassiliadis L, Liolios E, Kouvas V, et al., Effect of smear layer on coronal microleakage, Oral Surg Oral Med Oral Pathol Oral Radiol Endod,1996,82 (3):315-320
    [17]Nair PNR, Sjogren U, Krey G, et al, In traradicular Bacteria and Fungiin in Root-filled, A symptomatic Human Teeth with Therapy-resistant Periapical Lesions Long-term and Electron Microscopic Follow-up Study, J Endod,1990,16(11):580-588.
    [18]Kuhre AN, Kessler JR.Effect of moisture on the apical seal of laterally condensed gutta-percha, J Endod,1993,19 (6):277-280.
    [19]张举之,口腔内科学(第3版)[M].北京:人民卫生出版社,1997
    [20]Clartner AH, Dorn SO, Advances in endodontic surgery, Dent Clin North Am,1992, 36:357-379
    [21]梁红瑛,丁莉.银汞合金过敏致全身反应一例报告.临床误诊误治.2009,22(4):59
    [22]谢欣梅,肖明振,陈礼森.复方羟磷灰石钛尖根管填充料的临床研究.牙体牙髓牙周病学杂志,1997,7(4): 256-257;
    [23]翁雨来.磷酸钙生物陶瓷应用于盖髓、根管填充研究进展.国外医学口腔医学分册,1987,14: 267-269
    [24]杨启祥,常用临床根管充填材料的应用,同济大学学报(医学版),2003,2(1),24
    [25]Smith JJ, Mongornery S.J. Comparison of apical seal:chloroform versus halothothane-dipped gutta-percha cones. Endod,2005,18(4):146-149
    [26]Scott AC, Vire DE. An evaluation of Thermafil endodontic obturation technique. Endod,2009,18(7):520-523
    [27]刘国勤,宋培智,徐逸敏.磁性固定根充材料收床应用分析,牙体牙髓牙周病学杂志,1995,5(3):158-159
    [28]樊秀艳,马丽涛,李丹慧,液体充填治疗前后根尖周围炎临床研究,中国初级卫生保健,2005,19(8):81-82
    [29]闫晓军,李勇,马惠君,酚醛树脂根管塑化治疗265例临床观察,宁夏医学杂志,2001,23(8):503-504
    [30]Belanger MC, Marois Y, Roy R. Selection of a polyurethaue membrane for the manufacture of ventricles for a totally implanlable artificial heart:blood compatibility and biocompatibilily studies. Artif Organs,2000,24(11):879-888
    [31]Forger BKJS, Mascaro M. Biocompatibility of the poly urethmle resin of the Caster BearI inserted into the alveolar bone of the dog. Anat Anz.1999,181(6):581-584
    [32]Torabinejad M, Hong CV, PittFord TR, et al. Antibacterial effect of some root and filling materials. Endod,2005,121(8):403-406
    [33]Jose J.F. Mechanisms of antimicrobial activity of calcium hydroxide:a critica review. Endod,2007,32(3):361-369
    [34]Nurko C, Ranly DM, Garcia-Godoy F, et al. Resorption of a calciumt tydr oxid eliodoform paste(Vitapex) in root canal therapy for primary teeth:a case report. Pediatr Dent,2000,22(6):517-520
    [35]Thomas A.M. Elimination of infectionin pulpectomized deciduous teeth:A short time studying of iodoform paste. Endod,1994,20(5):233-235
    [36]Kawakami T, Nakamura C, Eda S. Effects of the penetration of a root canal filling material into the mandibular canal. Tissue reaction to the material. Endod Dent Traumatol,1991,7(1):36-41
    [37]Kawakami T Nakamura C, Hasegawa H, et al. Ultrastructural study of initial calcification in the rat subcutaneous tissues elicited by a root canal filling material. Oral Surg Oral Med Oral Pathol,1987,63(3):360-365
    [38]American Association of Endodontists Response on BiocalexTM6/9:Case of the Month. Endod,2001,27(12):789-790
    [39]Estrela C, Sydney GB, Bammann LL, et al. Mechanism of action of calcium hydroxyl ions of calcium hydroxide on tissue and bacteria, Braz Dent,2008,6:85-90
    [40]Sundqvist G, Figdor D. Endodontic treatment of apical periodontitis. In:stavik D, Pitt Ford TR, Essential endodontology. Prevention and treatment of apical peridontitis. Oxford:Blackwell,2008
    [41]Grossman LI, Endodontic practice. Philadelphia:Lea & Febiger,1978
    [42]Kay MI, Young RA, Crystal structure of hydroxyapatite, Nature,1964, 204:1050-1052
    [43]山口乔,柳田博明,牧岛亮男等编著,窦筠等译.生物陶瓷,化学工业出版社,北京,1992.25;
    [44]潘鲁兆等著,结晶学与矿物学,地质出版社,北京,1974,394
    [45]Tsutomn K, Makoto N, Yuriko K, Fundamental study of hydroxyapatite high-performance liquid chromatography. Ⅲ. Direct experimental confirmation of the existence of two types of adsorbing surface on the hydroxyapatite crystal, J Chromatogr, 1990,515:125-148
    [46]Narasaraju TSB, Phebe DE, Some physico-chemical aspects of hydroxyapatite, J Mater Sci,1996,31:1-21
    [47]Poter AE, Patel N. Comparison of in vivo dissolution drocesses in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics, Biomaterials,2003; 24:4609-4620
    [48]Mark T F, Ira CI, Christine RH, Brent RC, John R. Measurements of the solubilities and dissolution rates of seneral hydroxyapatites. Biomaterials,2002; 23:751-755
    [49]Jorg H, Hans PW, Udo S, Johannes K, Uirich M, Ulrich J. TCP is hardly resorbed and not osteoconductinve in a non-loading calvarial mode, Biomaterials,2006,23: 1689-1695.
