用户名: 密码: 验证码:
脊柱结核单节段椎弓根螺钉内固定的生物力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的通过小牛脊柱模型的生物力学测试和临床研究,探讨单节段椎弓根内固定及单节段短椎弓根螺钉内固定的可行性。
     方法应用小牛脊柱制成力学测试模型,模拟体外L1-2边缘型脊柱结核前路病变椎体切除手术,即切除L1/2间盘和邻近终板,自体髂骨支撑植骨,后路采用椎弓根内固定系统进行不同方式的固定,并在试验机上模拟脊柱的轴向压缩、侧弯、屈伸和扭转运动,测试模型在轴向压缩、侧弯、屈伸和扭转方向上的运动范围(ROM, range of movement),计算相对运动范围(RROM, relative range of movement)并进行比较。
     本研究从4个方面分别探讨了单节段椎弓根内固定的稳定性:
     (1)比较长节段、短节段、单节段长椎弓根螺钉和单节段短椎弓螺钉内固定的生物力学稳定性:后路分别采用长节段、短节段、单节段长钉、单节段短钉进行固定,依次测量各运动方向上的ROM;
     (2)比较植骨和非植骨条件下的单节段固定的稳定性:分别测量植骨组和非植骨组在各运动方向上的ROM,同步测量后路固定棒的应力变化;
     (3)分析了橫连在单节段固定中的作用:分别测量无橫连组、一根横联组、二根横联组在各运动方向上的ROM;
     (4)对45例单节段固定的临床病例进行了随访观察和疗效分析。
     结果
     (1)在各个加载方向上长节段组、短节段组的RROM均小于单节段长钉组和单节段短钉组(P<0.05),而单节段长钉组和单节段短钉组的ROM均小于对照组(P<0.05),单节段短钉组和单节段长钉组的RROM相比较均无显著性差异(P>0.05);
     (2)在轴向压缩、侧弯、前屈和后伸方向上植骨组的RROM显著小于非植骨组(P<0.05),在扭转方向上两组比较无明显差异(P>0.05),在轴向压缩、侧弯、前屈和后伸方向上非植骨组后路内固定棒的应变较植骨组明显增加(P<0.05);
     (3)在扭转载荷下,一根橫连组和二根橫连组分别与无橫连组比较RROM显著减少(P<0.05),而在其余方向上的RROM比较无显著性差异(P>0.05),一根橫连组和二根橫连组相比在各个运动方向上均无显著性差异(P>0.05);
     (4)临床治疗随访结果显示单节段固定植骨融合优良,未见矫正度数的明显丢失;
     结论
     (1)单节段长钉固定的稳定性虽然低于短节段和长节段固定,但是高于对照组,达到了重建脊柱术后即刻稳定性的目的;单节段短钉内固定与单节段长钉内固定在轴向压缩、侧弯、屈伸、扭转方向上的即刻稳定性相近。
     (2)椎间植骨后增加了前中柱脊柱的载荷分享,减少了通过后路内固定器的应力,可明显增加脊柱在轴向压缩、侧弯、前屈后伸运动方向上的稳定性;然而在体外非融合状态下,椎间植骨对于脊柱扭转稳定性的影响不大。
     (3)在单节段椎弓根螺钉内固定中,橫连仅仅能够增强脊柱在扭转方向上的稳定性,使用一根橫连即能够达到最佳的对抗扭转的效果。
     (4)临床研究结果表明病椎间植骨融合、单节段内固定术可以有效的恢复和维持脊柱的稳定性。
Objective Through biomechanical stability test of calf spine model and clinical research, explore feasibility of monosegment pedicle instrumentation (MSPI) and monosegment short pedicle instrumentation used in treatment for spinal tuberculosis;
     Method Calf spines were made into the mechanical test models of simulating resecting operation on spinal tuberculosis, being cut off the L1/2 intervertebral discs and the adjacent end plates, auto-iliac grafting and posterior being fixed with different method. Simulate spine motion in axial compression, lateral bending, flexion-extension and rotation and test range of movement(ROM) in all move directions. Calculate and compare relative range of movement(RROM). The research was mainly composed of four parts to discuss the stability of MSPI:
     (1) Compare the biomechanical properties of long segment pedicle instrumentation(LSPI), short segment pedicle instrumentation(SSPI), monosegment instrumentation with long pedicle screw (MILPS), monosegment instrumentation with short pedicle screw (MISPS): Posterior fix with LSPI,SSPI,MILPS,MISPS. Test ROM in all move directions;
     (2)Compare stability of MSPI with and without intervertebral bone graft: Separately test ROM of graft group and non-graft group in all directions and synchronously measure stress along the posterior internal fixation;
     (3)Analysis the effect of cross-linkage on monosegment pedicle instrumentation: Test ROM of the models without cross-linkage, with 1 and 2 cross-linkages in all directions;
     (4)Follow up 45 cases with monosegment pedicle instrumentation and analysis the curative effect.
