用户名: 密码: 验证码:
钙镁生物活性骨再生材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题包括镁替代磷酸钙骨水泥(MCPC)和介孔硅酸钙镁(OMC)两种钙镁基骨修复材料的研究。
     第一部分将活性氧化镁(MgO)与磷酸四钙(Ca4(PO4)2O),磷酸氢钙(CaHPO4)按照一定比例混合制备出新型的镁替代磷酸钙骨水泥。通过颗粒溶出的方法制备出MCPC多孔支架,支架材料在体外测试中表现出良好的生物降解性和细胞相容性。将MCPC多孔支架植入兔股骨缺损,支架表现出优良的生物相容性,随着植入时间的增加,材料逐步降解,12周时,材料完全降解,缺损区域被新骨所替代,材料显示出了优良的降解性和成骨能力。
     第二部分利用溶胶-凝胶法制备出了介孔硅酸钙镁材料,该材料具有规整的7nm左右的介孔孔道,比表面积高达1017 m2/go OMC在Tris-HCl溶液中具有良好的溶解性,在模拟体液中浸泡7天后,表面有大量磷灰石生成,显示出了优良的体外生物活性。将材料植入兔股骨缺损,随着植入时间的增长,新骨不断生成,OMC溃散成小的碎片,逐步降解,12周后,骨缺损基本被修复。对OMC的吸附与释放药物及大分子蛋白的性能进行了研究,结果表明,跟对照组的硅酸钙镁(CMS)相比,OMC材料能够吸附大量的药物以及一定量的大分子蛋白,且对吸附的药物/蛋白有明显的缓释效果。
     另外,对MCPC多孔支架和OMC的体内动物实验所获得的样本利用上海同步辐射光源进行生物医学成像研究,结果清晰直观的显示了材料逐步降解,新骨逐渐生成的过程。实验表明MCPC和OMC都是很有潜力的骨修复生物材料。
In this study, two calcium-magnesium based biomaterials were fabricated for bone repair. Magnesium substituted calcium phosphate cement (MCPC) was fabricated by adding active magnesium oxide into tetracalcium phosphate and calcium hydrogen phosphate, and MCPC porous scaffolds were prepared through particle leaching method. The scaffold shows excellent in vitro biodegradability and cell compatibility. We implanted the scaffold into rabbit femur defect, and the scaffold degraded and new bone generated with time. After 12 weeks, the scaffold degraded completely and the defect was repaired.
     Ordered mesoporous calcium-magnesium silicate (OMC) was synthesized by sol-gel method. OMC possesses uniform mesochannals around 7 nm and a large surface area of 1017 m2/g. OMC has good solubility in Tris-HCl solution, after 7 days soaked in simulated body fluid (SBF), an apatite layer formed on the surface of the material, which indicate a good bioactivity. Implanted in rabbit femur defect, OMC showed good compatibility and degradability, the defect was healed after 12 weeks of implantation.
     In addition, both the animal experimental specimens of MCPC scaffold and OMC were restructured into 3D images in Shanghai synchron radiation facility (SSRF). The process of bone regeneration was observed clearly and directly.
     All the results indicate that both MCPC and OMC are potential biomaterials for bone regeneration.