    [50]Inone H, Porous beta-TCP as a bone graft substitute.8th world biomaterials congress;
    [51]Sayer M, Structure and composition of silicon-stabilized tricalcium phosphate. Biomaterials,2003,24:369-382
    [52]Groot K De, Bioceramics consisting of calcium phosphate salts, Biomaterials, 1980,1:47-50.
    [53]Lu JX, Blary MC, Vavasscur S, Descamps M, Anselme IC, Hardouin P, Relationship between bioceramics sintering and micro-particles-induced cellular damages, J. Mater. Sci. Mater. Med,2004,15:361-365
    [54]潘朝晖,促磷酸钙骨水泥吸收的研究进展明,中国矫形外科杂志,2004,12(21-2):1723-1724
    [55]Yang SM, Kim SY, Lee SJ, et al. Tissue response of calcium polyphosphate in beagle dog, Key Engineer Mater,2002,220(17):657-660
    [56]Porter NL, Pillar RM, Grynpas MD, Fabrication of porous calcium polyphosphate implants by solid free form fabrication:A study of processing parameters and in vitro degredation characteristics, J. Biomed. Mater. Res,2001,56:504-515
    [57]Plliar RM, Filliaggi MJ, Wells MD, et al, Porous calcium polyphosphate scaffolds for bone substitute applications in vitro characterization, Biomaterials,2001,22:963-972
    [58]Jager C, Hartmann P, Witter R, Braun M, New 2D NMR experiments for determining the structure of phosphate glasses:a review, J Non-Cryst Solids,2000,263&264:61-72
    [59]Sinyaev VA, Shustikova ES, Levchenko LV, Sedunov AA, synthesi and Dehydration of Amorphous Calcium Phosphate, Inorg Mater,2001,37:619-622
    [60]Grnpas MD, Pilliar RM, Kandel RA. et al. Porous calcium polyphosphate scaffolds for bone substitute applications in vivo studies. Biomaterials,2002.23:2063-2070
    [61]常青,石宗利,李重庵,聚磷酸钙可降解纤维研究, 环境科学,1997,18(2)52-57
    [62]Sinyaev VA, Shustikova ES, Levchenko I V, et al. Synthesis and dehydration of amorphous calcium phosphate. Inorg Mater,2002,37:735-738
    [63]Grynpas MD, Pilliar RM. Porous calium polyphosphate scaffolds for bone substitute application in vivo studies. Biomaterials,2002:23(9):20637;
    [64]Zhao I, Sun ZY. Experiment of histocompatibility and degradation in vivo of artificial material calcium polyphosphates fiber. Chin J Repar Reconstruc Surg,2002: 16 (5):300-310
    [65]郭瀚,可降解自固化钙磷基硬组织修复材料的研究,,上海,华东理工大学.2008
    [66]NEL S, Magnesium:an update on physiological, clinical and analytical aspects, Clin Chim Acta,2000,4:294-226
    [67]刘昌胜,黄粤,无机骨粘合剂的制备及其在硬组织修复中的应用,中国,2004
    [68]Liu CS, Inorganic bone adhesion agent and its use in human hard tissue repair, US,
    2006.
    [69]吴建国,俞永林,刘昌胜,磷酸镁骨黏合剂生物学固定强度及组织学的实验研究,上海医学,2006,29(4):230-232
    [70]Wu F, Wei J, Guo H, Chen FP, Hong H, Liu CS,Self-setting bioactive calcium-magnesium phosphate cement with high strength and degradability for bone regeneration, Acta Biomater,2008,4(6):1873-1884
    [71]Wu F, Su JC, Wei J, Guo H, Liu CS, Injectable bioactive calcium-magnesium phosphate cement for bone regeneration, Biomed Mater,2008,3(4):1243-1249
    [72]Junfeng Jia, Huanjun Zhou, Jie Wei, Jingxiong Lu, Changsheng Liu, Degradation and cytocompatibility of rapid self-setting magnesium-calcium apatite bioactive bone cement, J.R.Soc.Interface,2009(Accepted for publication)
    [73]Kelly CM, Wilkins RM, Treatment of benign bone lesions with an injectable calcium sulfate-based bone grafl substitute OrthoPedics,2004,27(1):5131-135
    [74]Gaculsi O, Bouler J M, Weiss P, et al. Kinetic study of bone ingrowth and ceramic resorption associat ed with the implantation of different injectable calcium phosphate subst itutes. J Biomed Mater Res,1999,47:28-35.
