用户名: 密码: 验证码:
CXCR4特异性拮抗剂AMD3100对小鼠角膜碱烧伤新生血管的治疗作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨结膜下和腹腔注射AMD3100对于C57/BL小鼠角膜碱烧伤新生血管的治疗作用及其机制。
     方法:1)采用碱烧伤建立C57/BL小鼠角膜新生血管动物模型;采用免疫组织化学染色、RT-PCR和Western Blot检测碱烧伤后不同时间点角膜组织中SDF-1和CXCR4的表达情况;2)角膜碱烧伤后通过结膜下和腹腔注射给予CXCR4特异性拮抗剂AMD3100,随机分为4组:结膜下注射组、结膜下注射对照组、腹腔注射组和腹腔注射对照组;在不同时间点观察角膜的炎症反应和新生血管形成情况;检测各组角膜组织中炎症细胞的数量、微血管密度、VEGFR2、CD34、SDF-1和CXCR4的表达情况。3)采用流式细胞技术,检测结膜下注射和腹腔注射AMD3100后不同时间点小鼠外周血液中EPC的数量。
     结果:1)正常C57/BL小鼠角膜组织可微量表达SDF-1、CXCR4 mRNA和蛋白。SDF-1、CXCR4 mRNA和蛋白的表达于碱烧伤后3天开始可见增高,7天达高峰,14天时开始下降但仍高于正常水平;2)结膜下注射组AMD3100角膜的炎症指数、微血管密度、VEGFR2和CD34的表达水平等均低于对照组和腹腔注射组,差异有统计学意义。角膜碱烧伤后,各组之间SDF-1和CXCR4的表达水平未见显著性差异。腹腔注射组各时间点外周血中EPC的数量均显著增加,而结膜下注射组EPC的数量与注射前差异无统计学意义。
     结论:SDF-1/CXCR4在碱烧伤后小鼠角膜组织中表达增加,可能在角膜碱烧伤的炎症和新生血管的形成和发展过程中发挥重要作用。角膜碱烧伤小鼠腹腔注射AMD3100可显著增加外周血EPCs的数量,而结膜下注射无此效应。结膜下注射AMD3100可减少小鼠角膜碱烧伤后新生血管的形成,其机制可能是通过竞争性拮抗SDF-1与CXCR4之间的结合,阻断其生物学功能,并减少EPCs细胞向损伤部位的聚集有关。
Purpose: To investigate the effects of subconjunctival and intraperitoneal injected AMD3100 on alkali-induced corneal neovascularization and its mechanism.
     Methods: Alkali-induced corneal neovascularization animal model were constructed of in C57/BL mice. SDF-1 and CXCR4 expression in the corneal tissue were detect by immunohistochemistry, RT-PCR and Western Blot at different time points after alkali burn; AMD3100 was administrated by subconjunctival and intraperitoneal injection. And the mice were randomly divided into 4 groups: subconjunctival injection group, subconjunctival injection control group, intraperitoneal injection group and intraperitoneal injection control group; The number of inflammatory cells, microvessel density, VEGFR2, CD34, SDF-1 and CXCR4 expression in corneal tissue of each group were detected at different time points after alkali burn; Flow cytometry was used to detect the number of EPC in the peripheral blood of subconjunctival and intraperitoneal injection group at different time points after the injection of AMD3100.
     Results: Normal mouse corneal tissues only contain traces of SDF-1, CXCR4 mRNA and protein. Three days after alkali burn, the expression start to increase, and reached the peak at the 7th day, 14 days began to decrease but still higher than normal levels; Corneal inflammation index, microvessel density, VEGFR2 and CD34 level in subconjunctival injection group were all lower than the control group and the intraperitoneal injection group, and the difference of the SDF-1 and CXCR4 expression level among the four groups had no statistically significant. The numbers of EPCs in peripheral blood of intraperitoneal injection group were significantly increased at different time points. And the number of EPCs in peripheral blood at different time points after injection was not increased when compared with the number before injection.