引文
[1]戴红莲,闫玉华等a-TCP/TTCP骨水泥的降解性能研究.硅酸盐通报.2001,4:9-13
    [2]Constantz BR, Ison IC, Fulmer MT et al. Skeletal repair by in situ formation of the mineral phase of bone. Science.1995,267(5205).1796
    [3]Liu DM, Troczynski T, Tseng WJ. Water-based sol-gel synthesis of hydroxyapatite: Process development. Biomaterials.2001,22(13):1721-1730
    [4]Campbell AA, Fryxell GE, Linehan JC, Graff GL. Surface-induced mineralization:A new method for producing calcium phosphate coatings. J Biomed Mater Res.1996, 32(1)111-118
    [5]Philip Kastena, Julia Vogel et al. Ectopic bone formation associated with mesenchymal stem cells in a resorbable calcium deficient hydroxyapatite carrier. Biomaterials. 2005,26(29):5879-5889
    [6]Kasten P, Luginbuhl R, van Griensven M, et al. Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite, X-tricalcium phosphate and demineralized bone matrix. Biomaterials.2003,24:2593-2603
    [7]Sarkar AK. Phosphate cement-based fast-setting binders. American Ceramic Society Bulletin.1990,69234-238
    [8]Changsheng Liu. Inorganic bone adhesion agent and its use in human hard tissue repair. U.S.Pat. No.7094286. Aug.22,2006
    [9]孙卫东,王金勇,叶承荣等.傅立叶变换红外光谱对动物尿结石成份的分析研究.扬州大学学报(农业与生命科学版).2006,27(2):56-58
    [10]Sugama T, Kukacka LE. Characteristics of magnesium polyphosphate cements derived from ammonium polyphosphate solutions. Cement and Concrete Research.1983, 13:499-506
    [11]Popovics S, Rajendran N, Penko M. Rapid hardening cements for repair of concrete. ACI Materials Journal.1987,84:64-73
    [12]Seehra SS, Gupta S, Kumar S. Rapid setting magnesium phosphate cement for quick repair of concrete pavements—characterisation and durability aspects. Cement and Concrete Research.1993,23:254-266
    [13]Abdelrazig BEI, Sharp JH.A discussion of the papers on magnesia-phosphate cements by T Sugama and LE Kukacka. Cement and Concrete Research.1985,15:921-922
    [14]吴子征,张键,陈统一等.磷酸镁骨粘合剂粘接骨折的实验研究.中国修复重建外科杂志,2006,20(9):912-915][吴子征,张键,陈统一等.新型骨水泥粘接固定骨折的动物实验研究.中国临床医学,2005,12(2):261-264
    [15]吴建国,俞永林,刘昌胜等.两种无机骨水泥对家兔内脏毒性的比较研究.复旦学报(医学版),2005,32(6):707-710
    [16]吴建国,俞永林,刘昌胜等.磷酸镁骨黏合剂生物学固定强底及组织学的实验研究 上海医学,2006,29(4):230-232
    [17]Hirano, Masahiro, et al. Dental eugenol cements containing calcium magnesium phosphate. JP.Pat. No.04352706.Dec.7,1992
    [18]Revell PA,Daminen E,Zhang XS,Evans P,Howlett CR.The effect of mangesium ions on bone bonding to hydroxyapatite.Key Eng Mater.2004,254(6)447-450
    [19]Bhakta Q Mitra S, Maitra A. DNA encapsulated magnesium and manganous phosphate nanoparticles:potential non-viral vectors for gene delivery. Biomaterials.2005 May,26(14):2157-2163
    [20]Sader MS, LeGeros RZ, Soares GA. Human osteoblasts adhesion and proliferation on magnesium-substituted tricalcium phosphate dense tablets. Journal of Materials Science-Materials in Medicine.2009 Feb,20(2):521-527
    [21]Ryan HSC,LeGeros,IV Kurup,Toth,PR Westfall GM,McCarthy.Cellular Responses to Whitlockite.Cal Tiss Inter.1999,65(7)374-377
    [22]Elena Landi GL,Luca Proietti,Anna Tampieri,Monica Sandri,Simone Sprio Biomimetic Mg-substituted hydroxyapatite:from synthesis to in vivo behaviour.J Mater Sci Mater Med.2007,19(4)239-247
    [23]Wu F, Su JC, Wei J, Guo H, Liu CS. Injectable bioactive calcium-magnesium phosphate cement for bone regeneration. Biomedical Materials.2008 Dec,3(4):1243-1249