     Result
     (1) Relative range of movement (RROM) of LSPI and SSPI were significantly smaller than that of MILPS and MISPS in all loading directions (P<0.05).However, range of movement(ROM) of MILPS and MISPS were smaller than that of control group(P<0.05); no statistical difference of the RROM was found between MISPS and MILPS(P>0.05);
     (2) The RROM of the models with bone graft was significantly lower than that of the ones without bone graft in axial compression, lateral bending and flexion-extension (P<0.05). However, no significant difference was found between them in rotation (P>0.05). In axial compression, lateral bending and flexion-extension the stress along the posterior internal fixation in group without bone graft was significantly increased than that in group with bone graft (P<0.05);
     (3) The RROM of fixation with 1 cross-linkage and 2 cross-linkages was significantly lower than that of fixation without cross-linkage in rotation (P<0.05), but there is no statistical difference in other directions (P>0.05). However, comparison of RROM between 1 and 2 cross-linkages was no significantly different in all directions (P>0.05);
     (4)The result of follow up showed that graft got well fused in monosegment fixation. There was no significant loss of correction angle;
     Conclusion
     (1)The stability of MILPS was significantly lower than that of LSPI and SSPI, but higher than that of control group. MILPS could reconstruct instant stability of spine; With iliac struting graft in anterior and mid column, MISPS can provide identical instant stability compare with MILPS in axial compression, lateral bending, flexion-extension and rotation;
     (2)Intervertebral bone graft could increase the load-sharing on the anterior and mid column , decrease stress along posterior internal fixation. It could increase the stability of spine in axial compression, lateral bending, flexion - extension, Otherwise, it effects little in rotation without interbody fusion;
     (3)With monosegment pedicle instrumentation, cross-linkage only increased torsional stability of spine. With 1 cross-linkage, the fixation will achieve the best effect to resist rotation;
     (4) The result of clinical research confirmed that bone-graft and fuse intervertebrae with monosegment pedicle instrumentation could reconstruct and sustain stability of spine effectively;
引文
[1] McLain RF.The biomechanics of long versus short fixation for thoracolumbar spine fractures[J].Spine,2006,31(Suppl 11):S70-S79.
    [2] Altay M, Ozkurt B, Aktekin CN,et al. Treatment of unstable thoracolumbar junction burst fractures. with short- or long-segment posterior fixation in magerl type a fractures[J].Eur Spine,2007,16:1145-1155.
    [3] Tezeren G, Kuru I.Posterior fixation of thoracolumbar burst fracture: short-segment pedicle fixation versus long-segment instrumentation[J]. J Spinal Disord Tech,2005,18(6):485-488.
    [4] Parker JW, Lane JR, Karaikovic EE, et al. Successful short-segment instrumentation and fusion for thoracolumbar spine fractures: a consecutive 41/2-year series[J].Spine,2000,25(9):1157-1170.
    [5] Defino HL, Scarparo P. Fractures of thoracolumbar spine: monosegmental fixation[J].Injury,2005,36(Suppl 2):B90-97.
    [6] Steel TR, Rust TM, Fairhall JM, et al. Monosegmental pedicle screw fixation for thoracolumbar burst fracture[J].J Bone Joint Surg,2004,86(Suppl 4):458.
    [7] Shaoyu Liu, Haomiao Li, Chunxiang Liang,et al. Monosegmental transpedicular fixation for selected patients with thoracolumbar burst fractures[J].J Spinal Disord Tech,2009,22(1):38-44.
    [8]邱贵兴,徐宏光,翁习生.脊柱固定融合术后邻近节段病[J].中国医学科学院学报, 2005,27(2):249-253.
    [9]王自立.病灶清除单节段融合固定治疗脊柱结核[J].中国脊柱脊髓杂志, 2009,19(11):807.