    [75]Knaack D, Goad MEP, Aiolova M, et al, Resorbable calcium phosphate bone substitute, J Biomed Mater Res,1998,43:399-409.
    [76]Lobenhoffer P, Gerich T, Witte F, Tscherne H. Use of an injectable calcium phosphate bone cement in the treatment of tibial plateau fractures:A prospective study of twenty-six cases with twenty-month mean follow-up, J Orthop Trauma,2002,16 (3): 143-149
    [77]Matsumine A, Kusuzaki K, Matsubara T, et al, Calcium phosphate cement in musculoskeletal tumor surgery, J Surg Oncol,2006,93(3):212-220
    [78]Gladius Lewis, Injectable Bone Cements for Use in Vertebroplasty and Kyphoplasty: State-of-the-Art Review, J Biomed Mater Res Part B:Appl Biomater,2006,76B: 456-468,
    [79]Iooss P, Ray A ML, Grimandi G, et al, A new injectable bone substitute combining poly(caprolactone) microparticles with biphasic calcium phosphate granules, Biomaterials,2001,22(20):2785-2794
    [80]Phillips FM. Minimally invasive treatments of osteoporotic vertebral compression fractures. Spine,2003,28:S45-S53.
    [81]Heini PF, Berlemann U, Bone substitutes in vertebroplasty, Eur Spine J,2001, 10:S205-S213.
    [82]Ishikawa K, Miyamoto Y, Takechi M. Non-decay type fast-setting calcium phosphate cement:Hydroxyapatite putty containing all increased amount of sodium algina, J
    Biomed Mater Res,1997,36(3):393-399
    [83]Takechi M, Miyamoto Y, Ishikawa K. et al. Non-decay type fast-setting calcium phosphate cement using chitosan,J Mater sci:Mater Med,1996,7(6):317-322
    [84]王莹,魏杰,郭瀚,刘昌胜,抗水型钙磷水泥生物活性骨修复材料研究,无机材料学报,2006,21(6):1435-1442
    [85]Brown PW, Fulmer M. Kinetics of Hydroxyapatite Formation at Low Temperature. J Am Cera Soc,1991,74(5):934-940
    [86]Liu CS, Huang Y, Zheng HY, Study on the Hydration Process of Calcium Phosphate Cement by AC Impedance Spectroscopy, J Am Ceram Soc,1999,82(4):1052-1057
    [87]Ginebra MP, Rilliard A, Fernandez E, et al, Mechanical and rheological improvement of a calcium phosphate cement by the addition of a polymeric drug, J Biomed Mater Res, 2001,57(1):113-118
    [88]Becker TA, Kipke DR, Flow roperties of liquid calcium alginate polymer injected through medical microcatheters for endovascular embolization, J Biomed Mater Res, 2002,61(4):533-540.
    [89]Leroux L, Hatin Z, Freche M, Effects of various adjuvants (lactic acid, glycerol and chitosan) on the injectability ofa calcium phosphate cement, Bone,1999,25(2):31S-34S
    [90]Khairoun I, Boltong MG, Driessens FCM, et al, Some factors controlling the injectability of calcium phosphate bone cements, J Mater Medic,1998,9:425-428
    [91]Liu CS, Shao HF, Chen FY, Zheng HY, Rheological Properties of Concentrated Aqueous Injectable Calcium Phosphate Cement Slurry, Biomaterials,2006,27: 5003-5013
    [92]邵慧芳,可注射型磷酸钙骨水泥的开发及其流变性能研究[学位论文],2001,华东理工大学
    [93]杨维东,陈富林,陶凯,毛天球,陈书军,顾晓明,兔动物模型在组织工程骨、软骨研究中的应用,实用口腔医学杂志,1999,15(5):375-377
    [94]Liu CS, Chen CW, Ducheyne P, Effects of the Composition of the Bioactive Composite Calcium Phosphate Cement on its Behavior in the Solution, Key Engineer Mater.2007,330-332:823-826
    [95]Ooms EM, Wolke JGC, van de Heuvel MT, Jeschke B, Jansen JA. Histological evaluation of the bone response to calcium phosphate cement implanted in cortical bone. Biomaterials,2003,24:989-1000
    [96]Tsai CH, Lin RM, Ju CP, Lin JHC. Bioresorption behavior of tetracalcium phosphate-derived calcium phosphate cement implanted in femur of rabbits, Biomaterials. 2008,29:984-993
    [97]Yuan HP, Li YB, de Bruijn JD, de Groot K, Zhang XD, Tissue responses of calcium
    phosphate cement:a study in dogs, Biomaterials,2000,21:1283-1290
    [98]Hong YC, Lin SK, Kok SH, et al, Histologic reaction to a newly developed calcium phosphate cement implant in the periodontal tissues, Formos Med Assoc,1990,89(4): 297-302
    [99]Hong YC, Wang JT, The periapical tissue reation to a calcium phosphate cement in the teeth of monkeys, Biomed mater Res,1991,25(4):485-493
    [100]Goodel GG, Mork TO, Hutter JW et al, Linear dye penetration of a calcium phosphate cement apical barrner, J Endod,1997,23(3):174-178