    [24]Wu F, Wei J, Guo H, Chen FP, Hong H, Liu CS. Self-setting bioactive calcium-magnesium phosphate cement with high strength and degradability for bone regeneration Acta Biomaterialia.2008 Nov,4(6):1873-1884
    [25]Liu XY, Fu RKY, Ding CX, Chu PK. Hydrogen plasma surface activation of silicon for biomedical applications. Biomol Eng.2007,24(1S):113-117
    [26]Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Maters Res.1971,5(6):117-141
    [27]Ducheyne P. Bioceramics:Material characteristics versus in vivo behavior. J Biomed Mater Res.1987,21:219-236
    [28]Cho SB, Nakanishi K, Kokubo T, Soga N, Ohtsuki C, Nakamura T, Kitsugi T, Yamamuro T. Dependence of Apatite Formation on Silica Gel on Its Structure:Effect of Heat Treatment. J Am Ceram Soc.1995,78(7):1769-1774
    [29]Gupta G, Kirakodu S, El-Ghannam A. Dissolution kinetics of a Si-rich nanocomposite and its effect on osteoblast gene expression. J Biomed Mater Res Part A.2007,80(2): 486-496
    [30]Hench LL. Bioceramic:From Concept to Clinic. J Am Ceram Soc.1991,74(7): 1487-1510
    [31]Lacefield WR, Hydroxyapatite coatings. In:An Introduction to Bioceramics. World Scientific.1994,223-230
    [32]J.C. Dubois, P. Exbrayat, M.L. Couble, D. Goueriot, M. Lissac, Effects of new machinable ceramic on behavior of rat bone cells cultured in vitro, J. Biomed. Mater. Res. 43(1998)215-225
    [33]J.C. Dubois, C. Souchier, M.L. Couble, P. Exbrayat, M. Lissac, An image analysis method for the study of cell adhesion to biomaterials, Biomaterials 20 (1999) 1841-1849
    [34]D. Goeuriot, J.C. Dubois, D. Merle, F. Thevenot, P. Exbrayat, Enstatite based ceramics formachinable prosthesis applications, J. Eur. Ceram. Soc.18 (1998) 2045-2056
    [35]SY. Ni, L. Chou and J. Chang. Ceram. Int.2007,33:83
    [36]Yan Huang, Xiaogang Jin, Xiaoling Zhang, Hongli Sun, Jinwen Tu, Tingting Tang, Jiang Chang, Kerong Dai. In vitro and in vivo evaluation of akermanite bioceramics for bone regeneration Biomaterials.2009,30:5041-5048
    [37]CT. Wu, J. Chang, SY. Ni and JY. Wang. J. Biomed. Mater. Res. A.2006,76A.73-81
    [38]T. Kobayashi, K. Okada, T. Kuroda, K. Sato. Osteogenic cell cytotoxicity and biomechanical strength of the new ceramic Diopside. J Biomed Mater Res. 1997,37:100-107
    [39]Chengtie Wu, Yogambha Ramaswamy, Hala Zreiqat. Porous diopside (CaMgSi2O6) scaffold:A promising bioactive material for bone tissue engineering. Acta Biomaterialia. 2010,6:2237-2245
    [40]Lin W, Hang Y W, Zhou X D et al. In vitro Toxicity of Silica Nanoparticles in Human Lung Cancer Cells. Toxicologyand Applied Pharmacology.2006,217(3)252-259
    [41]Han Y, Stucky GY, Btter A. AmChem Soc.1999,121:9897-9898
    [42]Lai CY, Trewyn BG, Jeftinija DM et al. A Mesoporous Silica Nanosphere-Based Carrier System with Chemically Removable CdS Nanoparticle Caps for Stimuli-Responsive Controlled Release ofN and Drug Molecules. Journal of America Ceramics Society. 2003,125(15):4451-4459
    [43]Zhao J, Gao F, Fu Y et al. Chem Commun.2002:752-753][Zhao J, Gao F, Zhang S et al. Chin Univ.2002,23:1494-1599
    [44]Balks KJ Jr, Sherry AD, Young SW. USP, No.5122363,1992
    [45]Balks KJ Jr, bresinska L, Kowalak S et al. Mater Res Soc Symp Ser Proc. 1991,223:225-230
    [46]Mal N, Fujiwara M, Tanaka Y. Nature.2003,421:350-353
    [47]Zhu YF, Shi JL, Shen WH et al. Stimuli-Sesponsive Controlled Drug Release from a Hollow Mesoporous Silica Sphere/Polyelectrolyte Multilarer Core—Shell Structure Angewandte Chemic International Edition.2005,44:5083-5087