    [10]侯树勋.脊柱外科学[M].北京:人民军医出版社.2005:50-59.
    [11] Cengiz Y, Hakan YS, Ilksen G, et al. Anterior instrumention for the treatmentof spine tuberculosis[J].J Bone Joint Surg(Am),1999,18(9):1261-1267.
    [12] Moon MS, Woo YK, Lee KS, et al. Posterior instrumentation and anterior interbody fusion for tuberculous kyphosis of dorsal and lumbar spines[J]. Spine,1995,20(17):1910–1916.
    [13] Hodgson AR, Stock FE. Anterior spinal fusion. A preliminary communication on the radical treatment of Pott’s disease and Pott’s paraplegia[J].Br J Surg,1956,44(185):266-275.
    [14]Rao SC, Mou ZS, Hu YZ, et al. The IVPF dual-blade plate and its application[J].Spine,1991,16(suppl 3):112–119.
    [15] OgaM,Arizono L,TakasitaM,et al. Evaluation of the risk of instrumentation as a foreign body in spinal tuberculosis. Clinical and biologic study[J].Spine,1993,18:1890-1894.
    [16]周劲松,陈建庭,等.结核分枝杆菌对材料粘附能力的体外实验研究[J].中国脊柱髓杂志, 2003,13(11):670-673.
    [17] Ha KY, Chung YG, Ryoo SJ. Adherence and biofilm formation of Staphylococcus epidermidis and mycobacterium tuberculosis on various spinal implants[J]. Spine,2005,30(1):38-43.
    [18]Talu U, Gogus A, Ozturk C, et al. The role of posterior instrumentation and fusion after anterior radical debridement and fusion in the surgical treatment of spinal tuberculosis: experience of 127 cases[J]. J Spinal Disord Tech,2006,19(8):554-559.
    [19]Lee SH, Sung JK, Park YM Single-stage transpedicular decompression and posterior instrumentation in treatment of thoracic and thoracolumbar spinal tuberculosis: a retrospective case series[J]. J Spinal Disord Tech, 2006,19(8):595-602.
    [20]Bezer M, Kucukdurmaz F, Aydin N, et al. Tuberculous spondylitis of thelumbosacral region: long-term follow-up of patients treated by chemotherapy, transpedicular drainage, posterior instrumentation, and fusion[J].J Spinal Disord Tech,2005,18(5):425-429.
    [21]Swartz DE,Wittenberg RH,Shea M, et al. Physical and mechanical properties of calf lumbosacral trabecular bone[J].J Biomech,1991,24(11):1059-1068.
    [22]Wilke HJ, Krischak S, Claes L. Biomechanical comparison of calf and human spines[J].J Orthop Res,1996,14(3):500-503.
    [23]Kettler A, Liakos L, Haegele B, et al. Are the spines of calf, pig and sheep suitable models for pre-clinical implant tests[J]? Eur Spine J,2007,16 (12):2186-2192.
    [24]Seller K, Wahl D, Wild A, et al. Pullout strength of anterior spinal instrumentation: a product comparison of seven screws in calf vertebral bodies [J].Eur Spine,2007,16(7):1047-1054.
    [25]洪全明,兰林,叶刚,等.短节段椎弓根螺钉治疗胸腰段脊柱爆裂性骨折分析[J].中国骨与关节损伤杂志, 2008,23(11):915-916.
    [26]姚啸生,洪久,刘歆,等.短节段椎弓根内固定治疗胸腰椎爆裂性骨折远期疗效分析[J].中国中医骨伤科杂志, 2009,17(8):27-29.
    [27]张嘉,吕维加,叶启彬,等.长节段脊柱内固定术后即刻刚度变化[J].中国医学科学院学报, 2005,27(2):153-155.
    [28]邱贵兴,徐宏光,翁习生.脊柱固定融合术后邻近节段病[J].中国医学科学院学报,2005,27(2):249-253.
    [29] Weinhoffer SL, Guyer RD, Herbert M, et al. Intradiscal pressure measurements above an instrumented fusion: a cadaveric study[J].Spine,1995,20(5): 526-531.
    [30]Gillet P.The fate of the adjacent motion segments after lumbar fusion[J].J Spinal Disord,2003,16(4):338-345.
    [31]Bastain L,Lange U,Knop C,et al. Evaluation of the mobility of adjacent segments after posterior thoracolumbar fixtion: a biomechanical study[J]. Eur Spine J,2001,10(4):295-300.