    [101]Yoshikawa M, Inamoto T, Hakata T, et al, Apical canal sealing ablity of calcium phosphate based cements, Osaka Dent Univ,1996,30(1-2):1-13
    [102]Sugawara A, Chow LC, Takagi S, et al, In vitro evaluation of the sealing ability of a calcium phosphate cement when used as a root canal sealerdiller, Endod,1990,16(4): 162-164
    [103]Tchaou WS, Tumy BF, Minah GE, et al, Inhibition of pure culture of oral bactern by root canal filling material, Pedian Dent,1996,18(7):444-447
    [104]戴红莲,闫雨花,曹献英,李世普,贾莉,董维理,磷酸钙牙根管材料的封闭性能研究,生物医学工程杂志,2002,19(4):552-555
    [105]Shozo T, Chow LC, Hirayama Sa, Sugawara A, Premixed calcium-phosphate cement pastes, Journal of biomedical material research,2003,67B:689-696
    [106]Xu HHK, Lisa EC, Carl G, Simon Jr, Shozo T, Chow LC, Premixed calcium phosphate cements:Synthesis, physical properties, and cell cytotoxicity, Dental material, 2007,23:433-441
    [107]王正东,胡黎明,超分散剂的作用机理剂应用效果,精细石油化工,1996,6:59-60
    [108]Prud'homme RK, Khan SA, editors. Foams:Theory, Measurements and Applications. Marcel Dekker:New York; 2006
    [109]Pommel L, Jacquot B, Camps J, Lack of correlation among three methods for evaluation of apical leakage, J Endod,2009,27(5):347-350;
    [110]Camps J, Pashley D, Reliability of the dye penetration studies, J Endod,2008,29(9): 592-594
    [111]Dandakis C, Kaliva M, Lambrianidis T, et al, An in vitro comparison of the sealing ability of three endodontic sealers used in cannals with inatrogenic enlargement of the apical constriction, J Endod,2009,31(3):190-193
    [112]Mortensen DW, Boucher NE Jr, Ryge G, A method of testing for marginal leakage of dental restorations with bacteria, J Dent Res,1965,44(1):58-62
    [113]Lyroudia K, Pantelidou O, Mikrogeorgis G, et al, Three-dimensional reconstruction:
    a new method for the evaluation of apical microleakage, J Endod,2008,26(1):36-42
    [114]Chow LC, Takagi S. A natural bone cement-A laboratory novelty led to the development of revolutionary new biomaterials, J Res Natl Inst Stand Technol 2007,106:1029-1033
    [115]Pilliar RM, Filiaggi MJ,Wells JD, et al., Porous calcium polyphosphate scaffold for bone substitute application in vitro characterization, Biomaterials,2001,9:963-972
    [116]Sinyaev VA, Shustikova ES, Levchenko LV, et al., Synthesis and dehydration of amorphous calcium phosphate, Inorganic Materials,2002,37:735-740.
    [117]Barlow JW, Lee G, Crawford RH, et al., Method and system for fabricating artificial bone implants, US Patent, US 6183515B, Feb.6,2001
    [118]Schofield SC, Berno B, Langman M, et al. Gelled Calcium Polyphosphate Matrices Delay Antibiotic Release, J Dent Res,2006,85 (7):643-647
    [119]Dion A, Langman M, Hall G, et al, Vancomycin release behaviour from amorphous calcium polyphosphate matrices intended for osteomyelitis treatment, Biomaterials,2005, 26(35):7276-7285
    [120]Brow RK, Tallant DR, Myers ST, Phifer CC, The short-range structure of zinc polyphosphate glass, J Non-Cryst Solids,1995,191:45-55.
    [121]Chahine A, Et-tabirou M, Pascal JL, FTIR and Raman spectra of the Na2O-CuO-Bi2O3-P2O5 glasses, Mater Lett,2004,58:2776-2780
    [122]Nelson BN, Exarhos GJ, Vibrational spectroscopy of cation-site interactions in phosphate glasses, J Chem Phys,1979,71:2139-2147
    [123]Ciurczak EW, Spectroscopy Using Flowing Systems for Chemical, Pharmaceutical, and Biological Applications, Appl.Spectrosc,1998,52 (4):423-435
    [124]Brow RK, Tallant DR, Hudgens JJ, The short-range structure of sodium ultraphosphate glasses, J. Non-Cryst. Solids,1994,177(4):221-234
    [125]Guo LH, Li H, Gao XH. Phase transformations and structure charaxterizzation of calcium polyphosphate during sintering, J Mater Sci,2004,39:7041-7047
    [126]Mcintosh AO, Jablonski WL. X-ray diffraction powder patterns of the calcium phosphates, Anal Chem,1956,28:1424-1427.
    [127]Van Bokhoven JA, Koningsberger DC, Kunkeler P, Van Bekkum H, Kentgens PM. Stepwise Dealumination of Zeolite beta at Specific T-Sites Observed with 27Al MAS and 27Al MQ MAS NMR, J Am Chem Soc,2000,122:12842-12847.
    [128]Bull LM, Cheetham AK, Anupold T, et al, A High-Resolution 17O NMR Study of Siliceous Zeolite Faujasite, J Am Chem Soc,1998,120:3510-3511.