    [48]Zhao WR, Chen HR, Li YS et al. Uniform Rattle-Type Hollow Magnetic Mesoporous Spheres as Drug Dehvery Carriers and Their Sustained-Release Property. Advanced Functional Materials.2008,18(18)2780-2788
    [49]Li YS, Shi JL, Hua L et al. Hollow Spheres of Mesoporous Aluminosilicate with a There-Dimensional Pore Network and Extraordinarily High Hydrothermal Stability. Nano Letters.2003,3(5):609-612
    [50]ZhaoWR, Gu JL, Zhang LX et al. Fabrication of Uniform Magnetic Nanocomposite Spheres with a Magnetic Core/Mesoporous Silica Shell Structure. Journal of America Ceramics Society.2005,127(25):8916-8917
    [51]Vallet-Regi M, Ruiz-Gonza'lez L, Izquierdo 1, Gonza'lez-Calbet JM. Revisiting silica based ordered mesoporous materials:medical applications. J Mater Chem.2006, 1626-31
    [52]Vallet-Regi M, Ra'mila A, del Real RP, Pe'rez-Pariente J. A new property of MCM-41: drug delivery system Chem Mater.2001,13:308-11
    [53]Vallet-Regi M. Revisiting ceramics for medical applications. Dalton Trans. 2006,44:5211-5220
    [54]Vallet-Regi M. Ordered mesoporous materials in the context of drug delivery systems and tissue engineering. Chem Eur J.2006,12:5934-5943
    [55]Vallet-Regi M, Ragel CV, Salinas AJ. Glasses with medical applications. Eur J Inorg Chem.2003,6:1029-1042
    [56]Vallet-Regi M. Ceramics for medical applications. J Chem Soc Dalton Trans. 2001,2:97-108
    [57]Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity Biomaterials.2006,27:2907-2915
    [58]Salinas AJ, Vallet-Regi M. Evolution of ceramics with medical applications. Z Anorg Allg Chem.2007,633:1762-1773
    [59]Vallet-Regi M, Balas F, Colilla M, Manzano M. Bioceramics and pharmaceuticals:a remarkable synergy. Solid State Sci.2007,9:768-776
    [60]Vallet-Regi M, Colilla M, Izquierdo-Barba I. Bioactive mesoporous silicas as controlled delivery systems:application in bone tissue regeneration. J Biomed Nanotechnol. 2008,4:1-15
    [61]Vallet-Regi M, Balas F, Colilla M, Manzano M. Bone-regenerative bioceramic implants with drug and protein controlled delivery capability. Prog Sol Stat Chem. 2008,36:163-91
    [62]Izquierdo-Barba I, Colilla M, Vallet-Regi'M. Nanostructured mesoporous silicas for bone tissue regeneration. J Nanomater.2008
    [63]LeGeros RZ. Apatites in biological systems. Prog Crystal Growth Charact.1981,4:1-45
    [64]Izquierdo-Barba I, Ruiz-Gonza'lez L, Doadrio JC, Gonza'lez-Calbet JM, Vallet-Regi M. Tissue regeneration:a new property of mesoporous materials. Solid State Sci. 2005,7:983-989
    [65]Vallet-Regi M, Balas F, Arcos D. Mesoporous materials for drug delivery. Angew Chem Int Ed.2007,46:7548-7558
    [66]Balas F, Manzano M, Horcajada P, Vallet-Regi M. Confinement and controlled release of bisphosphonates on ordered mesoporous silica-based materials. J Am Chem Soc. 2006,128:8116-17
    [67]Cavallaro G, Pierro P, Palumbo FS, Testa F, Pasqua L, Aiello R. Drug delivery devices based on mesoporous silicate. Drug Deliv.2004,11:41-46
    [68]Tang Q, Xu Y, Wu D et al. Studies on a new carrier of trimethylsilyl-modified mesoporous material for controlled drug delivery. J Control Release.2006,114:41-46
    [69]Qu F, Zhu G, Huang S, Li S, Qiu S. Effective controlled release of captopril by silylation of mesoporous MCM-41. Chem Phys Chem.2006,7:400-406
    [70]Hudson S, Cooney J, Magner E. Proteins in mesoporous silicates. Angew Chem Int Ed. 2008,47:8582-8594
