用户名: 密码: 验证码:
重组人生长激素和骨髓干细胞移植联合治疗阿霉素性心肌病心力衰竭的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     骨髓干细胞是具有自我复制和多向分化潜能的多能干细胞,可修复损伤的心肌细胞和血管内皮细胞。目前骨髓间充质干细胞(mesenchymal stem cells, MSCs)和骨髓动员出CD34+单个核细胞(CD34+mononuclear Cell CD34+MNC)在扩张型心肌病(DCM)中的研究仍处于起步阶段,尚缺乏理论证据。本研究分为两部分,为重组人生长激素(rhGH)联合MSCs静脉移植对阿霉素性心肌病心力衰竭大鼠的治疗研究和rhGH联合骨髓动员对阿霉素性心肌病心力衰竭大鼠的治疗研究。首先确定MSCs和CD34+MNC是否归巢到心脏受损部位,探讨重组人生长激素(recombinant human growth hormone, rhGH)对MSCs和CD34+MNC的存活和分化的影响,从心功能和心室重塑两方面观察其疗效,并推测其可能的机制,试图寻找一种干细胞移植更为简便有效的方法,为临床治疗扩张性心肌病所致心力衰竭提供理论依据。
     方法:
     1.阿霉素性心肌病心力衰竭大鼠模型的选择
     通过腹腔注射阿霉素的方法制作阿霉素性心肌病心力衰竭大鼠模型。模型1组采用2.5 mg/kg、3次/周、用2周、共计6次,总剂量15 mg/kg。末次注射完成后观察2周。模型2组采用2.5 mg/kg、1次/周、用6周、共计6次、总剂量15 mg/kg。末次注射完成后观察2周。通过心脏彩色多普勒超声和血液动力学检测评价其心功能指标。留取心脏标本,测定体重、心脏重量和左心室重量,并观察心腔大小。留取左心室和肝、肾标本用HE和电镜观察病理变化,确定最佳制作模型。
     2.间充质干细胞(MSCs)的体外分离、培养、鉴定、标记和心脏归巢
     选体重约100g左右、5周龄的Wistar大鼠,提取股骨、胫骨的骨髓,利用MSCs贴壁生长的特点分离和培养骨髓间充质干细胞;观察其形态改变,取3代MSCs通过流式细胞仪测定其表面抗原CD44、CD45和CD34,证实体外培养的细胞为骨髓间充质干细胞。静脉移植前,用5-溴脱氧脲嘧啶(Brdu)标记MSCs并通过Brdu免疫组织化学法检测体外Brdu标记的MSCs在心、肝、肾的分布。
     3. rhGH联合MSCs静脉移植在阿霉素性心肌病心力衰竭大鼠中治疗的研究
     将实验动物分为心衰组(HF组)30只、MSCs静脉移植治疗组(MSCs组)30只和rhGH+MSCs移植联合治疗组(GH+MSC组)30只。MSCs组和GH+MSCs组动物通过尾静脉注射MSCs(细胞密度为1 X 109个/ml)。GH+MSCs组皮下注射rhGH,2mg/kg、每日1次,连续10天。心衰组动物不作任何处理。治疗前和治疗后4周留取静脉血标本测定内皮素-1(ET-1)和脑利钠肽(BNP)的浓度。同时通过心脏彩色多普勒超声测定LVIDd、LVIDs、LVEF和LVFS;经右颈总动脉插管入左心室,测定LVSP.+dp/dt max、LVEDP及-dp/dt max;留取心脏标本,采用免疫组织化学双染的方法同时检测Brdu(细胞核)和肌球蛋白重链(MHC)(细胞浆)及Brdu(细胞核)和肌动蛋白(Actin)(细胞浆)证实MSCs进入体内分化为心肌细胞,并观察其在心肌内的存活和分布情况。用Brdu免疫组化观察血管内皮细胞形成状况;经HE染色观察血管数目。RT-PCR法测定各组的心肌IGF-1mRNA相对含量。通过VG染色和心肌细胞凋亡指数,观察心室重塑的改善。
     4. rhGH联合骨髓动员在阿霉素性心肌病心力衰竭大鼠中治疗的研究
     将实验动物分为心衰组(HF组)20只、骨髓动员组(MNC组)30只和GH+骨髓动员组(GH+MNC组)20只。给MNC组和GH+MNC组动物皮下注射rhG-GSF, 50ug/Kg、每日1次、连续5天。心衰组动物给相同剂量生理盐水皮下注射5天。给GH+MNC组皮下注射rh-GH,2mg/kg、每日1次、连续10天。所有大鼠均给予腹腔注射Brdu,连续4周。G-GSF治疗第6天留取静脉血,测定血常规和用流式细胞仪测定CD34,其中10只处死,留取心脏标本测定CD34。治疗前和治疗后4周留取静脉血标本测定ET-1和BNP的浓度;心脏彩色多普勒超声测定LVIDd、LVIDs、LVEF和LVFS;经右颈总动脉插管入左心室,测定LVSP、+dp/dt max、LVEDP及-dp/dt max;留取心脏标本,采用免疫组织化学双染法同时检测Brdu(细胞核)和MHC(细胞浆)及Brdu(细胞核)和Actin(细胞浆)证实MNC进入体内分化为心肌细胞,并观察在心肌内的存活和分布情况。用Brdu免疫组化观察血管内皮细胞形成状况,经HE染色观察血管数目。RT-PCR法测定各组的心肌IGF-1 mRNA相对含量。通过VG染色和心肌细胞凋亡指数,观察心室重塑的改善。
     结果:
     1.阿霉素性心肌病心力衰竭大鼠模型的选择
     模型1组LVIDd和LVIDs较正常组增加(4.11±0.26 mm vs 3.91±0.23mm, P>0.05; 2.47±0.31 mm vs 0.97±0.21mm,P<0.05);模型2组大鼠的LVIDd和LVIDs较正常组增加(5.55±0.36mm vs 3.91±0.23mm,3.67±0.44mm vs 0.97±0.21mm,P<0.05),模型1组和模型2组大鼠的EF和FS均较正常组降低(76.79±8.56%、70.74±7.86%vs 98.51±3.61%;44.52±3.51%、35.11±3.67%vs76.77±1.90%P<0.051;LVSP、+dp/dtmax和-dp/dtmax均较正常组降低(13.25±0.88 Kpa、12.55±0.78 Kpa vs 16.21±0.24 Kpa; 590.67±73.40 Kpa/s、489.12±53.4 Kpa/s vs 861.67±39.96 Kpa/s; 534.00±59.22 Kpa/s、499±45.22 Kpa/s vs 632.00±45.19 Kpa/s, P<0.05), LVEDP较正常组升高(0.97±0.13 Kpa.2.20±0.40vs-0.08±0.17 Kpa,P<0.05);体重(BW)较正常组减轻(200.33±8.43g.218.11±8.64g vs 240.33±7.11g,P<0.05),HW/BW和LW/BW较正常组增加(3.68±0.29g/kg、3.70±0.22 g/kg vs 2.73±0.44 g/kg;2.84±0.18 g/kg.2.92±0.22g/kg vs2.15±0.10g/kg,P<0.05);大体标本显示模型组的心腔扩大,室壁组变薄;心肌HE染色显示模型组大鼠心肌细胞不同程度的变性,模型1组可见坏死。模型1组肝、肾损害较模型2组重。综上述情况模型2组适合研究使用。
     2.间充质干细胞(MSCs)的体外分离、培养、鉴定、标记和心脏归巢
     体外培养的MSCs呈贴壁生长,大多数细胞为梭形细胞;细胞表面抗原CD45.CD34呈阴性表达,CD44呈阳性表达。MSCs组心肌HE染色可见类似单个核细胞的细胞,Brdu免疫组化染色可见棕色核,而心衰组缺如;MSCs组肝、肾Brdu免疫组化染色未见棕色核。本实验证实体外培养的细胞是MSCs,主要归巢到心脏损伤部位。
     3.rhGH联合MSCs静脉移植在阿霉素性心肌病心力衰竭模型中治疗研究
     3.1心脏超声心功能测定
     MSCs组和GH+MSCs组与心衰组比较,LVIDd,LVIDs均明显降低(3.41±0.72 mm、2.50土0.44 mm vs 5.50土0.34 mm;1.51土0.32mm、1.06±0.33 mm vs3.61±0.56 P<0.001);EF,FS均明显升高(89.11±7.58%、93.12±6.44%vs 71.13±8.48%;54.32±2.89%、61.77±3.12%vs35.44±1.91 P<0.001)。本实验从超声上证实MSCs静脉移植及加用GH都能明显改善心功能。
     3.2血液动力学
     MSCs组和GH+MSCs组的LVSP.+dp/dpmax和-dp/dpmax与心衰组比较,均升高(14.88±0.78 Kpa.15.66±0.21 Kpa vs 12.55±0.88 Kpa;790.67±73.88 Kpa/s.827.67±33.96 Kpa/s vs 489.12±53.40 Kpa/s;600.33±45.11 Kpa/s.611.00±43.19 Kpa/s vs 499±45.22 Kpa/s, P<0.05);MSCs组和GH+MSCs组的LVEDP与心衰组比较均明显降低(-0.01±0.11 Kpa、-0.03±0.13 Kpa vs 2.20±0.40 Kpa/s,均P<0.05)。本实验从血液动力学上证实MSCs静脉移植及加用GH都能明显改善心功能。
     3.3 BNP.ET-1
     MSCs组和GH+MSCs组的BNP治疗后较治疗前明显降低(210.12土14.44pg/ml vs390.62土11.98 pg/ml;177.34土21.33pg/ml vs401.33土22.12 pg/ml P<0.001).心衰组治疗前后BNP水平比较,没有统计学意义(408.25土31.45pg/ml vs388.12土9.52pg/ml p>0.05). MSCs组和GH+MSCs组的ET-1治疗后较治疗前明显降低(2.56土0.34 ng/ml vs4.92土0.59 ng/ml;1.88土0.21 ng/ml vs5.01土0.77 ng/ml,P<0.001).心衰组治疗前后ET-1水平比较没有统计学意义(5.22±0.30 ng/ml vs 5.12土0.36 ng/ml,p>0.05).本实验从血清学指标上证实MSCs静脉移植及加用GH都能明显改善心功能。
     3.4心肌切片HE、免疫组化及心肌IGF-1 mRNA相对含量
     MSCs组和GH+MSCs组心肌Brdu免疫组织化染色可见血管内皮细胞有棕色核,血管数目明显增多(16.33±1.41/0.2mm、18.44±1.17/0.2mm VS 9.90±1.60/0.2mmP<0.001),加用GH后,这种细胞和血管数明显增多。MSCs组和GH+MSCs组心脏免疫组织化学双染可见红色核和棕色胞浆的心肌样细胞,加用GH后,这种细胞明显增多。MSCs组和GH+MSCs组心肌IGF-1 mRNA相对含量较心衰组明显升高(0.7118±0.0106,1.0361±0.0157 vs0.5017±0.0121 P<0.05):GH+MSCs组心肌IGF-1 mRNA相对含量较MSCs组明显升高(1.0361±0.0157 vs0.7118±0.0106 P<0.05)。本实验证实MSCs在心脏损伤部位可转化心肌样细胞和血管内皮细胞,加GH能增加转换比率;MSCs治疗可提高心肌组织IGF-1 mRNA的相对含量,加GH其含量明显增多,提高MSCs的存活和分化。
     3.5 VG染色和凋亡指数
     MSCs组和GH+MSCs组与心衰组比较,胶原纤维明显减少,胶原容积分数明显减少(15.20±5.40%、14.33±5.11%vs 19.88±2.78%,P<0.05)。MSCs组和GH+MSCs组与心衰组比较能降低凋亡指数(17.44±6.78%、12.34±2.98%vs 27.33±7.98%,P<0.05)。本实验证实MSCs静脉移植及加用GH都能降低凋亡心肌细胞数目和胶原纤维,改善心室重塑。
     4 rhGH联合骨髓动员在阿霉素性心肌病心力衰竭模型中治疗研究
     4.1MNC数目和CD34定性
     G-CSF能增加MNC数目,MNC组和GH+MNC组MNC数目治疗后较治疗前明显增高(15.79 X 109/L vs 5.36 X109/L; 15.99 X 109 vs6.30 X 109/L, P<0.05)。心衰组MNC数目治疗前后比较,MNC无差异性(4.92 X 109/L vs 5.39 X 109/L P>0.05)。MNC组和GH+MNC组血液中MNC流式细胞仪CD34定性为阳性、心脏免疫荧光CD34定性为阳性;心衰组血液中MNC流式细胞仪CD34定性为阴性、心脏免疫荧光CD34定性为阴性。本实验证实骨髓动员可动员出CD34+MNC并归巢至心脏受损部位。