    [32]Sudo H, Oda I, Abumi K, et al. Biomechanical study on the effect of five different lumbar reconstruction techniques on adjacent-level intradiscal pressure and lamina strain[J].J Neurosurg Spine,2006,5(2):150-155.
    [33]Wawro W, Konrad L, Aebi M. Single segment internal fixator device in treatment of thoracolumbar vertebral fractures[J].Unfallchirurg,1994, 97(3):114-120.
    [34]魏富鑫,刘少喻,赵卫东,等.单节段与双节段椎弓根螺钉固定胸腰椎单椎体骨折的生物力学比较[J].中国脊柱脊髓杂志,2007,17(1):46-50.
    [35]杨伟宇,王自立,乔永东,等.脊柱结核病灶部分切除术的切除范围[J].第四军医大学学报,2006,27(8):695-697.
    [36]Duffield RC, Carson WL, Chen LY, et al. Longitudinal element size effect on load sharing, internal loads and fatigue life of tri-level spinal implant constructs[J]. Spine,1993,18(12):1695-1703.
    [37]Cripton PA, Jain GM, Wittenberg RH, et al. Load-sharing characteristic of stabilized lumbar[J].Spine,2000,25(2):170-179.
    [38]罗鸣,罗卓荆,李明全,等.椎间植骨对腰椎内固定棒应力分布的影响[J].中国脊柱脊髓杂志,2006,16(7):531-535.
    [39]Martin H, Krag. Biomechanics of thoracolumbar spinal fixation, a review [J]. Spine,1991,16(Suppl 3):84-99.
    [40]张光铂.浅谈脊柱内固定的应用与植骨融合[J].中国脊柱脊髓杂志, 2002,12(5):325.
    [41]罗刚,李长青,腾海军,等.单节段腰椎小关节分级切除对腰椎稳定性影响的生物力学研究[J].第三军医大学学报,2005,27(18):1871-1873.
    [42]Lim TH,Eck JC,An HS,et al. Biomechanics of transfixation in pedicle screw instrumentation[J].Spine,1996,21(19):2224-2229.
    [43]Dick JC, Zdeblick TA, Bartel BD,et al. Mechanical evaluation of cross-link designs in rigid pedicle screw systems [J].Spine,1997,22(4):370-375.
    [44]Kuklo TR, Dmitriev AE, Cardoso MJ, et al. Biomechanical contribution of transverse connectors to segmental stability following long segment instrumentation with thoracic pedicle screws[J].Spine,2008,33(15):E482 - 487.
    [45]Lim TH, Kim JG, Fujiwara A, et al. Biomechanical evaluation of diagonal fixation in pedicle screw instrumentation[J].Spine,2001,26(22):2498 - 2503.
    [46]Lynn G, Mukherjee DP, Kruse RN, et al. Mechanical stability of thoracolumbar pedicle screw fixation: the effect of crosslinks [J].Spine,1997,22 (14):1568 -1572.
    [47]Brodke DS, Bachus KN, Mohr RA, et al. Segmental pedicle screw fixation or cross-links in multilevel lumbar constructs. a biomechanical analysis[J]. Spine J,2001,1(5):373-379.
    [48]丁宇,阮狄克,黄文华,等.横向连接装置在腰椎经椎弓根内固定系统中的作用[J].中国临床解剖学杂志,2002,20(6):466-472.
    [49]乔国勇,关凤英,耿瑞鹏,等.基于椎弓根三维形态测量实施个体化置钉技术[J].中国组织工程研究与临床康复,2007,11(26):5183-5185.
    [50]母心灵,陈金华,王祥善,等.人腰椎e角及椎弓根长度的测量及意义[J].医药论坛杂志,2005,26(23):43-44.
    [51]Weinstein JN, Rydevik BL, Rauschning W. Anatomic and technical considerations of pedicle screw fixation[J].Clin Orthop Relat Res, 1992,(284):34-46.
    [52]王正,沈国平,陈伟兵,等.椎弓根螺钉内固定稳定性的生物力学测试[J].医用生物力学,2002,17(2):80-84.
    [53]Hirano T, Hasegawa K, Takahashi HE, et al. Structural characteristics of the pedicle and its role in screw stability[J].Spine,1997,22 (21):2504-2510.
    [54]阮狄克.胸腰段脊柱骨折内固定使用长节段还是短节段[J].中国骨伤,2009,22 (7):483-484.