    [71]Babonneau F, Camus L, Steunou N, Ra'mila A, Vallet-Regi M. Encapsulation of ibuprofen in mesoporous silica:solid state NMR characterization. Mater Res Soc. 2003,775:3261-3266
    [72]Babonneau F, Yeung L, Steunou N, Gervais C, Ra'mila A, Vallet-Regi M. Solid state NMR characterization of encapsulated molecules in mesoporous silica. J Sol-Gel Tech. 2004,31:219-223
    [73]Balas F, Manzano M, Colilla M, Vallet-Regi M. L-TRP adsorption into silica mesoporous materials to promote bone formation. Acta Biomater.2008,4:514-522
    [74]Horcajada P, Ra'mila A, Pe'rez-Pariente J, Vallet-Regi'M. Influence of pore size of MCM-41 matrices on drug delivery rate. Micropor. Mesopor. Mat.2004,68:105-109
    [75]Vallet-Regi M. Evolution of bioceramics within the field of biomaterials. C.R. Chimie. 2009
    [76]Colilla M, Balas F, Manzano M, Vallet-Regi' M. Novel method to enlarge the surface area of SBA-15. Chem Mater.2007,19:3099-3101
    [77]Colilla M, Balas F, Manzano M, Vallet-Regi' M. Novel method to synthesize ordered mesoporous silica with high surface areas. Solid State Sci.2008,10:408-415
    [78]Doadrio JC, Sousa EMB, Izquierdo-Barba I, Doadrio AL, Pe'rez-Pariente J, Vallet-Regi' M. Funcionalization of mesoporous materials with long alkyl chains as a strategy for controlling drug delivery pattern. J. Mater. Chem.2006,16:462-466
    [79]Frieb W, Werner J. Biomedical applications. In:Shuth F, Kenneth S, Sing W, Kamps W, eds. Handbook of Porous Solids. Weinheim, Germany:Wiley-VCH,2000,2923-2970
    [80]Sanchez-Salcedo S, Werner J, Vallet-Regi'M. Hierarchical pore structure of calcium phosphate scaffolds by combination of the gel casting and multiple tape casting methods. Acta Biomater.2008,4:913-922
    [81]Martin KR. The chemistry of silica and its potential health benefits. J Nutr Health Aging. 2007,11:94-98
    [82]Vallhov H, Gabrielson S, Strome M, Scheynius A, Garcia-Bennett AE. Mesoporous silica particles induce size dependent effects on human dendritic cells. Nano Lett. 2007,7:3576-3582
    [83]Soudee E, Pera J. Mechanism of setting reaction in megnisia-phosphate cements. Cement and Concrete Research.2000,30(2):315-321
    [84]Chengtie Wu, Yogambha Ramaswamy, Hala Zreiqat Porous diopside (CaMgSi2O6) scaffold:A promising bioactive material for bone tissue engineering Acta Biomaterialia 6(2010)2237-2245
    [85]CT. Wu, J Chang JY. Wang, SY. Ni and WY. Zhai. Preparation and characteristics of a calcium magnesium silicate (bredigite) bioactive ceramic. Biomaterials. 2005,25:2925-2937
    [86]T. Kobayashi, K. Okada, T. Kuroda, K. Sato Osteogenic cell cytotoxicity and biomechanical strength of the new ceramic Diopside J Biomed Mater Res.1997,37: 100-107
    [87]Chengtie Wu, Yogambha Ramaswamy, Hala Zreiqat Porous diopside (CaMgSi2O6) scaffold:A promising bioactive material for bone tissue engineering. Acta Biomaterialia.2010,6:2237-2245
    [88]Gu JL, Shi JL, You GJ, Xiong LM, Qian SX, Hua ZL, Chen HG Incorporation of highly dispersed gold nanoparticles into the pore channel of mesoporous silica thin films and their ultrafest nonlinear optical response. Adv Mater,2005,17:557-560
    [89]A.L. Doadrio, E.M.B. Sousa, J.C. Doadrio, J. Perez Pariente, I. Izquierdo-Barba, M. Vallet-Regi. Mesoporous SBA-15 HPLC evaluation for controlled gentamicin drug delivery. Journal of Controlled Release.2004,97:125-132

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700