     Conclusions: The expressions of SDF-1/CXCR4 are increased after alkali burn in corneal tissue of mice, which may indicated that SDF-1/CXCR4 plays an important role in the formation of corneal neovascular formation in alkali-induced corneal neovascularization. Intraperitoneal injection of AMD3100 could significantly increase the number of EPCs in peripheral blood, while subconjunctival injection was just the opposite. Subconjunctival injection of AMD3100 could reduce alkali-induced corneal neovascularization probably through competitive antagonist the binding of SDF-1 to CXCR4 and blocking its biological function, as well as reducing the EPCs gathered to the injury tissue.
引文
[1] Wright P. The chemically injured eye. Trans Ophthalmol Soc UK, 1982; 102(4): 85-87.
    [2]徐锦堂,孙秉基.角膜病的理论基础与临床.天津科学技术出版社. 2002; 139-147.
    [3] Jin DK, Shido K, Kopp HG, et al. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4(+) hemangiocytes. Nat Med. 2006; 12(5): 557-567.
    [4] Li Y, Reca RG, Atmaca-Sonmez P, et al. Retinal pigment epithelium damage enhances expression of chemoattractants and migrateon of bone marrow-derived stem cells. Invest Ophthalmol Vis Sci. 2006; 47(4): 1646-1652.
    [5] Galvez BG, Matias-Roman S, Albar JP, et al. Membrane type 1-matrix metalloproteinase is activated during migration of human endothelial cells andmodulates endothelial motility and matrix remodeling. J Biol Chem, 2001; 276(40): 37491-37500.
    [6]唐维强,柳林,李静,等.角膜缝线诱导建立大鼠角膜新生血管模型.国际眼科杂志. 2004; 4(5): 820-823.
    [7]高晓唯,楼月芳,等.软骨源抑制因子抑制角膜新生血管的实验研究.中华眼科杂志. 1999; 35(l): 22-24.
    [8]张晓农,赵巍.大鼠角膜新生血管模型中基质金属蛋白酶-2及其抑制物的表达.眼科研究. 2002; 20(4): 312-314.
    [9]刘祖国,张志红,马建兴,等.重组人肠Kringle 5蛋白滴眼液抑制兔角膜新生血管的研究.中华眼科杂志. 2002; 38(7): 415-419.
    [10] Gleichmann M, Gillen C, Czardybon M, et al. Cloning and characterization of SDF-1 gamma, a novel SDF-1 chemokine transcript with developmentally regulated expression in the nervous system. Eur J Neuro Sci. 2000; 12(6): 1857-1866.
    [11] D’APuzzo M, Rolink A, Loetscher M, et al. The chemokine SDF-l, stromal cell-derivcd factor-1, attracts early stage B cell precursors via the chemokine receptor CXCR4. Eur J Immunol. 1997; 27(7): 1788-1793
    [12] Crane IJ, Wallace CA, McKillop-Smith S, et al. CXCR4 receptor expression on human retinal pigment epithelial cells from the blood-retina barrier leads to chemokine secretion and migration in response to stromal cell-derived factor 1 alpha. J Immunol. 2000; 165(8): 4372-4378.
    [13] Ratajczak MZ, Majka M, Kucia M, et al. Expression of functional CXCR4 by muscle satellite cells and secretion of SDF-l by muscle-derived fibroblasts is associated with the presence of both muscle progenitors in bone marrow and hematopoietic stem/Progenitor cells in moscles. Stem Cells. 2003; 21(3): 363-371.
    [14] Zou Y, Kottmann AH, Kuroda M, et al. Functton of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature. 1998; 393(6685): 595-599.
    [15] Hatch H, Zheng D, Jorgensen ML, et al. SDF-1α/CXCR4: A mechanism for hepaticoval cell activation and bone marrow stem cell recruitment to the injured liver of rats. Cloning Stem Cells. 2002; 4(4): 339-351.