    [1] Boucher HH. A method of spinal fusion[J].J Bone Joint Surg Br, 1959,41(2):248-259.
    [2] Roy-Camille R, Saillant G, Mazel C. Internal fixation of the lumbar spine with pedicle screw plating[J].Clin Orthop,1986,(203):7-17.
    [3] Louis R. Fusion of the lumbar and sacral spine by internal fixation with screw plates[J].Clin Orthop,1986,(203):18-33.
    [4] Esses SL,Sachs BL,Dreyzin V. Complications associated with the technique of pedicle screw fixation: a selected survey of ABS members[J]. Spine, 1993, 18(15):2231-2238.
    [5]郑祖根,唐天驷,董天华,等.胸腰椎椎弓根的解剖学和放射学研究及Roy-Camille椎弓根钢板的临床应用[J].苏州医学院学报,1987,7(4):275-277.
    [6] Zendrick MR, wiltse LL. A biomechanical study of intrapeduncular screw fixation in the lumbosacral spine[J].Clin Orthop 1986,(203):99-112.
    [7] Willett K, Hesrn TC, Cuncins AV, et al. Biomechanical testing of a new design for Schanz pedicle screws[J].J Orthop Traum,1993,7(4):375-380.
    [8]徐又佳,郑祖根,王以进,等.不同直径锥形推弓根螺钉对腰推骨折复位固定效果的动态生物力学研究[J].中华试验外科杂志.1994,11(4):234-235.
    [9]侯树勋,史亚民.国人下胸椎及腰椎椎弓根形态学特点及其临床意义[J].中华骨科杂志.1994,14(4):222-225.
    [10]阮狄克,徐建强,蔡福金,等.经椎弓根内固定的形态与生物力学研究[J].中国矫形外科杂志,2000,7(6):562-564.
    [11] O'Brien MF, Lenke LG, Mardjetko S, et al. Pedicle morphology in thoracic adolescent idiopathic scoliosis: is pedicle fixation an anatomically viable technique[J]? Spine,2000,25(18):2285-2293.
    [12]Weinstein JN,Rydevik BL,Rauschning W. Anatomic and technical considerations of pedicle screw fixation[J].Clin Orthop Relat Res, 1992,(284):34-46.
    [13]Krag MH,Beynnon BD,Pope MH,et al. Depth of insertion of transpedicular vertebral screws into human vertebrae: effect upon screw-vertebra interface strength[J].J Spinal Disord,1988,1(4):287-294.
    [14] Whitecloud TS,Skalley TC,Cook SD,et al. Roentgenographic measurement of pedicle screw penetration[J].Clin Orthop Rel Res, 1989,(245):57-68.
    [15]王正,沈国平,陈伟兵,等.椎弓根螺钉内固定稳定性的生物力学测试[J].医用生物力学.2002,17(2):80-84.
    [16] Krag MH. Biomechanics of thoracolumbar spinal fixation. A review[J]. Spine, 1991:16(suppl 3):S84-S99.
    [17] Krag MH. The Vermont spinal fixator. In An HS ,Cotler JM, eds. Spinal instrumentation[M]. Baltimore: Williams and Wilkims,1992:237-255.
    [18]谭映军,潘显明,陈乾一,等.内锥及外锥形椎弓根螺钉的生物力学研究[J].骨与关节损伤杂志,2001,16(6):441-443.
    [19]李超,阮狄克,丁宇,等.锥形与柱形椎弓根螺钉的生物力学研究[J].脊柱外科杂志.2004.2(4):220-222.
    [20] Krenn MH, Piotrowski WP, Penzkofer R, et al. Influence of thread design on pedicle screw fixation. Laboratory investigation[J]. J Neurosurg Spine, 2008,9(1):90-95.
    [21] Xu R,Ebraheim.NA, Ou Y, et al. Anatomic considerations of pedicle screw placement in the thoracic spine. Roy-Camille technique versus open-lamina technique[J]. Spine,1998,23(9):1065-1068.
    [22]唐天驷,杨惠林,倪才方,等. 112例椎弓根螺钉位置分析[J].中华外科杂志,1993,31(7):17-30.
    [23] Moran JM, Berg WS, Berry JL, Transpedicular screw fixation[J]. J Orthop Res. 1989,7(1):107-114.