     4.2心脏超声结果
     MNC组和GH+MNC组与心衰组比较,LVIDd, LVIDs均明显降低(2.91±0.66mm、2.77±0.77mm vs5.50±0.34 mm;1.51±0.55 mm、1.45±0.26mm vs3.61±0.56 mmP<0.001);EF,FS均明显升高(84.55±7.48%、90.24±5.43%vs 71.13±8.48%;46.32±2.89%、54.42±5.12 vs35.44±1.91 P<0.001)。本实验从超声上证实骨髓动员及加用GH都能明显改善心功能。
     4.3血液动力学结果
     MNC组和GH+MNC组的LVSP、+dp/dpmax和-dp/dpmax与心衰组比较,均升高(14.33±0.44 Kpa.15.22±0.33 Kpa vs 12.55±0.88 Kpa;767.44±71.47 Kpa/s.803.67±56.63 Kpa/svs 489.12±53.40 Kpa/s;601.33±42.33Kpa/s.603.00±46.29 Kpa/s vs 499±45.22 Kpa/s, P<0.05):LVEDP与心衰组比较均明显降低(-0.08±0.11 Kpa.-0.11±0.17 Kpa vs 2.20±0.40 Kpa/s,均P<0.05)。本实验从血液动力学上证实骨髓动员及加用GH都能明显改善心功能。
     4.4 BNP、内皮素-1结果
     MNC组和GH+MNC组的BNP治疗后较治疗前明显降低(207.55±18.56pg/ml vs377.12±21.38 pg/ml;189.14土27.63pg/ml vs389.43±24.16 pg/ml,P<0.001).心衰组治疗前后BNP水平比较没有统计学意义(399.77±21.75pg/ml vs393.12±19.62pg/ml,p>0.05).MNC组和GH+MNC组的ET-1治疗后较治疗前明显降低(2.11±0.44 ng/ml vs4.99±0.67 ng/ml;1.89±0.17ng/ml vs5.01±0.87ng/ml,P<0.001).心衰组治疗前后ET-1水平比较,没有统计学意义(5.67±0.43ng/ml vs5.70±0.56 ng/ml,p>0.05)本实验从血清学指标上证实骨髓动员及加用GH都能明显改善心功能。
     4.5心肌切片HE、免疫组化及心肌IGF-1 mRNA相对含量结果:
     MNC组和GH+MNC组心脏Brdu免疫组织化染色可见血管内皮细胞有棕色核,血管数目明显增多(14.67±1.33/0.2mm.15.65±1.21/0.2mm VS 9.47±1.21/0.2mm,P<0.001),加用GH后,这种细胞和血管数明显增多。MNC组和GH+MNC组心脏免疫组织化学双染可见红色核和棕色胞浆的心肌样细胞,加用GH后,这种细胞明显增多。MNC组和GH+MNC组心肌IGF-1 mRNA相对含量较心衰组明显升高(0.7034±0.0113,0.978±0.013 vs 0.497±0.0141P<0.05);GH+MNC组心肌IGF-1 mRNA相对含量较MNC组明显升高(0.978±0.013vs0.7034±0.0113 P<0.05)。本实验证实MNC在心脏损伤部位可转化心肌样细胞和血管内皮细胞,加GH能增加转换比率;骨髓动员可提高心肌组织IGF-1 mRNA的相对含量,加GH其含量明显增多,提高MNC的存活和分化。
     4.6 VG染色和凋亡指数:
     MNC组和GH+MNC组与心衰组比较,胶原纤维明显减少,胶原容积分数明显减少(13.20±4.40.12.89±4.65 VS 21.21±4.33,P<0.05).MNC组和GH+MNC组与心衰组比较,能降低凋亡指数(8.44±6.34%、6..34±5.98%VS 27.33±7.33,P<0.05)。本实验证实骨髓动员及加用GH都能降低凋亡心肌细胞数目和胶原纤维,改善心室重塑。
     结论:
     1.模型2符合治疗研究使用。
     2.体外培养的细胞是MSCs,主要归巢到心脏损伤部位,加GH能增加MSCs定居。
     3.MSCs在心脏损伤部位可转化心心肌样细胞和血管内皮细胞,加GH能增加转换比率。
     4.MSCs治疗可提高心肌组织IGF-1 mRNA的相对含量,加GH其含量明显增多,提高MSCs的存活和分化。
     5.MSCs静脉移植及加用GH都能明显改善心功能。
     6.MSCs静脉移植及加用GH都能降低凋亡数目和胶原纤维,改善心室重塑。
     7.骨髓动员可动员出CD34+MNC,并归巢到心脏损伤部位,加GH能增加CD34+MNC定居。
     8.CD34+MNC在心脏损伤部位可转化心肌样细胞和血管内皮细胞,加GH能增加转换比率。
     9.骨髓动员治疗可提高心肌组织IGF-1 mRNA的相对含量,加GH其含量明显增多,提高MNC的存活和分化。
     10.骨髓动员及加用GH均明显改善心功能。
     11.骨髓动员及加用GH均能降低凋亡数目和胶原纤维,改善心室重塑。
Objective:
     Bone marrow-derived cells with the self-renewal ability and multipotency of differentiation have shown the capacity of regenerating damaged myocardial cells and vascular endodermis cells. At present, In the dilated cardiomyophy, mesenchymal stem cells (MSCs) intravenous transplantation and bone marrow mobilization are rarely used to treat heart failure caused by cardiomyopathy and the research results about MSCs and bone marrow mobilization to heart failure caused by cardiomyopathy lack theoretical evidence. This experiment includes two parts:The first part is experimental study of combining mesenchymal stem cells intravenous transplantation with recombinant human growth hormone to treat heart failure caused by adriamycin-induced cardiomyopathy, the second part is experimental study of combining bone marrow mobilization with recombinant human growth hormone to treat heart failure caused by adriamycin-induced cardiomyopathy.First, we need confirm that MSCs and CD34+MNC can attract and retain injured myocardial. second,we analyse whether recombinant human growth hormone enhance MSCs and CD34+MNC' survival and differentiation. Our experimental study is to observe the cardiac function and myocardial matrix remodeling between combining rhGH with MSCs intravenous transplantation and bone marrow mobilization to heart failure caused by adriamycin-induced cardiomyopathy and to analysis their mechanism.All of these will provide us to select better transplantation way and get theoretical evidence for clinical treatment.
     Methods:
     1.selecting the model of heart failure caused by adriamycin-induced cardiomyopathy.
     We made the model of heart failure caused by adriamycin-induced cardiomyopathy through adriamycin intraperitoneal injection It included two kinds of models; model one(2.5 mg/kg every time,3 times every week, amount to 6 times, total dose 15 mg/kg) and model two (2.5 mg/kg every time,1times every week, amount to 6 times, total dose 15 mg/kg).We evaluated cardiac function by color Doppler ultrasound and hemodynamic measurement. cardiac weight, body weight,left Ventricular weight are measured. Heart,kidney,liver s pathological test were done. All the above are to select the better model of heart failure caused by adriamycin-induced cardiomyopathy.
     2.MSCs' abstraction in vitro, cultivation, identification, signature and MSCs'retaining heart.
     Five-week Wistar rats whose body weight were about 100g were selected.we collected their bone marrow from thigh bone and tibial bone which were separated and cultivated MSCs by adherence method and observed their shape change. When MSCs were the 3rd generation, we measured cell surface antigen CD45, CD44 and CD34 by flow cytometer (FCM) and identified whether these stem cells were MSCs. Before MSCs intravenous transplantation, we signed MSCs by Brdu and observed the distribution of MSCs in heart,kidney and live by mmunohistochemical method.
     3.The effect of MSCs intravenous transplantation and combined MSCs intravenous transplantation with rhGH to cardiac treatment of heart failure caused by adriamycin-induced cardiomyopathy.