    [16] Salcedo R, Wasserman K, Young HA, et al. Vascular endothelial growth factor and basic fibroblast growth factor inducc expression of CXCR4 on human endothelial cells. Am J Pathol. 1999; 154(4): 1125-1135.
    [17] Dwinell MB, Ecklmann L, Leopard JD, et al. Chemokine receptor expression by human intestinal epithelial cells. Gastroenterology. 1999; 117(2): 359-367.
    [18] Askari AT, Unzek S, Popovic ZB, et al. Effect of stromal-cell-derived factor I on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet. 2003; 362(9385): 697-703.
    [19] Hiasa K, Ishibashi M, Ohtani K, et al. Gene transfer of stromal cell-derived-factor -lalpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxids synthase-related Pathway: next-generation chemokine therapy for therapeutic neovascularization. Circulation. 2004; l09(20): 2454-2561.
    [20]代震宇,李立.角膜新生血管治疗的研究进展.国际眼科杂志. 2006; 6(4): 844-847.
    [21] Chalasani SH, Baribaud F, Coughlan CM, et a1. The chemokine stromal cell-derived factor-l promotes the survival of embryonic retinal ganglion cells. J Neurosci. 2003; 23(11): 460l-46l2.
    [22] Brooks HL Jr, Caballero S Jr, Newell CK, et al. Vitreous levels of vascular endothelial growth factor and stromal-derived factor l in patients with diabetic retinopathy and cystoid macular edema before and after intraocular injection of triamcino-lone. Arch Ophthalmol. 2004; l22(12): l80l-l807.
    [23] Butler JM, Guthrie SM, Koc M, et a1. SDF-l is both necessary and sufficient to promote proliferative retinopathy. J Clin Invest. 2005; 115(1): 86-93.
    [24] Li Y, Reca RG, Atmaca-Sonmez P, et a1. Retinal pigment epithelium damage enhancesexpression of chemoattractants and migration of bone mallow-derived stem cells. Invest Ophthalmol Vis Sci. 2006; 47(4): l646-l652.
    [25] Fang IM, Yang CH, Lin CP, et al. Expression of chemokine and receptors in Lewis rats with experimental autoimmune anterior uveitis. Exp Eye Res. 2004; 78(6): 1043-1055.
    [26] Boureier T, Berbar T, Paquet S, et al. Characterization and functionality of CXCR4 chemokine receptor and SDF-1 in human comeal fibroblasts. Mol Vis. 2003; 9: 96-102.
    [27] Carr AN, Howard BW, Yang HT, et al. Efficacy of systemic administration of SDF -1 in a model of vascular insufficiency: support for an endothelium-dependent mechanism. Cardiovasc Res. 2006; 69(4): 925-935.
    [28] Keuy DJ, Zhang Y, Gow RM, et al. Cells expressing the stem ccll factor receptor, c-kit, contribute to neoangiogenesis in diabetes. Diab Vasc Dis Res. 2005; 2(2): 76-80.
    [29] Eddleston J, Christiansen SC, Zuraw BL. Functional expression of the C-X-C chemokine receptor CXCR4 by human bronchial epithelial cells: regulation by proinflammatory mediators. J Immunol. 2002; 169(11): 6445-6451.
    [30] Panzer U, Uguccioni M. Prostaglandin E2 modulates the functional responsiveness of human monocytes to chemokines. Eur J Immunol. 2004; 34(l2): 3682-3689.
    [31] Florin L, Maas-Szabowski N, Werner S, et al. Increased keratinocyte proliferation by JUN-dependent expression of PTN and SDF-l in fibroblasts. J Cell Sci. 2005; 118 (Pt9): 1981-1989.
    [32] Smith JM, Johanesen PA, Wendt MK, et al. CXCL12 activation of CXCR4 regulates mucosal host defense through stimulation of epithelial cell migration and promotion of intestinal barrier integrity. Am J Physiol Gastrointest Liver Physiol. 2005; 288(2): G316-326.