    [24] George DC, Krag MH, Johnson CC, et al. Hole preparation techniques for transpedicle screws. Effect on pull-out strength from human cadaveric vertebrae[J].Spine,1991,16(2):181-184.
    [25] Wittenberg RH, Lee KS, Shea M, et al. Effect of screw diameter, insertion technique, and bone cement augmentation of pedicular screw fixation strength[J]. Clin Orthop Relat Res. 1993,(296):278-287.
    [26] Zindrick MR, Wiltse LL, Widell EH,et al. A biomechanical study of intrapedicular screw fixation in the lumbosacral spine[J]. Clin Orthop Relat Res.1986,(203):99-112
    [27]孙寒松,门德华,唐天驷,等.椎弓根内固定置钉方法改进的生物力学特征[J].中国临床康复,2005,9(2):60-62.
    [28]杜心如,赵玲秀,张一模,等.胸腰椎椎弓根内径的测量及其临床意义[J].中华脊柱脊髓杂志,2001,11(3):162-164.
    [29]Magerl FP. Stabilization of the lower thoracic and lumbar spine with external skeletal fixation[J].Clin Orthop,1984,(189):125-141.
    [30]Krag MH, Van Hal ME, Beynnon BD. Placement of transpedicular vertebral screws close to anterior vertebral cortex. Description of method [J].Spine, 1989,14(8):879-883.
    [31]Muller ME, Allgower M, Schneider R, et al. Manual of internal fixation techniques recommended by the AO ASIF group[M].3 ed, Springer verleg, Berlin Heidelberg,1991.666-670.
    [32]Barber JW, Boden SD, Ganey T, et al. Biomechanical study of lumbar pedicle screws: does convergence affect axial pullout strength[J]? J Spinal Disord, 1998,11(3):215-220.
    [33]单云官,李俊锁,杨少华,等.椎弓根形态学观察及其意义[J].中国临床解剖学杂志, 1988,6(4):219~223.
    [34] Louis R. Spine internal fixation with louis instrumentation. In An HS, Cotler JM,eds. Spinal Instrumentation[M].Baltimore: Wiliams and Wilkims, 1992:183-196.
    [35] Ebrahinm NA, Xu R, Ahmad M, et al. Projection of the thoracic pedicle and its morphometric analysis[J].Spine,1997,22(3):233-238.
    [36]Krag MH,Beynnon BD,Pope MH,et al. An internal fixator for posterior application to short segments of the thoracic,lumbar,or lumbosacral spine[J]. Clin orthop,1986,(203):75-98.
    [37]陈群,金正帅,曹晓健,等.不同外倾角的脊柱椎弓根螺钉内固定效果的生物力学评价[J].河北医学. 2005.11(5):433-435.
    [38]William Sterbaa, Do-Gyoon Kima, David P. Fyhrie. et al. Biomechanical analysis of differing pedicle screw insertion angles[J]. Clin Biomech,2007. 22(4):385-391.
    [39]杨惠林,唐天驷,朱国良,等.钉杆角弓根内固定系统治疗胸腰椎骨折的研究[J].中华骨科杂志,1995,15(9):570-572.
    [40]Zdeblick TA, Kunz DN, Cooke ME, et al. Pedicle screw pullout strength. Correlation with insertional torque[J]. Spine,1993,18(12):1673-1676.
    [41]Okuyama K, Sato K, Abe E, et al. Stability of transpedicle screwing for the osteoporotic spine. An in vitro study of the mechanical stability[J]. Spine, 1993,18(15):2240-2245.
    [42]Myers BS,Belmont PJ,Richardson WJ,et al. The role of imaging and in situ biomechanical testing in assessing pedicle screw pull-out strength[J]. Spine,1996,21(17):1962-1968.
    [43] Kwok AW,Finkelstein JA,Woodside T,et al. Insertional to torque and pull-out strengths of conical and cylindrical pedicle screws in cadaveric bone[J]. Spine,1996,21(21):2429-2434.
    [44] Inceoglu S, Ferrara L, McLain RF. Pedicle screw fixation strength: pullout versus insertional torque[J].Spine J,2004,4(5):513-518.
    [45] Ozawa T, Takahashi K, Yamagata M, et al. Insertional torque of the lumbar pedicle screw during surgery[J].J Orthop Sci,2005,10(2):133-136.
    [46] Mizuno K, Shinomiya K, Nakai O,et al. Intraoperative insertion torque of lumbar pedicle screw and postoperative radiographic evaluation: short-term observation[J]. J Orthop Sci,2005,10(2):137-144.