    [129]Witter R, Hartmann P, Vogel J, Jager C, Measurements of chain length distributions in calcium phosphate glasses using 2D 31P double quantum NMR, Solid State Nucl Magn, 1998,13:189-200
    [130]Fletcher JP, Klrkpatrick RJ, Howell D, Risbud SH.31P Magic-angle spinning nuclear magnetic resonance spectroscopy of calcium phosphate glasses, J Chem Soc Faraday trans,1993,89:3297-3299
    [131]Rothammel W, Burzlaff H, Structure of calcium metaphosphate Ca(PO3)2, Acta Cryst, 1989, C45:551-553
    [132]Guo GY, Structural study of a lead-barium-alumina phosphate glass by MAS-NMR spectroscopy, Solid State Nucl Mag,1998,13:119-122.
    [133]Brow RK, Phifer CC, Turner GL, Kirkpatrick RJ, Cation effects on 31P MAS NMR chemical shifts of metaphosphate glasses, J Am Ceram Soc,1991,74:1287-1290.
    [134]Haufe S, Prochnow D, Schneider D, Geier O, Freude D, Stimming U, Polyphosphate composite:conductivity and NMR study, Solid State Ionics,2005,176:955-963.
    [135]Dvinskikh SV, Murin IV, Privalov AF, Pronkin AA, Rossler E, Vieth HM, Microscopic structure of the glassy ionic conductor x·LiF+(1-x)·LiPO3 from NMR data, J Non-Cryst Solids,1998,240:79-90.
    [136]Wei J, Chen FP, Jung-Woog Shin, Hong H, Dai CL, Su JC, Preparation and characterization of bioactive mesoporous wollastonite-polycaprolactone composite scaffold, Biomaterials,2009,30:1080-1088
    [137]Wells J, The processing and in vitro degradation properties of gravity sitered calcium polyphosphate powders. Canada:University of Toronto 1997 [MA Sci Thesis].
    [138]Omelon S, Baer A, Coyle T, Pilliar RM, Kandel R, Grynpas M, Polymeric crystallization and condensation of calcium polyphosphate glass, Mater Res Bull,2008, 43:68-80
    [139]Schofield SC, Berno B, Langman M, et al, Gelled Calcium Polyphosphate Matrices Delay Antibiotic Release, J Dent Res,2006,85 (7):643-647
    [140]苟中入,常江,翟万银,林开利,曾毅,γ-硅酸二钙陶瓷的生物活性和细胞毒性研究,2005,20(4):914-920
    [141]Liu CS, Huang Y, Chen JG, et al, The Physicochemical Properties of the Solidification of Calcium Phosphate Cement, J. Biomed. Mat. Res. Part B:Appl Biomater,2004,69B:73-78
    [142]Maniker A, Failure of hydroxyapatite cement to set in repair of a cranial defect:case report. Neurosurgery,1998,43(4):953-954
    [143]Miyamoto Y, Ishikawa K, Takechi M et al, Non-decay type fast-setting calcium phosphate cement:setting behavior in calf serum and its tissue response, Biomaterials, 1996,17:1429-1435
    [144]Takechi M, Miyamoto Y, Ishikawa k, et al, Basic properties of hydroxyapatite putty
    made with fast-setting calcium phosphate cement and sodium alginate, Bioceramics, 1996,9:235-238
    [145]Ishikawa k, Miyamoto Y, Kon M, et al, Non-decay type fast-setting calcium phosphate cement:composite with sodium alginate, Biomaterials,1995,16:527-532
    [146]Cherng A, Takagi S, Chow LC, Effects of hydroxypropyl methylcellulose and other gelling agents on the handling properties of calcium phosphate cement, J.Biomed. Mater. Res,1997,35:273-277
    [147]Wang X, Ma J, Wang Y, He B, reinforcement of calcium phosphate cements with phosphorylated chitin, Chin J Polymer Sci,2002,4:325-332
    [148]Bigi A, Bracci B, Panzavolta S, Effect of added gelatin on the properties of calcium phosphate cement, Biomaterials,2004,25:2893-2899
    [149]Ishikawa k, Miyamoto Y, Kon M, et al, In vivo setting behaviour of fast-setting calcium phosphate cement, Biomaterials,1995,16(11):855-860
    [150]Penel G, Leroy N, Van Landuyt P, et al, Raman microspectrometry studies of brushite cement:in vivo evolution in a sheep model, Bone,1999,25(2):81S-84S.
    [151]Van Landuyt P, Peter B, BeluzeL, et al, Reinforcement of osteosynthesis screws with brushite cement. Bone,1999,25(2):95S-98S
    [152]杜磊,严云,胡志华,化学结合磷酸镁胶凝材料的研究及应用现状,水泥,2007,5(5):23-25
    [153]Chu TMG, Orton DG, Hollister SJ, et al, Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures, Biomaterials,2002,23:1283-1293
    [154]刘子胜,无机骨粘合剂-磷酸镁骨水泥的研究,上海,华东理工大学,2000
    [155]Suchanek W, Byrappa K, Shuk P, Riman R, Janas V, TenHuisen KS Mechanochemical-hydrothermal synthesis of calcium phosphate powders with coupled magnesium and carbonate substitution, J Solid State Chem,2004,177:793-799.