    [33] Bachelder RE, Wendt MA, Mercurio AM. Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating thechemokine receptor CXCR4. Cancer Res. 2002; 62(24): 7203-7206.
    [34] Kryczek I, Lange A, Mottram P, et al. CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Res. 2005; 65(2): 465-472.
    [35] Yamaguchi J, Kusano KF, Masuo O, et al. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation. 2003; 107(9): 1322-1328.
    [36] Grunewald M, Avraham I, Dor Y, et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell. 2006; 124(1): 175-189.
    [1] Tachibana K, Hirota S, lizasa H, et al. The cbcmokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature. 1998; 393(6685): 591-549.
    [2] Mirshahi, Pourtau J, Li H, et al. SDF-1 activity on microvascular endothelial cells: cnosequences on angiogenesis in in vitro and in vivo mdoels. Thromb Res. 2000; 9(6):578-549.
    [3] Yamaguchi J, Kusano KF, Masuo O, et al. Stromal cell-derived factor-l effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation. 2003; 107(9): 1322-1328.
    [4] De Clercq E. The bicyclam AMD3100 story. Nat Rev Drug Discov. 2003; 2(7): 581-587.
    [5] Matthys P, Hatse S, Vermeire, et al. AMD3100, a potent and specific antagonist of the stromal cell-derived factor-1 chemokine receptor CXCR4, inhibits autoimmune joint inflammation in IFN-γreceptor-deficient mice. J Immunology. 2001; 167(8): 4686-4692.
    [6] Blanco J, Barretina J, Henson G, et al. The CXCR4 antagonist AMD3100 efficientlyinhibits cell-surface-expressed human immunodeficiency virus type 1 envelope-induced apoptasis. Antimicrob Agents Chemother. 2000; 44(1): 51-56.
    [7] Lukacs NW, Berlin A, Schols D, et al. AMD3100, a CXCR4 antagonist, attenuate allergic lung inflammation and airway hypereactivity. Am J Pathol. 2002; 160(4): 1353-1360.
    [8] Ueno M, Lyons BL, Burzenski LM, et al. Accelerated wound healing of alkali-burned corneas in MRL mice is associated with a reduced inflammatory signature. Invest ophthalmo1 Vis Sci. 2005; 46(11): 4097-4106.
    [9] Ormerod LD, Abelson MB, Kenyon KR. Standard models of corneal injury using alkali-immersed filter discs. Invest Ophthalmol Vis Sci. 1989; 30(10): 2148-2153.
    [10] Kimura H, Nakajima T, Kagawak, et al. Angiogenesis in hepatocellular carcinoma as evaluated by CD34 immunohistochemistry. Liver. l998; 18(1): 14-19.
    [11] Maeda K, Chung YS, Orana Y, et al. Prognostic value of vascular endothelial growth factor expression in gastric carcinoma [J]. Cancer. 1996; 77(5): 858-86.
    [12]孙秉堂,徐锦堂.角膜病的理论基础与临床.第一版.科学技术出版社. 1994; 1: 132.
    [13] Conners MS, Urbano F, Vafeas C, et al. Alkali burn-induced synthesis of inflamematory eicosanoids in rabbit corneal epithelium. Invest Ophthalmol Vis Sci. 1997; 38: 1963-1971.
    [14] Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004; 350(23): 2335-2342.
    [15] Bock F, K?nig Y, Kruse F, Baier M, Cursiefen C.Bevacizumab (Avastin) eye drops inhibit corneal neovascularization. Graefes Arch Clin Exp Ophthalmol. 2008; 246(2): 281-284.
    [16] Yamada, Jun, Reza Dana, et al. Local suppression of IL-1 by recaptor antagonist in the rat model of corneal alkali injury. Experimental Eye Research. 2003; 76(2): 161-167.
    [17] Lai LJ, Xiao X, Wu JH. Inhibition of corneal neovascularization with endostatin delivered by adeno-associated viral (AAV) vector in a mouse corneal injury model. J Biomed Sci. 2007; 14(3): 313-22.