     90 Wistar rats were divided into heart failure group (HF group, n=30), MSCs intravenous transplantation group(MSCs group, n=30) and combining MSCs intravenous transplantation group with rhGH (GH+MSCs group, n=30). Rats of MSCs group and GH+MSCs group were accepted MSCs transplantation by tail vein injection(1×109个/ml); GH+MSCs were accepted rhGH (2mg/kg, qd,10d) by subcutaneous injection; HF group did not do any treatment. We measured serum ET-1 level and brain natriuretic peptide (BNP) level before the therapy and after the therapy 4 weeks.At the same times,We measured cardiac function by color Doppler ultrasound and hemodynamic measurement. left ventricular samples were accepted pathological test.We detected MSCs' survival in damaged myocadial tissue by Brdu immunohistochemical method and used Brdu and MHC or Actin immunohistochemical two dye method to confirm differentiation into cardiomyocytes.we also used Brdu immunohistochemical method to find vascular formation and observed the number of vascular by HE dye. using RT-PCR method to measure Myocardial expression of IGF-1 mRNA in all groups.In order to observe ventricular remodeling,we tested VG dye and TUNEL experiment.
     4. The effect of bone marrow mobilization and combined bone marrow mobilization with rhGH to cardiac treatment of heart failure caused by adriamycin-induced cardiomyopathy.
     70 Wistar rats were divided into heart failure group (HF group, n=20), bone marrow mobilization (MNC group, n=30) and combining bone marrow mobilization with rhGH group(GH+MNC group, n=20). Rats of MNC group and GH+MNC group were accepted rhG-GSF(50ug/Kg, qd,5d) by subcutaneous injection; GH+MSCs were accepted rhGH (2mg/kg, qd,10d) by subcutaneous injection;HF group were given the same voluminal saline. bromodeoxyuridine (Brdu,50mg/kg,qd,4w) were given to all rats of MNC group,HFgroup, GH+MNC group before they sacrificed. After G-CSF stimulating 5 day, Complete blood counts and leukocytes differentiation were obtained and the mononuclear cells(MNCs) were separated by Ficoll gradient centrifugation and labeled with anti-CD34for FACS analysis. After G-CSF stimulating 5 day, hearts of 10 rat in MNC group were left and tested cardiac CD34. We measured serum ET-1 level and brain natriuretic peptide (BNP) level before the therapy and after all the therapy 4 weeks.At the same times,We measured cardiac function by color Doppler ultrasound and hemodynamic measurement. left ventricular samples were accepted pathological test.We used Brdu immunohistochemical method to detect MNC' survival distribution. we also used Brdu and MHC or Actin immunohistochemical two dye method to confirm differentiation into cardiomyocytes. we also used Brdu immunohistochemical method to find vascular formation and observed the number of vascular by HE dye.using RT-PCR method to measure Myocardial expression of IGF-1 mRNA in all groups. In order to observe ventricular remodeling,we tested VG dye and TUNEL experiment.
     Results:
     1. Selecting the model of heart failure caused by adriamycin-induced cardiomyopathy
     LVIDd and LVIDs of model one group were higher than normal group (4.11±0.26 mm vs 3.91±0.23mm, P>0.05; 2.47±0.31 mm vs 0.97±0.21mm,P<0.05); LVIDd and LVIDs of model two Group were increased (5.55±0.36mmvs3.91±0.23mm;3.67±0.44mmvs0.97±0.21m m,P<0.05).EF and FS of model one group and model two group decreased (76.79±8.56%, 70.74±7.86% vs 98.51±3.61%;44.52±3.51%,35.11±3.67% vs 76.77±1.90%,P<0.05); Compa-red to normal group,LVSP,+dp/dtmax and-dp/dtmax were decreased (13.25±0.88Kp a,12.55±0.78 Kpa vs 16.21±0.24K pa;590.67±73.40Kpa/s,489.12±53.4Kpa/svs 861.67±39.96 pa/;534.00±59.22 Kpa/s,499±45.22 Kpa/s vs 632.00±45.19 Kpa/s, P<0.05), LVEDP higher than normal group(0.97±0.13 Kpa,2.20±0.40 vs-0.08±0.17 Kpa, P<0.05); B W were lower than normal group (200.33±8.43g,218.11±8.64g vs 240.33±7.11g,P<0.05),HW/BW and LW/BW raised (3.68±0.29g/kg,3.70±0.22 g/kgvs2.73±0.44 g/kg;2.84±0.18 g/kg,2.92±0.22 g/kg vs2.15±0.10 g/kg, P<0.05); Compared to normal group, Ventricular cavity of model group were larger and ventricle wall were thinner; HE dyeing results showed that cardiomyocytes cell existed degeneration and model two showed necrosis; model one in kidneyand liver'injury is bigger than model two. models two of heart failure caused by adriamycin-induced cardiomyopathy could be provided the use of our study by experiment.
     2.MSCs' abstraction in vitro, cultivation, identification, signature and MSCs' retaining heart
     MSCs growed in vitro by adherenc, MSCs presented Spindle-shaped.MSCs did not express surface antigen CD34,CD45and expressed surface antigen CD44.we could see one kind of cell which liked mononuclear Cell in cardiac by HE dye, we detected their survival and distribution in cardiac injuring position by brdu immunohistochemical method and saw brown cellular nucleus in cardiac injuring position whearas rarely saw brown cellular nucleus in kidney,liver.we confirmed that the cells cultured in vitro were MSCs and MSCs could retain and settle cardiac injured position.
     3.The effect of MSCs intravenous transplantation and combined MSCs intravenous Transpa-ntation with rhGH to cardiac treatment of heart failure caused by adriamycin-induced cardiomyopathy
     3.1 cardiac echocardiography results
     Compared with HF group, LVIDd and LVIDs of MSCs group and GH+MSCs group rats were decreased (3.41±0.72 mm,2.50±0.44 mm vs 5.50±0.34 mm;1.51±0.32 mm,1.06±0.33 mm vs3.61±0.56, P<0.001); EF and FS increased(89.11±7.58%,93.12±6.44%vs 71.13±8.48%;54.32±2.89%、61.77±3.12% vs35.44±1.91,P<0.001).MSCs and MSC+GH therapy could improve cardiac function of rats which suffered from heart failure caused by adriamycin-induced cardiomyopathy by color Doppler ultrasound.
     3.2 Haemodynamics results
     LVSP,+dp/dpmax and-dp/dpmax of MSCs group and GH+MSCs group rats were all higher than those of HF group(14.88±0.78Kpa,15.66±0.21Kpa vs 12.55±0.88Kpa;790.67±73.88 Kpa/s,827.67±33.96 Kpa/svs 489.12±53.40 Kpa/s;600.33±45.11 Kpa/s、611.00±43.19 Kpa/s vs 499±45.22 Kpa/s,P<0.05); LVEDP were all lower than those of HF group (-0.01±0.11 Kpa,-0.03±0.13 Kpa vs 2.20±0.40 Kpa/s, P<0.05).MSCs and MSC+GH therapy could improve cardiac function of rats which suffered from heart failure caused by adriamycin-induced cardiomyopathy by hemodynamic measurement.
     3.3 Serum BNP and ET-1 results
     After treatment, BNP levels of MSCs group and GH+MSCs group were obviously lower than before treatment (210.12±14.44pg/ml vs390.62±11.98 pg/ml;177.34±21.33pg/ml vs 401.33±22.12 pg/ml P<0.001);BNP levels of HF group did not have stastics meaning between before treatment and after treatment (408.25±31.45pg/ml vs388.12±9.52pg/ml, p>0.05). After treatment, ET-1 levels of MSCs group and GH+MSCs group were obviously lower than before treatment (2.56±0.34 ng/ml vs4.92±0.59 ng/ml;1.88±0.21 ng/ml vs 5.01±0.77 ng/ml,P<0.001);ET-1 levels of HF group did not have stastics meaning between before treatment and after treatment (5.22±0.30 ng/ml vs5.12±0.36 ng/ml, p>0.05).MSCs and MSC+GH therapy could improve cardiac function of rats which suffered from heart failure caused by adriamycin-induced cardiomyopathy by serum ET-1 level and serum brain natriuretic peptide (BNP) level.
     3.4 cardiomyocytes HE dye,immunohistochemica and Myocardial expression of IGF-1 mRNA
     we could observ brown cellular nucleus in vascular endodermis cell between MSCs group and GH+MSCs group and also found that the vascular number in MSCs group and GH+MSCs group increased(16.33±1.41/0.2mm,18.44±1.17/0.2mmvs9.90±1.6/0.2mm,P<0.001), if we added GH,we could increase this kind cell and vascular number.We could see red cellular nucleus and brown cytoplasm between MSCs group and GH+MSCs group by immunohistochemical two dye method, we also saw cell membrane and lateral stripe. if we added GH,we could increase this kind cell number.IGF-1 mRNA relative amount of MSCs group and GH+MSCs group were higher than that of HF group (0.7118±0.0106,1.0361±0.0157 vs 0.5017±0.0121,P<0.05); compared to MSCs group,IGF-1 mRNA relative amount of GH+MSCs group was increased (1.0361±0.0157 vs0.7118±0.0106,P<0.05).we found that MSCs could differentiate into cardiomyocytes and vascular cells in cardiac injured position.and GH could enhance this cell number in cardiac injured position; MSCs and MSC+GH therapy could increase the expression of IGF-1 in Myocardial which could enhance these cells'proliferation and differentiation.
     3.5 VG dye and the number of apoptosis
     After treatment,we found that collagen volume fraction (CVF) levels of MSCs group and GH+MSCs group were obviously lower than HF group(15.20±5.40%,14.33±5.11% VS19.88±2.78%, P<0.05); After treatment, we found that the levels of cardiomyocytes apoptosis of MSCs group and GH+MSCs group were obviously lower than HF group (17.44±6.78%,12.34±2.98% vs27.33±7.98 P<0.05).we foud that MSCs and MSC+GH therapy could decrease the number of collagen and apoptosis and improve ventricular remodeling.
     4. The effect of bone marrow mobilization and combined bone marrow mobilization with rhGH to cardiac treatment of heart failure caused by adriamycin-induced cardiomyopathy.
     4.1 the number of MNC and CD34 marker
     G-CSF mobilization increased MNC numbers,we found that MNC numbers of MNC group and GH+MNC group after treatment were obviously higher than before treatment (15.79 X 109/L vs 5.36 X 109/L;15.99 X 109 vs6.30 X 109/L,P<0.05); MNC numbers of HF group did not have stastics meaning between before treatment and after treatment (4.92 X 109/L vs 5.39 X 109/L P>0.05); The number of circulating CD34+MNCs in peripheral Flow cytometric analys is showed CD34 surface marker between MNC group and GH+MNCgroup.cardiac immunofluore-scence showed CD34 surface marker between MNC group and GH+MNC group. We found that G-CSF mobilization increased CD34+MNC numbers and CD34+MNC could retain and settle cardiac injured position;GH could enhance CD34+MNC number in cardiac injured position.