    [156]Soudee E, Pera J, Mechanism of setting reaction in magnesia-phosphate cements, Cem Concr Res,2000,30(2):315-321
    [157]Kokubo T, Hanakawa M, Kawashita M, Minoda M, Beppu T, Miyamoto T, Nakamura T, Apatite formation on non-woven fabric of carboxymethylated chitin in SBF, Biomaterials,2004,25(18):4485-4488
    [158]Yamasaki Y, Okazaki M, Shimazu A, Kokubo T, Akagawa Y, et al. Action of FG-MgCO3 Ap-collagen composite in promoting bone formation, Biomaterials.2003, 24(10):4913-4920
    [159]Wu XZ, Liu H, Clinical implementation of x-ray phase-contrast imaging:Theoretical foundations and design considerations, Med Phys,2003,30(8):2169-2179
    [160]Ho ST, Hutmacher DW, A comparison of micro CT with other techniques used in the characterization of scaffolds, Biomaterials,2006,27:1362-1376,
    [161]Gauthier O, Muller R, Stechow DV, Lamy B, Weiss P, Bouler JM, In vivo bone regeneration with injectable calcium phosphate biomaterial:a three-dimensional micro-computed tomograph, biomechanical and SEM study, Biomaterials,2005, 265:444-5453
    [162]Wu F, Wei J, Guo H, Chen F, Hong H, Liu C, Self-setting Bioactive Calcium-Magnesium Phosphate Cement with High Strength and high strength and degradability for bone regeneration, Acta Biomat,2008,4(9):1873-1884
    [163]孟德刚,孙晓光,黄钢,同步辐射在医学成像中的应用综述,中国医学物理杂志,2009,26(4):1278-1280
    [164]Renghini C, Komlev V, Fiori F, Verne E, Baino F, Vitale-Brovarone C. Micro-CT studies on 3-D bioactive glass-ceramic scaffolds for bone regeneration, Acta Biomater, 2009,5(9):1328-1337
    [165]Clartner AH, Dorn SO, Advances in endodontic surgery, Dent Clin North Am,1992, 36:357-379
    [166]Henry Harbert, One-step apexification without calcium hydroxide, J Endo,1996, 22(12):690-692
    [167]Takagi S, Chow LC, Hirayama S, Sugawara A. Premixed Calcium-Phosphate Cement Pastes. J Biomed Mater Res.2003,67B:689-696
    [168]Careya LE, Xu HHK, Carl G., Simon Jb, Takagia S, Chow LC, Premixed rapid-setting calcium phosphate composites for bone repair, Biomaterials,2005,25:5002-5014
    [169]Xu HHK, Careya L E, CGS Jr, Takagi S, Chow LC. Premixed calcium phosphate cements:Synthesis, physical properties, and cell cytotoxicity, Dent Mater,2007, 23:433-441
    [170]Liu XL, Huang Y, Yang J, Effect of rheological properties of the suspension on the mechanical strength of Al2O3-ZrO2 composites prepared by gelcasting, Ceram Int, 2002,28:159-164
    [171]Joao B, Neto R, Moreno R. Effect of mechanical activation on the rheology and casting performance of kaolin/talc/alumina suspensions for manufacturing dense cordierite bodies, Appl. Clay Sci,2008,38:209-218
    [172]Wang X, Guo L, Effect of sucrose on rheological properties of aqueous zirconia suspensions with polyacrylate, Powder Technol,2008,186:107-112
    [173]Lin HW, Chang CP, Hwu WH, Ger MD, The rheological behaviors of screen-printing pastes, J Mater Pro Tec.2008,197(1):284-291
    [174]金晶,盖蔚,刘昌胜,添加剂对磷酸钙骨水泥流变性能的影响Ⅰ:聚乙烯吡咯烷酮.华东理工大学学报,2005,31(2):83-87
    [175]Wang X, Ye J, Wang Y, Influence of a novel radiopacifier on the properties of an injectable calcium phosphate cement, Acta Biomater,2007,3:757-763
    [176]Burguera EF, Xu HHK, Sun L, Injectable Calcium Phosphate Cement:Effects of Powder-to-Liquid Ratio and Needle Size, J Biomed Mater Res,2008,84B:493-502
    [177]Qi X, Ye J, Wang Y, Improved injectability and in vitro degradation of a calcium phosphate cement containing poly(lactide-co-glycolide) microspheres, Acta Biomater, 2008,4:1837-184
    [178]Liu C, Shao H, Chen F, Zheng H, Rheological properties of concentrated aqueous injectable calcium phosphate cement slurry, Biomaterials,2006,27:5003-5013
    [179]沈钟,王果庭,胶体表面化学,北京:化学工业出版社,1991
    [180]贾志谦,杜振霞,陈建峰等,改性纳米CaCO3悬浮液流变行为及填充聚酯氨基清漆性能研究,材料科学与工程,2000,18(1):100-102
    [181]张新霓,α-Al2O3水相悬浮体系分散性及稳定性的研究,青岛:青岛大学,2005
    [182]Mewis J, Wagner NJ, Thixotropy, Adv. Colloid Interface Sci,2009,147-148:214-227
    [183]Bauer W, Collins E, Rheology:Theory and Application. New York:Academic Press. 1967
    [184]Patankar NA, Hu HH, Rheology of a suspension of particles in viscoelastic fluids, J Non-Newton Fluid Mech,2001,96(3):427-443