    [18] Wu PC, Yang LC, Kuo HK, et al. Inhibition of corneal angiogenesis by local application of vasostatin. Mol Vis. 2005; 11: 28-35.
    [19] Dicherson EB, Akhtar N, Steinberg H, et al. Enhancement of the antiangiogenic activity of interleukin-12 by peptide targeted delivery of the cytokine to alphavbeta3 integrin. Mol Cancer Res. 2004; 2(12): 663-673.
    [20]杨楠,张桂荣,杨翰仪,等.重组色素上皮细胞衍生因子抑制鸡胚绒毛尿囊膜血管及兔角膜新生血管.国际眼科杂志. 2004; 4(6): 1009-1011.
    [21] Rozenbaum W, Dormont D, Spire B, et al. Antimoniotungstate (HPA 23) treatment of three patients with AIDS and one with prodrome. Lancet. 1985; 1(8426): 450-451.
    [22] De Clercq E. Antiviral therapy for human immunodeficiency virus infections. Clin Microbiol Rev. 1995; 8(2): 200-239.
    [23] De Clercq E. Antiviral metal complexes. Met Based Drugs. 1997; 4(3): 173-192.
    [24] Song R, Witvrouw M, Schols D, et al. Anti-HIV activities of anionic metalloporphyrins and related compounds. Antivir Chem Chemother. 1997; 8: 85-97.
    [25] De Clercq E, Yamamoto N, Pauwels R, et al. Potent and selective inhibition of human immunodeficiency virus (HIV)-1 and HIV-2 replication by a class of bicyclams interacting with a viral uncoating event. Proc Natl Acad Sci. 1992; 89(12): 5286-5290.
    [26] Hatse S, Princen K, Bridger G, et al. Chemokine recaptor inhibition by AMD3100 is strictly confined to CXCR4. FEBS Letters. 2002; 527(1-3): 255-262.
    [27] Liles WC, Broxmeyer HE, Rodger E, et al. Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood. 2003; 102(8): 2728-2730.
    [28] Broxmeyer HE, Hangoc G, Cooper S, et al. Interference of the SDF-1/CXCR4 axis inmice with AMD3100 induces rapid high level mobilization of hematopoietic progenitor cells, and AMD3100 acts synergistically with G-CSF and MIP-1 alpha to mobilize progenitors. Blood. 2001; 96: 3371a.
    [29] IwakuraA. AMD-3100, a CXCR4 antagonist,augments incorporation of bone marrow-derived endothelial progenitor cells into sites of myocardial neovascularization. Blood. 2002; 100: 293a.
    [30] Capoccia BJ, Shepherd RM, Link DC. G-CSF andAMD3100 mobilize monocytes into the blood that stimulate angiogenesis in vivo through a paracrine mechanism. Blood. 2006; 108: 2438-2445.
    [31] Grunewald M, Avraham I, Dor Y, et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell. 2006; 124(1): 175-189.
    [1] Folkman, J. Tumor anglogenesis: therapeutic implications[J]. N Engl J Med. 1971; 285:1182-1185.
    [2] Asaluna T, Mumluua T, SullivanA, et al. Isolation of putative Progenitor endothelial cells for angiogenesis [J]. Science. 1997; 275(5302): 946-967.
    [3] Risau W, Sariola H, Zerwes HG, et al. Vasculogenesis and angiogenesis in embryonic stem cell-derived emboryoid bodies[J]. Development. 1988; 102: 471-478.
    [4] Moore MA, Hatori K, Heissig B, et al. Mobilization of endothclial and hem aotopoietic stem and progenitor cells by adenovector-mediated elevation of serum levels of SDF-1, VEGF, and angiopoietin-1. Ann NY Acad Sci. 2001; 938: 36-45.
    [5] Petit I, SzyPer-KravItz M, Nagler A, et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-l and up-regulating CXCR4. Nat Immunol. 2002; 3(7): 687-694.