     4.2 cardiac echocardiography results
     Compared with HF group, LVIDd and LVIDs of MNC group and GH+MNC group rats were decreased (2.91±0.66mm,2.77±0.77 mm vs 5.50±0.34 mm;1.51±0.55 mm,1.45±0.26mm vs3.61±0.56 mm, P<0.001); EF and FS increased(84.55±7.48%,90.24±5.43% vs 71.13±8.48%;46.32±2.89%,54.42±5.12 vs35.44±1.91,P<0.001).MNC and GH+MNC therapy could improve cardiac function of rats which suffered from heart failure caused by adriamycin-induced cardiomyopathy by color Doppler ultrasound.
     4.3 Haemodynamics results
     LVSP,+dp/dpmax and-dp/dpmax of MNC group and GH+MNC rats were all higher than those of HF group(14.33±0.44Kpa,15.22±0.33Kpa vs 12.55±0.88Kpa; 767.44±71.47Kpa/s, 803.67±56.63 Kpa/s vs489.12±53.40 Kpa/s;601.33±42.33Kpa/s,603.00±46.29 Kpa/svs 499±45.22Kpa/s, P<0.05); LVEDP were all lower than those of HF group (-0.08±0.11 Kpa,-0.11±0.17 Kpa vs 2.20±0.40 Kpa/s,P<0.05). MNC and GH+MNC therapy could improve cardiac function of rats which suffered from heart failure caused by adriamycin-induced cardiomyopathy by hemodynamic measurement.
     4.4 Serum BNP and ET-1 results
     After treatment, BNP levels of MNC group and GH+MNC group were obviously lower than before treatment (207.55±18.56pg/ml vs377.12±21.38 pg/ml;189.14±27.63pg/ml vs389.43±24.16 pg/ml, P<0.001);BNP levels of HF group did not have stastics meaning between before treatment and after treatment (399.77±21.75pg/ml vs393.12±19.62pg/ml,p>0.05). After treatment, ET-1 levels of MNC group and GH+MNC group were obviously lower than before treatment (2.11±0.44 ng/ml vs4.99±0.67 ng/ml;1.89±0.17ng/ml vs 5.01±0.87ng/ml P<0.001);ET-1 levels of HF group did not have stastics meaning between before treatment and after treatment (5.67±0.43ng/ml vs5.70±0.56 ng/ml p>0.05). MNC and GH+MNC therapy could improve cardiac function of rats which suffered from heart failure caused by adriamycin-induced cardiomyopathy by serum ET-1 level and serum brain natriuretic peptide (BNP) level.
     4.5 cardiomyocytes HE dye,immunohistochemica and myocardial expression of IGF-1 mRNA
     We could observed brown cellular nucleus in vascular endodermis cell between MNC group and GH+MNC group and also found that the vascular number in MNC group and GH+MNCgroup increased(14.67±1.33/0.2mm,15.65±1.21/0.2mmVS9.47±1.21/0.2mm P<0.00 1), if we added GH,we could increase this kind cell and vascular number. We could see red cellular nucleus and brown cytoplasm between MNC group and GH+MNC group by mmunohistochemic-ial two dye method, we also saw cell membrane and lateral stripe,if we added GH,we could increase this kind cell number.IGF-1 mRNA relative amount of MNC group and GH+MNC group were higher than that of HF group (0.7034±0.0113,0978±0.013 vs 0.497±0.0141 P<0.05); compared to MNC group,IGF-1 mRNA relative amount of GH+MNC group was increased (0978±0.013 vs0.7034±0.0113 P<0.05). We found that MNC could differentiate into cardiomyocytes and vascular cells in cardiac injured position.and GH could enhance these cells number in cardiac injured position; MNC and MNC+GH therapy could increasethe expression of IGF-1 in Myocardial which could enhance the cells'proliferation and differentiation.
     4.6 VG dye and the number of apoptosis
     After treatment, we found collagen volume fraction (CVF) levels of MNC group and GH+MN group were obviously lower than HF group(13.20±4.40%,12.89±4.65% vs21.21±4.33 %P<0.05); After treatment, we find the levels of cardiomyocytes apoptosis of MNC group and GH+MNC group were obviously lower than HF group (8.44±6.34%,6..34±5.98% VS27.33±7.33 P<0.05). We foud that MNC and MNC+GH therapy could decrease the number of collagen and apoptosis and improve ventricular remodeling.
     Conclusion:
     1.model 2 of heart failure caused by adriamycin-induced cardiomyopathy were made successfully and could be provided the use of our study.
     2.The cells cultured in vitro were MSCs; MSCs could retain and settle cardiac injured position,GH could enhance MSCs number in cardiac injured position.
     3. MSCs could differentiate into cardiomyocytes and vascular cells in cardiac injured position., GH could enhance this cell number in. cardiac injured position.
     4. MSCs and MSCs+GH therapy could increase the expression of IGF-1 in Myocardial which could enhance MSCs'proliferation and differentiation,
     5. MSCs and MSCs+GH therapy could improve cardiac function of rats which suffered from heart failure caused by adriamycin-induced cardiomyopathy
     6. MSCs and MSCs+GH therapy could decrease the number of collagen and apoptosis and improve ventricular remodeling.
     7. G-CSF mobilization increased CD34+MNC numbers and retained and settled cardiac injured position.,GH could enhance CD34+MNC number in cardiac injured position.
     8. CD34+MNC could differentiate into cardiomyocytes and vascular cells in cardiac injured position,GH could enhance this cell number in cardiac injured position.
     9. MNC and MNC+GH therapy could increase the expression of IGF-1 in Myocardial which could enhance MNC' proliferation and differentiation,
     10. MNC and GH+MNC therapy could improve cardiac function of rats which suffered from heart failure caused by adriamycin-induced cardiomyopathy
     11. MNC and GH+MNC therapy could decrease the number of collagen and apoptosis and improve ventricular remodeling.
引文
1.HelmuthL.Stem cell shear call of injured tissue [J]. Science,2000,290:1479-1481.
    2.Wright DE,Amy JW,Anjali PC,et al.Physiological migration of hematopoietic stem and progenitor cells. [J]. Science,2001,294:1933-1936.
    3. Wang YQ, Wang M, Zhang P,et al. Effect of transplanted mesenchymal stem cells from rats of different ages on the improvement of heart function after acute myocardial infarction. Chin Med J (Engl),2008,121(22):2290-2298.
    4.Jun L, Minh D, Calvin W, et al. The immature heart:the roles of bone marrow stromal stem cells in growth and myocardial repair. Open Cardiovasc Med J,2007,1:27-33.
    5.Shi RZ, Li QP. Improving outcome of transplanted mesenchymal stem cells for ischemic heart disease. Biochem Biophys Res Commun,2008,376(2):247-250.
    6.Qi CM, Ma GS, Liu NF, et al. Transplantation of magnetically labeled mesenchymal stem cells improves cardiac function in a swine myocardial infarction model. Chin Med J (Engl),2008,121 (6):544-550.
    7.Brunner S, Huber BC, Fischer R, et al.G-CSF treatment after myocardial infarction:impact on bone marrow-derived vs cardiac progenitor cells. Exp Hematol,2008,36(6):695-702.
    8.Inoue T, Sata M, Hikichi Y,et al. Mobilization of CD34-positive bone marrow-derived cells after coronary stent implantation:impact on restenosis. Circulation,2007,115(5):553-561.
    9.Liu KQ, Qi X, Du JP,et al. Treatment of acute myocardial infarction with autologous bone marrow stem cells mobilization combined with recombinant growth factor in rat. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue,2006,18(8):494-497.
    10.Schuleri KH, Amado LC, Boyle AJ,et al. Early improvement in cardiac tissue perfusion due to mesenchymal stem cells. Am J Physiol Heart Circ Physiol,2008,294(5):H2002-11.
    11. Wang T, Tang W, Sun S, et al. Intravenous infusion of bone marrow mesenchymal stem cells improves myocardial function in a rat model of myocardial ischemia. Crit Care Med,2007,35 (11):2587-93.
    12. Wang XJ, Li QP. The roles of mesenchymal stem cells (MSCs) therapy in ischemic heart diseases. Biochem Biophys Res Commun,2007,359(2):189-193.
    13.Noritoshi Nagaya, Takafumi Fujii, Takashi Iwase,et al.Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol,2004,287: H2670-H2676.
    14.杨国凯,林明,陈书尚等.静脉移植骨髓间充质干细胞改善心肌病心力衰竭大鼠的心功能.中国临床康复,2006,10(13):15-17.
    15..Silva GV, Litovsky S, Assad JAR, et al. Mesenchymal stem cells differentiate into an endothelial phenotype,enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation,2005,111:150-156.
    16. Shi Q, Hafii S, Wu HD,et al.Evidence for circulating bone derived endothelial cells. Blood,1998,92:362-67.
    17.Gnecchi M, Hh H, Liang OD, et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med,2005,11:367-368.
    18 Kinnaird T, Stabile E, Burnett MS, et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation,2004,109:1543-1549.
    19. Tang YL,Zhao Q, Zhang YC,et al. Autologous mesenchymal stem cell transplantation induce VEGF and neovascularization in ischemic myocardium. Regal Pept,2004,117(1):3-10.
    20.Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemicmyocardium by human bone-marrow-derived angioblasts preventscardiomyocyte apoptosis, reduces remodeling and improves cardiac function.Nat Med,2001,7:430-436.
    21.Wakitani S, Saito T, Caplan AI. Myogenic cell derived from rat bone marrow mesechymal stem cells exposed to 5-azacytidine.Muscle Nerve,1995,18(12):1417-26.
    22.Orlic D, Kajstura J, Chimenti S, et al. Mobilized bone marrow cells repair the infracted heart improving function and survival. Proc Natl Acad Sci,2001,98(18):10344-10349.
    23.Makaino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest,1999,103(5):697-705.
    24.Tomita S, Li RK, Weisel RD, et al. Autologous transplantation of bone marrow cells mproves damaged heart function. Circulation,1999,100(19 suppl II):47-256.
    25.Li RK, Jia ZQ, Weisel RD, et al. Cardiomyocyte transplantation improves heart function. Ann Thorac Surg,1996,62(3):654-660.
    26.王金成,高忠礼,尹飞,等.不同的细胞因子及激素对体外培养骨髓基质细胞的影响.中国临床康复,2005,9(46):32-33.
    27.齐新,刘克强,杨文玲,骨髓间充质干细胞联合重组人生长激素治疗大鼠心肌坏死.中国循环杂志,2006,21(2):143-147.