    [185]Yang X, Aldrich C, Rheology of aqueous magnetite suspensions in uniform magnetic fields, Int J Miner Process,2005,77:95-103
    [186]Pasquier G, Flauutre B, Blary M, Anselme K, Hardouin P. Injectable percutaneous bone biomaterials:an experimental study in a rabbit model, J Mater Sci Mater Med, 1996,7:683-690
    [187]Chow L, Calcium phosphate cements:chemistry, properties and applications, Mater Res Symp Proc,2000,599:27-37
    [188]Xu H, Takagi S, Quinn J, Chow L, Fast-setting calcium phosphate scaffolds with tailored macropore formation rates for bone regeneration, J Biomed Mater Res,2004, 68A:725-734
    [189]Kannan S, Lemos IAF, Rocha JHG, Ferreira JMF, Synthesis and characterization of magnesium subsitituted biphasic mixtures of controlled hydroxyapatite beta-tricalcium phosphate ratios, J Solid State Chem,2005,178(7):3190-3196
    [190]Burgos-Montes O, Moreno R. Stability of concentrated suspensions of AlO3-SiO2 measured by multiple light scattering, J Eur CeramSoc,2009,29(4):603-610
    [191]Mengual O, Meunier G, Gayre I, Puech K, Snabre P, Turbiscan MA 2000:multiple light scattering measurement for concentrated emulsion and suspension instability analysis. Talanta.1999,50(2):445-456
    [192]Karjukin W. How accurate are computations of multiple light scattering by non-spherical particles, J. Quant. Spectrosc. Radiat. Transfer,2007,106:145-153
    [193]Dario TB, Rodolfo B, Attilio C, Aluminum hydroxide microstructural units in gelled media aged, or nonaged, with alcohol and water, J Colloidal interface Sci,2008, 322:158-167
    [194]Trompette JL, Clifton MJ, Influence of ionic specificity on the microstrcture and strength of gelled colloidal silica suspensions, J Colloidal interface Sci,2004, 276:475-482
    [195]Boschini F, Rulmont A, Cloots R, Moreno R. Rheological behaviour of BaZrO3 suspensions in non-aqueous media, Ceram Int,2009,35(3):1007-1013
    [196]Roberts, Porter MD, Justin L, et al, The Merck Manual of Diagnosis and Therapy Eighteenth Edition:Principles of Radiologic Imaging, Merck Research Laboratories, 2005.
    [197]Martin, Howard, Root canal sealer. United States Patent:US5646197,1997
    [198]Kim JS, Back SH, Bea KS, In vivo study on the biocompatibility of newly developed calcium phosphate-based root canal sealers, J Endod,2004,10:708-711
    [199]Kjellson F, Almen T, Tanner K E, McCarthy ID, Lidren L. Bone cement X-ray contrast media:a clinically relevant method of measuring their efficacy, J Biomed Mater Res Part B:Appl Biomater,2004,70B:354-61
    [200]Nan Y, Hongzhe S. Biocoordination chemistry of bismuth:Recent advances. Coord. Chem. Rev.2007:251,2354-2366
    [201]Briand GG, Burford N, Bismuth Compounds and Preparations with Biological or Medicinal Relevance, Chem. Rev,1999,99:2601-2658
    [202]Domenico P, Salo RJ, Novick SG, Schoch PE, Horn KV, Cunha BA, Enhancement of bismuth antibacterial activity with lipophilic thiol chelators. Antimicrob, Agents Chemother,1997,41:1697-1703
    [203]Iffland R., Bismuth, Handbook on Metals in Clinical and Analytical Chemistry, Marcel Dekker, New York (1994)
    [204]Abramson JS, Givner LB, Woods C R, Guiraldes E, Salazar-Lindo E, Sack R B, Figueroa-Quintanilla D, Bismuth in Infants with Watery Diarrhea, N Engl J Med,1993, 329:1742-1743
    [205]Kristian SC, Philip JL, Michael PH, Effect of Bismuth Oxide Radioopacifier Content on the Material Properties of an Endodontic Portland Cement-based (MTA-like) System. J Endod,2007,33:295-298
    [206]Wang XP, Ye JD, Wang YJ, Influence of a novel radiopacifier on the properties of an injectable calcium phosphate cement, Acta Biomater,2007,3:757-763
    [207]Kjellson F, Almen T, Tanner KE, McCarthy ID, Lidgren L. Bone cement X-ray contrast media:a clinically relevant method of measuring their efficacy. J Biomed Mater Res Part B:Appl Biomater,2004,70:354-361
    [208]Liu XL, Huang Y, Yang J, Effect of rheological properties of the suspension on the mechanical strength of Al2O3-ZrO2 composites prepared by gelcasting, Ceram Int,2002, 28:159-164
    [209]Qi X, Ye J, Wang Y. Improved injectability and in vitro degradation of a calcium phosphate cement containing poly(lactide-co-glycolide) microspheres, Acta Biomater, 2008,4:1837-1845