    [6] Broxmeyer HE, Hangoc G, Cooper S, et al. AMD3100 and CD26 modulate mobilization, engraftment, and survival of hematopoietic stem and progenitor cells mediated by the SDF-1/CXCL12-CXCR4 axis. Ann N Y Acad Sci. 2007; 1106: 1-19.
    [7] Martinez-Estrada OM, Munoz-Santos Y, Julve J, et al. Human adipose tissue as a source of Flk-1(+) cells: new method of differentiation and expansion. Cardiovasc Res. 2005; 65(2): 328-333.
    [8] AsaharaT, Mumhara T, Suilivan A, et al. Isolation of putative progenitor endothelial cells for a ngiogenesis. Science. 1997; 275(5302): 964-967.
    [9] Werner N, Junk S, Laufs U, et al. Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury. Circ Res. 2003; 93(2): 17-24.
    [10] Strehlow K, Werner N, Berweiler J, et al. Estrogen increases bone marrow-derived endothelial progenitor cell production and diminishes neointima formation. Circulation. 2003; 107(24): 3059-3065.
    [11] Zhao YD, Courtman DW, Deng Y, et al. Rescue of monocrotaline-induced pulmonary arterial hypertension using bone marrow-derived endothelial-like progenitor cells: efficacy of combined cell and eNOS gene therapy in established disease. Circ Res.2005; 96(4): 442-450.
    [12] Dimmeler S, Aicher A, Vasa M, et al. HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest. 2001; 108(3): 391-397.
    [13] Cho HJ, Kim HS, Lee MM, et al. Mobilized endothelial progenitor cells by granulocyte-macrophage colony-stimulating factor accelerate reendothelialization and reduce vascular inflammation after intravascular radiation. Circulation. 2003; 108(23): 2918-2925
    [14] Hur J, Yoon CH, Kim HS, et al.Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol. 2004; 24(2): 288-293.
    [15] Griese DP, Ehsan A, Melo LG, et al.Isolation and transplantation of autologous circulating endothelial cells into denuded vessels and prosthetic grafts: implications for cell-based vascular therapy. Circulation. 2003; 108(21): 2710-2715.
    [16] Kong D, Melo LG, Mangi AA, et al. Enhanced inhibition of neointimal hyperplasia by genetically engineered endothelial progenitor cells. Circulation. 2004; 109(14): 1769-1775.
    [17] Papayannopoulou T. Current mechanicstic scenatios in hematopoietic stem/progenitor cell mobilization. Blood. 2004; 103: 1580-1585.
    [18] Asahara T, Takahashi T, Masuda H, et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J. 1999; 18(14): 3964-3972.
    [19] Askari AT, Unzek S, Popovic ZB, et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet. 2003; 362(9385): 697-703.
    [20] Ceradini DJ, Kulkarni AR, Callaghan MJ, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med. 2004; 10(8): 858-864.
    [21] Shintani S, Murohara T, Ikeda H, et al. Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation. 2001; 103(23): 2776-2779.
    [22] Takahashi T, Kalka C, Masuda H, et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med.1999; 5(4): 434-438.
    [23] Sandri M, Adams V, Gielen S, et al. Effects of exercise and ischemia on mobilization and functional activation of blood-derived progenitor cells in patients with ischemic syndromes: results of 3 randomized studies. Circulation. 2005; 111(25): 3391-3399.
    [24] Laufs U, Werner N, Link A, et al. Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation. 2004; 109(2): 220-226.
    [25] Condon ET, Wang JH, Redmond HP. Surgical injury induces the mobilization of endothelial progenitor cells. Surgery. 2004; 135(6): 657-661.
    [26] Walter DH, Haendeler J, Reinhold J, et al. Impaired CXCR4 signaling contributes to the reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease. Circ Res. 2005; 97(11): 1142-1151.
    [27]尹扬光,黄岚,赵晓辉,等. SDF-1对小鼠骨髓源性内皮祖细胞数量及功能的影响.心血管康复医学杂志. 2006; 15: 427-434.