    1.uzaki K, Murtuza B, Suruki N, et al. Intracoronary infusion of skeletal Myoblasts improves cardiac function indoxorubicin-induced heart failure.Circulation,2001,104(supplⅠ):213-217.
    2.gbulut O, Menot ML, Li Z, et al.Temporal patterns of bone marrow cell differentiation following transplantation indoxorubicin-induced. Cardiovas Res,2003,58:451-459.
    3.Dragojevic-Simic VM, Dobric SLJ, Bokoujic DR, et al. Amifostine Protection against doxorubicin cardioxicity in rats. Auti-Cancer Drugs,2004,15:169-178.
    4. Takagaki M, McCarthy PM,. Tobata T, et al. Induction and maintenance of an experimental model of severe cardiomyopathy with a novel protocol of rapid ventricular pacing .J Thorac Cardiovasc Surg,2002,123(3):544-549.
    5.Nishio R, Sasayama S, Matsumori A. Left ventricular pressure volume relationship in a marine model of congestive heart failure due to acute viral myocarditis. J Am Coll Cardiol 2002,40(8):1506-1511.
    6.Yoo KJ, Li PK, Weisel RD, et al. Autologous smooth muscle cell transplantation improved heart function in dilated cardiomyopathy.Ann Thorac Surg,2000,70(3):859-865
    7.McMinn TR, Ross J. Hereditary dilated cardiomyopathy. Clin Cardiol,1995,18(1):7-15.
    8.Ikeda Y, Ross J. Models of dilated cardiomyopathy in the mouse and the hamster. Curr Opin Cardiol,2000,15(3):197-201.
    9.Menarche P. Cell transplantation in myocardium. Heart Failure.Circulatory Support Summit ,2002,75:203-205.
    l.Pittencer MF, Mackay AM, Beck S C, et al. Multilineage potential of adult human mesenchymal stem cells. Science,1999,284:143-147.
    2.Haynesworth SE, Baber MA, Caplan AI. Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone,1992,13:69-80.
    3.Barry F, Boynton R, Murphy M, et al.The SH-3 and SH-4 antibodies recognize distinct epitopes on CD73 from humanmesenchymal stem cells. Biochem Biophys Res Commuy,2001, 289:519-524.
    4.Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol,1999,181(1):67-73.
    5. Wang T, Tang W, Sun S, et al. Intravenous infusion of bone marrow mesenchymal stem cells improves myocardial function in a rat model of myocardial ischemia. Crit Care Med,2007, 35(11):2587-93.
    6.Noritoshi Nagaya, Takafumi Fujii, Takashi Iwase,et al.Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction throuGH angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol,2004,287: H2670-H2676.
    7.姚巍,王凤芝,姚英.重组人生长激素联合骨髓间充质干细胞静脉移植对心力衰竭大鼠心功能的影响.中国药物与临床,2007,7(11):825-827.
    8.杨国凯,林明,陈书尚等.静脉移植骨髓间充质干细胞改善心肌病心力衰竭大鼠的心功能.-中国临床康复,2006,10(13):15-17。
    9. Chin BB, Nakamoto Y, Bulte JW, et al. In oxine labelled mesenchymal stem cell SPECT after intravenous administration in myocardial infarction. Nucl Med Commun,2003,24(11):1149-1154.
    10.Mangi AA, Noiseux N, Kong D, et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med,2003,9:1195-1201.
    1 l.Kinnaird T, Stabile E, Burnett MS, et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation,2004,109:1543-1549.
    12.Gnecchi M, Hh H, Liang OD, et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med,2005,11:367-368.
    13.Uemura R, Xu M, Ahmad N, et al. Bone marrow stem cells prevent left ventricular remodeling of ischemic heart throuGH paracrine signaling. Circ Res,2006,98:1414-1421.
    14. Donadoni C, Corti S, I,Ocatelli F, et al. Improvement of combined FISH and immuno -fluorescence to trace the fate of somatic stem cells afte transplantation. [J]Histochem Cytochem,2004,52(10):1333-1339.
    1.Cheng L, Chen H, Yao X,et al. A Plant-Derived Remedy for Repair of Infarcted Heart. PLoS ONE,2009,4(2):4461-4463.
    2. Wang YQ, Wang M, Zhang P,et al. Effect of transplanted mesenchymal stem cells from rats of different ages on the improvement of heart function after acute myocardial infarction. Chin Med J (Engl),2008,121(22):2290-2298.
    3.Jun L, Minh D, Calvin W, et al. The immature heart:the roles of bone marrow stromal stem cells in growth and myocardial repair. Open Cardiovasc Med J,2007.1:27-33.
    4.Shi RZ, Li QP. Improving outcome of transplanted mesenchymal stem cells for ischemic heart disease. Biochem Biophys Res Commun,2008,376(2):247-50.
    5.Qi CM, Ma GS, Liu NF, et al. Transplantation of magnetically labeled mesenchymal stem cells improves cardiac function in a swine myocardial infarction model. Chin Med J (Engl),2008, 21(6):544-550.
    6.Schuleri KH, Amado LC, Boyle AJ,et al. Early improvement in cardiac tissue perfusion due to mesenchymal stem cells. Am J Physiol Heart Circ Physiol,2008,294(5):H2002-11.
    7. Wang T, Tang W, Sun S, et al. Intravenous infusion of bone marrow mesenchymal stem cells improves myocardial function in a rat model of myocardial ischemia. Crit Care Med,2007,35 (11):2587-93
    8. Wang XJ, Li QP. The roles of mesenchymal stem cells (MSCs) therapy in ischemic heart diseases. Biochem Biophys Res Commun,2007,359(2):189-193.
    9.Makine S, Fukuda K, Miyoshi S,et al. Cardiomyocytes can be generated from marrow stromal cells in vitro[J]. J Clin Invest,1999,103:697-705.
    lO.Corbacho AM, Martinez De La Escalera G,Clapp C. Roles of prolactin and related members of the prolactin/growth hormone/placental lactogen family in angiogenesis. J Endocrino 1,2002, 173:219-238.
    11.Oberbauer AM, Peng R. Growth hormone and IGF-I stimulate cell function in distinct zones of the rat epiphyseal growth plate. Connect Tissue Res,1995,31(3):189-195
    12. Smith L,Kopchick J,Chen W,et al. Essential role of growth hormone in ischemia-induced neovascularization retinal. Science,1997,276:1706-1709.
    13.齐新,刘克强,杨文玲,骨髓间充质干细胞联合重组人生长激素治疗大鼠心肌坏死.中国循环杂志,2006,21(2):143-147.
    14.钱漪.干细胞移植与心肌再生.南京医科大学学报,2003,23(1):73-76.
    15. Song H, Song BW, Cha MJ, et al. Modification of mesenchymal stem cells for cardiac regeneration. Expert Opin Biol Ther. 2010,10(3):309-19.
    16.Wang JS,Shum D,Galipeau J,et al.Marrow stromal cells for cellular cardiomyoplasty: feasibility and potential clinical advantages. J Thorac Cardiovasc Surg,2000,120:999-1005.
    17.Noritoshi Nagaya, Takafumi Fujii,Takashi Iwase,et al. Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction throuGH angiogenesisand myogenesis.Am J Physiol Heart Circ Physiol,287:H2670-H2676.
    18.Hale SL, Dai W, Dow JS,et al. Mesenchymal stem cell administration at coronary artery reperfusion in the rat by two delivery routes:a quantitative assessment. Life Sci,2008,83 (13-14):511-515.
    19.Hansen A, Wolf D, Reinhard A, et al. Dose-dependent Effects of Intravenous Allogeneic Mesenchymal Stem Cells in the Infarcted Porcine Heart. Stem Cells Dev,2008, Apr 24;130-134.
    20.Zhou HP, Yi DH, Yu SQ,et al. Administration of donor-derived mesenchymal stem cells can prolong the survival of rat cardiac allograft. Transplant Proc,2006,38(9):3046-3051.
    21.Liechty, KW, Mackenzie TC, Shaaban AF, et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in uterotransplantation in sheep. Nat Med, 2000,6:1282-1286.
    22.Shake JG, Oruber PJ, Baumoartner WA, et al.Mesenchymal stem cell implantation in a swine myocardial infarct model engraftment and functional effects.Ann Thorac Surg, 2002,73:1919-1925.
    23.Chapel A, Bertho J M, Bensidhoum M, et al Mesenchymal stem cells home to injure tissues when co-infused with hematopoietic cells to teat a radiation - induced multi organ failure syndromes. J Gene Med,2003,5:1028-1038.
    24.Wang I,LiY, Chen X, et al MCP-I, MIP-I, IL-8 and ischemic cer ebral tissue enhance human bone marrow stromal cell migration in inter face culture. Hematology,2002,7: 113-117.
    25.Rombouts WJ, Ploemacher RE. Primary murine MSC show highly efficient houring to the bone marrow but lose houring ability following culture. Leukemia,2003,17:160-170.
    26.Bentzon JF, Stenderup K, Hansen FD, et al.Tissue distributlion and engraftment of human mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene. Biochem Biophys Res Commun,2005,330:633-640.
    27. Watt FM,Hogan BLM.Out of Eden:stem cells and their niches.Science.2000,287(5457): 1427-1430.
    28. Kinnaird T, Stabile E, Burnett MS, et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation,2004,109:1543-1549.
    29.Gnecchi M, Hh H, Liang OD, et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med,2005,11:367-368.
    30.Jun Guo, Guosheng Lin, Cuiyu Bao, et al. Insulin-like growth factor 1 improves the efficacy of mesenchymal stem cells transplantation in a rat model of myocardial infarction. Journal of Biomedical Science,2008,15(1):89-97.
    31.Wakitani S, Saito T, Caplan AI. Myogenic cell derived from rat bone marrow mesechymal stem cells exposed to 5-azacytidine.Muscle Nerve,1995,18(12):1417-26.
    32.Xu W, Zhang X, Qian H,, et al. Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro.Exp Biol Med (Maywood),2004,229 (7):623-631.
    33.Iop L, Chiavegato A, Callegari A,et al. Different cardiovascular potential of adult-and fetal-type mesenchymal stem cells in a rat model of heart cryoinjury. Cell Transplant, 2008,17(6):679-694.
    34.Rose RA, Jiang H, Wang X, Bone marrow-derived mesenchymal stromal cells express cardiac-specific markers, retain the stromal phenotype, and do not become functional cardiomyocytes in vitro. Stem Cells,2008,26(11):2884-2892.