    [210]Burguera EF, Xu HHK, Sun L, Injectable Calcium Phosphate Cement:Effects of Powder-to-Liquid Ratio and Needle Size, J Biomed Mater Res,2008,84B:493-502
    [211]郭立萍,黄惠杰,王向朝,步进扫描投影光刻机中的曝光剂量控制技术研究,激光杂志,2004,25(6):17-21
    [212]Kinirons MJ, Srinivassan V Welbury RR, et al, A study in two centres of variations in the time of apical barrier detection and barrier position in nonvital immature permanent incisors, Int J Paediatr Dent,2001,11(6):447-452
    [213]Sathom C, Parashos P, Messer H, Antibacterial efficacy of calcium hydroxide intracarial dressing:a systematic review and meta-analysis, Int Endod J,2007,40(1):2-10
    [214]Mc Grukin-Smith R, Trope M, Caplan D, et al, Reduction of intracanal bacteria using GT rotary instrumentation,5.25% NaOCl, EDTA and Ca(OH)2, J Endod,2005,31(5): 359-63
    [215]Estrela C, Sydney GB, Bammann LL, et al, Mechanism of action of calcium and hydrocylions of calcium hydroxide on tissue and bacteria, Braz Dent J,1995,6(2):85-92
    [216]Kamran E, Frank C, Aleration of biological properties of bacterial lipopolysaccharide by calcium hydroxide treatment, J Endod,1994,20(3):127-135
    [217]Elias RV, Demarco FF,Tarquinio SB, et al, Influence of rubber dam isolation on human pulp responses after capping with calcium hydroxide and an adhesive system, Quintessence Int,2007,38(2):e66-67
    [218]Peters LB, Van Winkelhoff AJ, Buijs Jr,et al, Effects of instrumentation, irrigation and dressing with calcium hydroxide on infection in pulpless teeth with periapical bone lesions, Int Endod J,2002,35(1):13-21
    [219]江明性主编,药理学,第三版,北京,人民卫生出版社,1992,262
    [220]Stratton CW, Warner RR, Coudron PE, et al, Bismuth-mediated disruption of the glycocalyx-cell wall of Helicobacter pylori:ultrastructural evidence for a mechanism of action for bismuth salts, J Antimicrob Chemother,1999,43(5):659-666
    [221]孙红哲,张丽,司徒嘉怡,含铋类药物的生物化学和药物化学研究进展,中国临
    床药理学杂志,2002,18(4):297-301
    [222]桑青,韩宝芹,刘万顺等,羧甲基壳聚糖铋盐抗大鼠胃溃疡及杀灭幽门螺杆菌作用的研究,高科技通讯,2004,14(7):93-96
    [223]ISO/TR7405-1984:Biological evaluation of dental materials.
    [224]CAN.3Z310.6M-84(Canada):Biocompatibility testing of Biomaterials.
    [225]USP(USA):Biological reactivity tests in vitro.
    [226]BS 5736(United Kingdom):Evaluation of medical devices for biological harzards, 1989
    [227]DIV V 13 930-09(Germany):Biological testing of biomaterials,1990.
    [228]ISO 10993(ISO/TC194):Biological evaluation of medical devices.
    [229]Jr JFS, Magalhaes KM, Rocas IN, Bacterial Reduction in Infected Root Canals Treated With 2.5% NaOCl as an Irrigant and Calcium Hydroxide/Camphorated Paramonochlorophenol Paste as an Intracanal Dressing, J Endo,2007,33(6):667-672
    [230]Liu CS, Wang WB, Shen W, Chen TY, Gu YF, Chen ZW. Evaluation of the Biocompatibility of a Nonceramic Hydroxyapatite, J Endo,1997,23(8):490-493
    [231]Ooms EM, Wolke JGC, van de Heuvel MT, Jeschke B, Jansen JA, Histological evaluation of the bone response to calcium phosphate cement implanted in cortical bone. Biomaterials,2003,24:989-1000
    [232]Yuan HP, Li YB, de Bruijn JD, de Groot K, Zhang XD, Tissue responses of calcium phosphate cement:a study in dogs, Biomaterials,2000,21:1283-1290
    [233]Tsai CH, Lin RM, Ju CP, Lin JHC, Bioresorption behavior of tetracalcium phosphate-derived calcium phosphate cement implanted in femur of rabbits, Biomaterials, 2008,29:984-993
    [234]Mcionerney ST, Zillich R, Evaluation of internal sealng ability of three materials, J Endod,1992,18(8):376-378
    [235]Borwn RC, Jackson CR, Skidmoer AE, An evaluation of apical leakage of a glass ionomer root canal sealer, J Endod,1994,20 (6):288-291
    [236]Oguntebi BR, Shen C, Effect of different sealers on thermoplasticized Gutta-percha root canal obturations, J Endod,1992,18(8):363-366
    [237]Rajput JS, Jain RL, Pahtak A, An evaluation of sealing ability of endodontic materials as root canal sealers, J Indian Soc Pedod Prev Dent,2004,22:1-7
    [238]Zmener O, Spielberg C, Lamberghini F, et al, Sealing properties of a new epoxy resin-based root-canal sealer, Int Endod J,1997,30:332-333

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700