    [47]傅德皓,杨述华.骨粘合剂强化椎弓根螺钉稳定的生物力学研究[J].国外医学:骨科学分册,2003,24(6):338-340.
    [48] Yamagata M, Kitahara H, Minami S. Mechanical of the pedicle screw fixationsystems for the lumbar spine[J]. Spine,1992,17(suppl 3):51-54.
    [49]李增春,张志玉,王以进.骨密度对椎弓根螺钉系统固定的影响之生物力学研究[J].中华骨科杂志,1998,18(5):293-297.
    [50]Okuyama K, Abe E, Suzuki T, et al. Influence of bone mineral density on pedicle screw fixation: a study of pedicle screw fixation augmenting posterior lumbar interbody fusion in elderly patients[J].Spine J,2001,1 (6):402-407.
    [51]陈兴,马远征,薛海滨.骨密度对椎弓根螺钉系统内固定影响的临床研究[J].中国骨质疏松杂志,2003,9(2):143-145.
    [52]李琦,杨惠林,唐天驷,等.椎弓根螺钉在骨矿量下降椎体中应用的生物力学研究[J].医用生物力学,2005,20(1):32-36.
    [53] Pfeiffer M, Gilbertson LG, Goel VK, et al. Effect of specimen fixation method on pullout tests of pedicle screws[J].Spine,1996,21(9):1037-1044.
    [54]朱青安,李鉴轶,赵卫东,等.聚甲基丙烯酸甲酯强化和修复椎弓根螺钉的生物力学研究[J].中华骨科杂志,2000,20(5):283-286.
    [55]樊仕才,江振华,朱青安,等.聚甲基丙烯酸甲酯强化椎弓根螺钉内固定对骨质疏松不稳定性胸腰椎损伤稳定性的影响[J].中华创伤杂志.2003,19(6):358-361.
    [56]Yerby SA,Toh E, Mclain RF. Revision of failed pedicle screws using hydroxyapatite cement: a biomechanical analysis[J].Spine,1998,23:1657- 1661.
    [57]Lotz JC, Hu SS, Chiu DF,et al. Carbonated apatite cement augmentation of pedicle screw fixation in the lumbar spine[J]. Spine,1997,22(23):2716-2723.
    [58]黎逢峰,方煌,陈安民,等.磷酸钙骨水泥强化椎弓根螺钉固定的生物力学研究[J].中国脊柱脊髓杂志,2003,13(12):731-734.
    [59]Knaack D, Goad ME, Aiolova M, et al. Resorbable calcium phosphate bone substitute[J]. J Biomed Mater Res,1998,43(4):399-409.
    [60]Eulenberger J, Steinemann SG.Removal torques of small screws of steel and titanium with different surfaces[J]. Unfallchirurg,1990,93(3):96-99.
    [61] Albrektsson T and Hansson HA. An ultrastructural characterization of the interface between bone and spluttered titanium or stainless steel surface[J]. Biomaterials,1986,7(3):201-205.
    [62]Christensen FB, Dalstra M, Sejling F,et al. Titanium-alloy enhances bone-pedicle screw fixation: mechanical and histomorphometrical results of titanium-alloy versus stainless steel[J].Eur Spine J,2000,9(2):97-103.
    [63]孙常太,黄公怡,Fin B Christensen,等.钛合金及不锈钢椎弓根螺钉的骨-螺钉界面力学及组织学分析[J].中华骨科杂志,1999,19(11):679-682.
    [64] Ebraheim NA,Savolaine ER,Stitgen SH,et al. Magnetic resonance imaging after pedicular screw fixation of the spine[J].Clin Orthop Relat Res,1992, (279):133 -137.
    [65]Wang JC,Sandhu HS,Yu WD,et al. MR parameters of imaging titanium spinal instrumentation[J]. J Spinal Disord,1997,10(1):27-32.
    [66]Von Knoch M, Saxler G, Quint U. Titanium as an implant material for rods of transpedicular instrumentation of the lumbar spine[J]. Biomed Tech (Berl). 2004,49(5):132-136.
    [67]Soultanis K, Pyrovolou N, Karamitros A,et al. Instrumentation loosening and material of implants as predisposal factors for late postoperative infections in operated idiopathic scoliosis[J]. Stud Health Technol Inform. 2006,123:559-564.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700