    35.Shujia J, Haider HK, Idris NM,et al.Stable therapeutic effects of mesenchymal stem cell-based multiple gene delivery for cardiac repair. Cardiovasc Res,2008,77(3):525-533.
    36.Jiang W, Ma A, Wang T,et al.Homing and differentiation of mesenchymal stem cells delivered intravenously to ischemic myocardium in vivo:a time-series study. Pflugers Arch,2006,453(1):43-52.
    37.Wei HJ, Chen SC, Chang Y,et al. Porous acellular bovine pericardia seeded with mesenchymal stem cells as a patch to repair a myocardial defect in a syngeneic rat model. Biomaterials,2006,27(31):5409-5419.
    38.Tang J, Xie Q, Pan G, et al. Mesenchymal stem cells participate in angiogenesis and improve heart function in rat model of myocardial ischemia with reperfusion. Eur J Cardiothorac Surg,2006,30(2):353-361.
    39.Chande M.Stem cells get to the heart of the matter.Lancet,2001,357(7):1099.
    40.Fuchs S, Baffour R,7hou YF, et al. Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemiaJ Am Coll Catdiol,2001,37;1726-1732.
    41.Silva GV, Litovsky S, Assad JAR, et al. Mesenchymal stem cells differentiate into an endothelial phenotype,enhance vascular density,and improve heart function in a canine chronic ischemia model. Circulation,2005,111:150-156.
    42.Hamano K, Li TS, Kobayashi T, et al. Angiogenesis induced by the implantation of self-bone marrow cells:a new material for therapeutic angiogenesis. Cell Transplant,2000,9: 439-443.
    43.Shi Q, Hafii S, Wu HD,et al.Evidence for circulating bone derived endothelial cells. Blood,1998,92:362-67.
    44. Tang YL,Zhao Q, Zhang YC,et al. Autologous mesenchymal stem cell transplantation induce VEGF and neovascularization in ischemic myocardium. Regal Pept,2004,117(1):3-10.
    45.Dreifuss P.Dilated cardiomyopathy and growth hormone.Z Kardiol,2002,91(12):973-977.
    46. Yang R, Bunting S,Gillett N, et al.performance in experimental heart failure.Growth hormone improves cardiac.Circulation,1995,92(2):262-267.
    47.Giustina A, Lorusso R, BorGHetti V, etal. Impaired spontaneous growth hormone secretion in severe dialated cardiomyopathy. Am Heart J,1996,131(3):620-622.
    48.Boger RH. Nitricoxide and the mediation of the hemodynamic effects of growth hormone in humans. J Endocrinol Invest,1999,22 (Suppl 5):S75-S81.
    49.Capaldo B, Lembo G, Rendina V, et al. Sympathetic deactivation by growth hormone treatment in patients with dilated cardiomyopathy. Eur Heart J,1998,19(4):623-627.
    50. Berana k JT. Why growth hormone therapy is efficient in heart failure?Eur Heart J, 1999,20:242-244.
    51. Husnain Kh Haider, Shujia Jiang, Niagara M, et al.IGF-1-Overexpressing Mesenchymal Stem Cells Accelerate Bone Marrow Stem Cell Mobilization via Paracrine Activation of SDF-1 alpha/CXCR4 signaling to promote myocardial repair. Circ Res.2008,03(11):1300-8.
    52. Mangi AA, Noiseux N, Kong D, et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med,2003,9:1195-1201.
    53.Uemura R, Xu M, Ahmad N, et al. Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res,2006,98:1414-1421.
    54.Scheven BA, Hamilton NJ. Stimulation of macrophage growth and multinucleated cell formation in rat bone marrow cultures by insulin-like growth factor Ⅰ. Biochem Biophys Res Commun,1991,174(2):647-53.
    55. Masaya Takahashi, Tao-Sheng Li,et al.Cytokines produced by bone marrow cells can contribute to functional improvement of the infarcted heart by protecting cardiomyocytes from ischemic injury. Am J Physiol Heart Circ Physiol,291:H886-H893
    56. Wang L, Ma W, Markovich R, et al. Regulation of cardiomyocyte apoptotic signaling by Insulin-like growth factor 1. Circ Res,1998,83:516-522.
    57. Parrizas M, LeRoith D. Insulin-like growth factor-1 inhibition of apoptosis is associated with increased expression of the bcl-xL gene product. Endocrinology,1997,138:1355-1358.
    58.Tomita S, Li RK, Weisel RD, et al. Autologous transplantation of bone marrow cells mproves damaged heart function. Circulation,1999,100(19 suppl Ⅱ):47-256.
    59.BroglioF,BensoA,ArvatE,etal.Normal IGF-landenhancedIGF-BP23 response to very low rhGH dose in patients with dilated cardiomyopathy[J].JEndocrinol Invest,2000,23(8):520-525.
    60.Osterziel KJ,Ranke MB,Strohm O,etal.The somatotrophic system in patients with dilate dcardiomyopathy:relation of insulin-like growth factor I And its alterations During Growth Hormone therapy to cardiac function[J].Clin Endocrinol(Oxf),2000,53(1):61-68.
    61.JunRen.Attenuated cardiac contractile responsiveness to insulin-like growth factor I in ventricular myocytes from bio breeding spontaneous diabetic rats[J]. CardiovascularRes,2000, 46:162-171.
    62.CittadiniA,IshiguroY,StromerH,et al.Insulin-like growth factor-1 but Not growth Hormone Augments mammalian myocardial contractility by Sensitizing The Myofilament to Ca2+through a wortmannin-sensitive path way:studies in rat and ferret isolated muscles[J].CircRes,1998,83: 50-59.
    63.GerslV,CermanJ,SubaP,et al.IGF-1 in experimental daunorubicin-like growth factor-1 on norma land failing cardiacmyocytes[J].CardiovascRes,1999,43(1):157-164.
    64.Kamihala H, Vlalsnhara H, Sishine T,et al. Implanlalion of bone marrow mononculear cells into ischemic:myocardium enhances collaleral perfusion and regional function via side supply of angiogenic ligand and cytokines.Circulation,2001,104:1046 1052.
    65.Nakagawa O, Ogawa Y, Itoh H, et al. Rapid transcriptional activation and early mRNA turn over of brain natriuretic peptide in cardiocyte hypertrophy:evidence for brain natriuretic peptide as an"emergency"cardicac hormone against ventricular overload. J Clin Invest,1995,96:1280-1287.
    66.Maeda K, Tsutamota T, Wada A, Hisanaga T, Kinoshita M. Plasma brain natriuretic peptide as a biochemical marker of high left ventricular end-diastolic pressure in patients with symptomatic left ventricular dysfunction[J]. Am Heart J,1998,135:825-832.
    67.Hunter JJ, Chien KR. Signaling pathways for cardiac hypertrophy and failure.New England J Med,1999,341:12761283.
    68.Guerra S, Leri A, Wang X, et al. Myocyte death in the failing human heart is gender dependent.Circ Res,1999,85:856-866.
    69.戚晓敏.脐血间质干细胞移植后梗死心肌细胞的凋亡及意义。上海交通大学学报(医学版),2006,27(11):1337-1340.
    70.Linke A, Muller P, Nurzynska D, et al, Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. PNAS,2005,102:8966-8971.
    71.Lee WL, Chcn JW,Ting CT,et al. Insulin-like growth factor improves cardiovascular function and suppresses apoptosis of cardiomyocytes in dailted cardiomyopathy [J].Endocrinology, 1999,140(10):4831-4840.
    72.Mehrhof FB,Muller FU,Bergmann MW,et al.In cardiomyocyte hypoxia, insulin-like growth factor-I-induced antiapoptotic signaling rquires phosphatidy linositol-3-OH-kinase-dependent and mitogen-actvated protein kinase-dependent activation of the transcription factor cAMP Respon element-binding protein[J].Circulation,2001,10(17):2088-2094.
    73.Dineder K,singla,GaryE,et al.Transplanted embryonic stem cells following mouse myocardial infarction inhibt apoptosis and cardiac remodeling.Am J physiol,2007,293,1308-1314.
    74.Masaya Takahashi, Tao-Sheng Li, et al.Cytokines produced by bone marrow cells can contribute to functional improvement of the infarcted heart by protecting cardiomyocytes from ischemic injury. Am J Physiol Heart Circ Physiol 291:H886-H893.
    1.Yeo C, Mathur A. Autologous bone marrow-derived stem cells for ischemic heart failure: REGENERATE-IHD trial. Regen Med.2009,4(1):119-127.
    2.Mobius-Winkler S, Hollriegel R, Schuler G, et al. Endothelial progenitor cells:implications for cardiovascular disease.Cytometry A,2009,75(1):25-37.
    3.Brunner S, Engelmann MG, Franz WM. Stem cell mobilisation for myocardial repair. Expert Opin Biol Ther,2008,8(11):1675-1690.
    4.Li TS, Takahashi M, Ohshima M, et al. Myocardial repair achieved by the intramyocardial implantation of adult cardiomyocytes in combination with bone marrow cells. Cell Transplant, 2008,7(6):695-703.
    5.Cheng Z, Liu X, Ou L,et al. Mobilization of mesenchymal stem cells by granulocyte colony-stimulating factor in rats with acute myocardial infarction. Cardiovasc Drugs Ther, 2008,22(5):363-371.
    6.De Silva R, Raval AN, Hadi M, et al. Intracoronary infusion of autologous mononuclear cells from bone marrow or granulocyte colony-stimulating factor-mobilized apheresis product may not improve remodelling, contractile function, perfusion, or infarct size in a swine model of large myocardial infarction. Eur Heart J,2008,29(14):1772-1782.
    7.Ripa RS, Kastrup J. G-CSF therapy with mobilization of bone marrow stem cells for myocardial recovery after acute myocardial infarction -a relevant treatment?.Exp Hematol, 2008,36(6):681-686.
    8.Brunner S, Huber BC, Fischer R, et al.G-CSF treatment after myocardial infarction:impact on bone marrow-derived vs cardiac progenitor cells. Exp Hematol,2008,36(6):695-702.
    9. Inoue T, Sata M, Hikichi Y,et al. Mobilization of CD34-positive bone marrow-derived cells after coronary stent implantation:impact on restenosis. Circulation,2007,115(5):553-561.
    10.Liu KQ, Qi X, Du JP,et al. Treatment of acute myocardial infarction with autologous bone marrow stem cells mobilization combined with recombinant growth factor in rat. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue,2006,18(8):494-497.
    11.Nikol S, Kuhlmann M. Mobilization of stem cells in cardiovascular disease. Improvement of vascularization, cardiac function and arrhythmias.Med Klin (Munich),2006,22:190-192.
    12.Kanellakis P, Slater NJ, Du XJ, et al. Granulocyte colony-stimulating factor and stem cell factor improve endogenous repair after myocardial infarction.Cardiovasc Res,2006,70(1) :117-25.
    13.Corbacho AM, Martinez De, La Escalera G, et al. Roles of prolactin and related members of the prolactin/growth hormone/placental lactogen family in angiogenesis. J Endocrinol,2002, 173:219-238.
    14.Oberbauer AM, Peng R.Growth hormone and IGF-I stimulate cell function in distinct zones of the rat epiphyseal growth plate. ConnectTissue Res,1995,31(3):189-195.
    15. Smith L,Kopchick J,Chen W,et al. Essential role of growth hormone in ischemia-induced neovascularization retinal. Science,1997,276:1706-1709.
    16.Kajstura J, Zhang X, Reiss K, et al. Myocyte cellular hyperplasia and Myocyte cellular hypertrophy contribute to chronic ventricular remodeling in coronary artery narrowing-induced cardiommyopathy in rats. Circ Res,1994; 74(3):383-400.
    17.Pollack A, Terry NHA, WU CS, et al. Specific staining of iododeoxyuridine and bromodeouridine in tumors double labeled in vivo:a cell kinetic analysis. Cytometry,1995 ,20(1):53-61.
    18.Orlic D, Kajstura J, Chimenti S, et al. Mobilized bone marrow cells repair the Infracted heart, improving function and survival. Proc Natl Acad Sci,2001;98:10344-10349.
    19. Wright DE, Wagers AJ, Gulati AP, et al.Physiological migration of hematopoietic stem and progenitor cells. Science 2001;294:1933-1936
    20.OrlicD,Kajstura J,Chimenti S,et al. Bone marrow cells regenerate infracted myocardium. Nature,2001 410(6829):701-705.
    21.Stroncek DF, Clay ME, Herr G, et al. The kinetics of G-CSF mobilization of CD34+cells in healthy people. Transfus Med,1997,7:19-24.
    22.Harada M, Nagafuji K, Fujisaki T, et al. G-CSF-induced mobilization of peripheral blood stem cells from healthy adults for allogeneic transplantation. J Hematother,1996,5(1):63-71.
    23.Scheven BA, Hamilton NJ. Stimulation of macrophage growth and multinucleated cell formation in rat bone marrow cultures by insulin-like growth factor I. Biochem Biophys Res Commun.1991 Jan 31;174(2):647-53.
    24.Norol F, Merlet P, Isnard R, et al. Influence of mobilized stem cells on myocardial infarct repair in a nonhuman primate model. Blood.2003;102(13):4361-8;
    25.Groger A, Piatkowski A, Grieb G, et al. The mobilisation of mononuclear cells and ndothelial progenitor cells after burn injury in a porcine model,2009 Sep 30.
    26.Fucher S, Baffour R, Zhou YE, et al. Transendocardial delivery of autologous bone Marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. JAm Col Cardiol.2001;37:1726-32;
    27.Jun Guo, Guosheng Lin, Cuiyu Bao, et al. Insulin-like growth factor 1 improves the efficacy of mesenchymal stem cells transplantation in a rat model of myocardial infarction. Journal of Biomedical Science,2008,15(1):89-97.
    28.Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts preventscardiomyocyte apoptosis, reduces remodeling and improves cardiac function.Nat Med,2001,7:430-436.
    29. Ciulla MM, Lazzari L, Pacchiana R, et al. Homing of peripherally injected bone marrow cells in the rat after experimental myocardial injury.Haematologica,2003,88:614-621.
    30.陈运贤,欧瑞明,钟雪云等.粒细胞集落刺激因子对大鼠实验性心肌梗死治疗作用的研究.广东医学,2002;23(11):1131-1133.
    31. Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest,1999,103(5):697-705.
    32.刘宏伟,盖鲁粤,张端珍等.粒细胞集落刺激因子骨髓干细胞动员治疗免心肌梗死的实验研究.军医进修学院学报,2005,26(2):132-134.
    33.张子强,高顺宗,刘雪平等.动员自体骨髓干细胞促进大鼠急性脑缺血损伤后血管新生的实验研究.中国老年学杂志,2004,24.(7):645-647.
    34.Mangi AA, Noiseux N, Kong D, et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med,2003;9:1195-1201.
    35.李濒,何建国.IGF-1对心力衰竭的作用及可能机制.现代诊断与治疗,2004,5(3):158-162.
    36.Wang PH.Insulin-like growth factor-1 and the heart.Endocrinol Cardiovasc Funct.1998; 1(1):225-234.
    37. Zhang JX, Mao P. Expansion of erythroid progenitors and CD34+cells by umbilical cord blood mononuclear cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi.2005 Jun;13(3):429-433.
    38.姚巍,王凤芝.静脉移植骨髓间充质干细胞联合重组人生长激素对充血性心肌病大鼠心肌和血管组织的修复.中国组织工程研究与临床康复,2010,14(6):1064-1067.
    39.Ishida M,Tomita S,Nakatani T,et al.Bone marrow mononuclear cell transplantation had beneficial effects on doxorubicin-induced cardiomypathy.JHeart lung Transplant.2004Apr, 23(4):436-445.
    40.Chen M,Fan FC,Liu XJ, et al.Cell transplantation with a catheter-based approach:an efficient method for the treatment of heart failure with multipleLesion.cell profile,2006,39(6):471-477.
    41.李连达,吴理茂,刘红等.自体骨髓干细胞移植研究进展.中国工程科学,2004,6(8):1-4.
    42.齐新,刘克强,杨文玲,骨髓间充质干细胞联合重组人生长激素治疗大鼠心肌坏死.中国循环杂志,2006,21(2):143-147.
    43. Wang L, Ma W, Markovich R, et al. Regulation of cardiomyocyte apoptotic signaling by Insulin-like growth factor 1. Circ Res,1998;83:516-522.
    44.Parrizas M, LeRoith D. Insulin-like growth factor-1 inhibition of apoptosis is associated with increased expression of the bcl-xL gene product. Endocrinology,1997,138:1355-1358.
    45.Li RK, Jia ZQ, Weisel RD, et al. Cardiomyocyte transplantation improves heart function. Ann Thorac Surg,1996,62(3):654-660.
    46.刘永刚,郭静萱,张萍等.干细胞因子在骨髓干细胞心肌内移植治疗中的作用研究.中华 心血管病杂志,2005,33(10):927-931.
    47.StromerH,CittadiniA,Douglas PS,et al. Exogenously administered growth hormone and insulin-like growth factor-I alter intracellular Ca2+handling and enhance cardiac performance. In vitro evaluation in the isolated isovolumic buffer-perfused rat heart[J].CircRes,1996,7(2): 227-236.
    48.IsgaardJ,KujacicV,JennischeE,et al. Growth hormone improves cadiac Function in Rats With Experimental myocardial infarction[J].Eur J Clin Invest,1997,27(6):517-525.
    49.Mehrhof FB,Muller FU,Bergmann MW,et al.In cardiomyocyte hypoxia, insulin-like growth factor-I-induced antiapoptotic signaling requires phosphatidy linositol-3-OH-kinase-dependent and mitogen-activated protein kinase-dependent activation of the transcription factor CAMP Response element-binding protein[J].Circulation,2001,10(17):2088-2094.
    50.vonLewinskiD,Voss K,Hulsmann S,et al.Insulin-likegrowth factor-1 exerts Ca2+-dependent positive inotropic effects in failing human myocardium[J].CircRes,2003,92(2):169-176.
    51.Nakagawa O, Ogawa Y, Itoh H, et al. Rapid transcriptional activation and early mRNA turn over of brain natriuretic peptide in cardiocyte hypertrophy:evidence for brain natriuretic peptide as an"emergency"cardicac hormone against ventricular overload. J Clin Invest,1995,96:1280-1287.
    52.Maeda K, Tsutamota T, Wada A, Hisanaga T, Kinoshita M. Plasma brain natriuretic peptide as a biochemical marker of high left ventricular end-diastolic pressure in patients with symptomatic left ventricular dysfunction[J]. Am Heart J,1998,135:825-832.
    53.Assmus B, Fischer-Rasokat U, Honold J, et al.Transcoronary transplantation of functionally Competent BMCs is associated with a decrease in Natriuretic peptide serum level and improve Survival of patients with chronic postinfarction heart failure. Circ Res,2007 mar 22.
    54.Gojo S,Kyo S,Nishimura S,et al. Cardiac resurrection after bone-marrow-derived mononuclear Cell transplantation during left ventricular assist device support.Ann,Thorac surg,2007,83(2):661-662.
    55.Linke A, Muller P, Nurzynska D, et al, Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. PNAS,2005,102:8966-8971.
    56.刘真喜,傅庭焕.IGF-1与细胞凋亡的研究进展.医学综述,2001,7(10)::579-580.
    57. Masaya Takahashi, Tao-Sheng Li, et al.Cytokines produced by bone marrow cells can contribute to functional improvement of the infarcted heart by protecting cardiomyocytes from ischemic injury. Am J Physiol Heart Circ Physiol 291:H886-H893
    1.Cheng L, Chen H, Yao X,et al. A Plant-Derived Remedy for Repair of Infarcted Heart. PLoS ONE,2009,4(2):4461-4463.
    2. Wang YQ, Wang M, Zhang P,et al. Effect of transplanted mesenchymal stem cells from rats of different ages on the improvement of heart function after acute myocardial infarction. Chin Med J (Engl),2008,121(22):2290-2298.
    3.Jun L, Minh D, Calvin W,et al. The immature heart:the roles of bone marrow stromal stem cells in growth and myocardial repair.Open Cardiovasc Med J,2007.1:27-33.
    4. Shi RZ, Li QP. Improving outcome of transplanted mesenchymal stem cells for ischemic heart disease. Biochem Biophys Res Commun,2008;376(2):247-50.
    5.Qi CM, Ma GS, Liu NF, et al. Transplantation of magnetically labeled mesenchymal stem cells improves cardiac function in a swine myocardial infarction model. Chin Med J (Engl), 2008,121(6):544-550.
    6.Schuleri KH, Amado LC, Boyle AJ,et al. Early improvement in cardiac tissue perfusion due to mesenchymal stem cells. Am J Physiol Heart Circ Physiol,2008,294(5):H2002-11.
    7. Wang T, Tang W, Sun S, et al. Intravenous infusion of bone marrow mesenchymal stem cells improves myocardial function in a rat model of myocardial ischemia. Crit Care Med,2007, 35(11):2587-93.
    8.Wang XJ, Li QP. The roles of mesenchymal stem cells (MSCs) therapy in ischemic heart diseases. Biochem Biophys Res Commun,2007,359(2):189-193.
    9.游庆军,沈振亚,肖明第等.自体骨髓干细胞移植对心力衰竭患者近期心功能的影响.中国组织工程研究与临床康复,2008,12(8):1467-1471.
    10.路璐,彭建军,胡大一等.骨髓动员与细胞移植对直接经皮腔内冠状动脉成形术后急性心肌梗死治疗作用.中国心血管病研究杂志,2004,2(7):557-559.
    11.Yeo C, Mathur A. Autologous bone marrow-derived stem cells for ischemic heart failure: REGENERATE-IHD trial. Regen Med.2009,4(1):119-127.
    12.Cheng Z, Liu X, Ou L,et al. Mobilization of mesenchymal stem cells by granulocyte colony-stimulating factor in rats with acute myocardial infarction. Cardiovasc Drugs Ther, 2008,22(5):363-371.
    13.HelmuthL.Stem cell shear call of injured tissue [J]. Science,2000,290:1479-1481.
    14.Ferrari G, Cusella-De Angelis G,Coletta M,et al.Muscle regeneration by bone marrow-derived myogenic progenitors[J]. Science 1998,279(5356):1528-1530.
    15.Gussoni E,Soneoka Y,Strickland CD,et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation[J]. Nature 1999,401(6751):390-394.
    16.Kocher AA, Schuster MD, Szabolcs MJ, et al.Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis,reduces remodeling and improves cardiac function[J]. Nat Med 2001,7(4):430-436.
    17.Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate Infracted myocardium[J]. Nature 2001,410(6829):701-705.
    18.Alison MR,Poulsom R,Jeffery R,et al.Hepatocytes from non-hepaticadult stem cells[J]. Nature 2000,406(6793):257.
    19.Lagasse E,Connors H,Al-Dhalimy M,et al. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo[J]. Nat Med,2000,6(11):1229-1234.
    20. Brazelton TR, Rossi FM, Keshet GI, et al. From marrow to brain:expression of neuronal phenotypes in adult mice[J]. Science,2000,290(5497):1775-1779.
    21. Mezey E, Chandross KJ, Harta G, et al. Turning blood into brain:cells bearing neuronal antigens generated in vivo from bone marrow[J].Science,2000,290(5497):1779-1782.
    22.江德勤.骨髓间充质干细胞诱导分化为心肌细胞的研究进展.国外医学儿科分册,2003,30(2):60-62.
    23.Pittencer MF,MackayAM, BeckSC, et al. Multilineage potential of adult human mesenchymal stem cells. Science,1999,284:143-147.
    24.Haynesworth S E, Baber M A, Caplan A I. Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies.Bone,1992,13:69-80.
    25.Barry F, Boynton R, Murphy M, et al. The SH-3 and SH-4 antibodies recognize distinct epitopes on CD73 from human mesenchymal stem cells. Biochem Biophys Res Commuy 2001, 289:519-524.
    26.Conget P A, Minguell J J. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol.1999,181(1):67-73.
    27. Wright DE, Wagers AJ, Gulati AP, et al.Physiological migration of hematopoietic stem and progenitor cells. Science 2001;294:1933-1936.
    28.彭建军,吴阳,胡大一等.骨髓动员与骨髓细胞移植对急性心肌梗死猪再灌注后心肌修复及血管再生作用的比较研究.中华心血管病杂志,2004,32(增刊2):183-185.
    29.朱志勇,周庆国,魏毅东等.骨髓间质干细胞静脉移植治疗大鼠急性心肌梗死的实验研究.临床心血管病杂志,2006,22(3):161-163.
    30.Noritoshi Nagaya,Takafumi Fujii,Takashi Iwase,et al.Intravenous administration of Mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol,2004,287: H2670-H2676.
    31.姚巍,王凤芝,姚英.重组人生长激素联合骨髓间充质干细胞静脉移植对心力衰竭大鼠心功能的影响.中国药物与临床,2007,7(11):825-827.
    32.杨国凯,林明,陈书尚等.静脉移植骨髓间充质干细胞改善心肌病心力衰竭大鼠的心功能.中国临床康复,2006,10(13):15-17.
    33 Chin BB, Nakamoto Y, Bulte JW, et al. 111In oxine labelled mesenchymal stem cell SPECT after intravenous administration in myocardial infarction. Nucl Med Commun, 2003,24(11):1149-1154.
    34. Mangi AA, Noiseux N, Kong D, et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med,2003;9:1195-1201.
    35. Kinnaird T, Stabile E, Burnett MS, et al. Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation,2004,109:1543-1549.
    36. Gnecchi M, Hh H, Liang OD, et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med,2005,11:367-368.
    37.Uemura R, Xu M, Ahmad N, et al. Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res,2006,98:1414-1421.
    38.马军,葛均波,张少衡等..静脉移植骨髓间质干细胞改善大鼠梗死心脏功能.中国临床医学,2004,11(2):151-154.
    39.李卓,谷天祥,张玉海.同种异体骨髓间充质干细胞单独及联合生长因子移植对兔梗死心肌心功能的影响.中国组织工程研究与临床康复,2009,13(19):3781-3784.
    40.李树仁,齐晓勇.骨髓干细胞移植影响急性心肌梗死后心室重构的研究现状.中国组织工程研究与临床康复,2007,11(28):5574-5579.
    41.Jun Guo, Guosheng Lin, Cuiyu Bao, et al. Insulin-like growth factor 1 improves the efficacy of mesenchymal stem cells transplantation in a rat model of myocardial infarction. Journal of Biomedical Science,2008,15(1):89-97.
    42.Ciulla MM, Lazzari L, Pacchiana R, et al. Homing of peripherally injected bone marrow cells in the rat after experimental myocardial injury.Haematologica,2003,88:614-621.
    43.钱漪.干细胞移植与心肌再生.南京医科大学学报,2003,23(1):73-76.
    44.Watt FM,Hogan BLM.Out of Eden:stem cells and their niches. Science,2000, 287(5457):1427-1430.
    45.Wakitani S, Saito T, Caplan AI. Myogenic cell derived from rat bone marrow mesechymal stem cells exposed to 5-azacytidine. Muscle Nerve,1995,18(12):1417-26.
    46.Makino S,Fukuda K,Miyoshi S,et al.Cardiomyocytes can be regenerated from marrow stromal cells in vitro.J Ctin Invest,1999; 103:697-705.
    47.Fuchs S, Baffour R,7hou YF, et al. Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function inpigs with chrinic experimental myocardial ischemia.J Am Coll Catdiol,2001,37;1726-1732.
    48.Husnain Kh Haider, Shujia Jiang, Niagara M, et al。 IGF-1-Overexpressing Mesenchymal Stem Cells Accelerate Bone Marrow Stem Cell Mobilization via Paracrine Activation of SDF-1 1alpha/CXCR4 signaling to promote myocardial repair. Circ Res.2008,103(11):1300-1308.
    49.Orlic D, Kajstura J, Chimenti S, et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci,2001,98:10344-10349.
    50.Tomita S, Li RK, Weisel RD, et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation,1999,100(19 suppl II):47-256.
    51.Corbacho AM, Martinez De La Escalera G, Clapp C. Roles of prolactin and related members of the prolactin/growth hormone/placental lactogen family in angiogenesis. J Endocrino 1,2002,173:219-238.
    52. Wang L, Ma W, Markovich R, et al. Regulation of cardiomyocyte apoptotic signaling by Insulin-like growth factor 1. Circ Res,1998;83:516-522.
    53.Parrizas M, LeRoith D. Insulin-like growth factor-1 inhibition of apoptosis is associated with increased expression of the bcl-xL gene product. Endocrinology,1997;138:1355-1358.
    54.Li RK, Jia ZQ, Weisel RD, et al. Cardiomyocyte transplantation improves heart function. Ann Thorac Surg,1996,62(3):654-660.
    55.Brunner S, Engelmann MG, Franz WM. Stem cell mobilisation for myocardial repair. Expert Opin Biol Ther,2008,8(11):1675-1690.
    56.Ripa RS, Kastrup J. G-CSF therapy with mobilization of bone marrow stem cells for myocardial recovery after acute myocardial infarction -a relevant treatment?.Exp Hematol, 2008,36(6):681-686.
    57. Brunner S, Huber BC, Fischer R, et al.G-CSF treatment after myocardial infarction:impact on bone marrow-derived vs cardiac progenitor cells. Exp Hematol,2008,36(6):695-702.
    58. Inoue T, Sata M, Hikichi Y,et al. Mobilization of CD34-positive bone marrow-derived cells after coronary stent implantation:impact on restenosis. Circulation,2007,115(5):553-561.
    59.Liu KQ, Qi X, Du JP,et al. Treatment of acute myocardial infarction with autologous bone marrow stem cells mobilization combined with recombinant growth factor in rat. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue,2006,18(8):494-497.
    60.王晓旭,丁玲范,姜雪松等.骨髓干细胞对急性梗死心肌修复的实验研究.心脏杂志,2005,17(1):31-36.
    61.Zhang SH, Guo JX, Zhang P, et al. Long-effects of bone marrow mononuclear cell transplantation on left ventricular function and remodeling in rats. Life Sciences.2004,74: 2853-2864.
    62.Hunter JJ, Chien KR. Signaling pathways for cardiac hypertrophy and failure.New England J Med,1999,341:12761283.
    63.Dineder K,singla,GaryE,et al.Transplanted embryonic stem cells following mouse myocardial infarction inhibt apoptosis and cardiac remodeling.Am J physiol,2007,293,1308-1314.
    64.戚晓敏.脐血间质干细胞移植后梗死心肌细胞的凋亡及意义。上海交通大学学报(医学版),2006,27(11):1337-1340.
    65.CHEN Jie, WANG Jianpan, LUG Ronghua, et al. Effects of mesenchymal stem cells transplantation on post-infarction ventricular remodeling in rats.Chin J Emerg Med.2006,15: 310-314.
    66.Masaya Takahashi, Tao-Sheng Li, et al.Cytokines produced by bone marrow cells can contribute to functional improvement of the infarcted heart by protecting cardiomyocytes from ischemic injury. Am J Physiol Heart Circ Physiol 291:H886-H893

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700