    [28] Walter DH, Rittig K, Bahlmann FH, et al. Statin therapy accelerates reendothelialization: a novel effect involving mobilization and incorporation of bone marrow-derived endothelial progenitor cells. Circulation. 2002; 105(25): 3017-3024.
    [29] Larochelle A, Krouse A, Metzger M, et al. AMD3100 mobilizes hematopoietic stem cells with long-term repopulating capacity in non-human primates. Blood. 2006; 107(9): 3772-3778.
    [30] Capoccia BJ, Shepherd RM, Link DC. G-CSF and AMD3100 mobilize monocytes into the blood that stimulate angiogenesis in vivo through a paracrine mechanism. Blood. 2006; 108(7): 2438-2445.
    [31] Yin Y, Huang L, Zhao X, et al. AMD3100 mobilizes endothelial progenitor cells in mice, but inhibits its biological functions by blocking an autocrine/paracrine regulatory loop of stromal cell derived factor-1 in vitro. J Cardiovasc Pharmacol. 2007; 50(1): 61-67.
    [1] Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997; 275(5302): 964-967.
    [2] Shi Q, Rafii S, Wu MH, et al. Evidence for circulating bone marrow-derived endothelial cells. Blood. 1998; 92(2): 362-367.
    [3] Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res. 1999; 85(3): 221-228.
    [4] Kalka C, Masuda H, Takahashi T, et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci. 2000; 97: 3422-3427.
    [5] Murayama T, Tepper OM, Silver M, et al. Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo. Exp Hematol. 2002; 30: 967-972.
    [6] Crosby JR, Kaminski WE, Schatteman G, et al. Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ Res. 2000; 87: 728-730.
    [7] Gallagher KA, Liu ZJ, Xiao M, et al. Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 alpha. J Clin Invest. 2007; 117(5): 1249-1259.
    [8] Hitchon C, Wong K, Ma G, et al. Hypoxia-induced production of stromal cell-derived factor 1 (CXCL12) and vascular endothelial growth factor by synovial fibroblasts. Arthritis Rheum. 2002; 46(10): 2587-2597.
    [9]黄礼彬,韩晓丽,徐国兴. SDF-1/CXCR4与眼部新生血管性疾病的研究进展.国际眼科杂志. 2008; 8(4): 791-793.
    [10] Lima e Silva R, Shen J, Hackett SF, et al. The SDF-1/CXCR4 ligand/receptor pair is an important contributor to several types of ocular neovascularization. FASEB J. 2007; 21(12): 3219-3230.
    [1] Streilein JW, Bradley D, Sano Y, et a1. Immunosuppressive properties of tissues obtained from eyes with experimentally manipulated comeas[J]. Invest Ophthalmol Vis Sci. 1996; 37(2): 413-424.
    [2] Dana MR, Streilein JW. Loss and restoration of immune privilege in eyes with corneal neovascularization[J]. Invest Ophthalmol Vis Sci. 1996; 37(12): 2485-2494
    [3] Aiello LP. Vascular endothelial growth factor. Invest Ophthalmol Vis Sci. 1997; 38: 1647-1652.
    [4] Chang JH, Gabison EE, Kato T, et al. Corneal neovascularization. Curr Opin Ophthalmol. 2001; 12(4): 242-249.
    [5] Cogan DG. Corneal neovascularization. Invest Ophthalmol Vis Sci.1962; 1: 253-261
    [6] Cursiefen C, Kuchle M, Naumann GO. Angiogenesis in corneal diseases: histopathologic evaluation of 254 human corneal buttons with neovascularization. Cornea. 1998; 17: 611-613.
    [7] Power WJ, Tugal-Tutkun I, Foster CS. Long-term follow-up of patients with atopic keratoconjunctivitis. Ophthalmology. 1998; 105: 637-642.
    [8] Lopez JS, Price FW Jr, Whitcup SM, et al. Immunohistochemistry of Terrien’s and Mooren’s corneal degeneration. Arch Ophthalmol. 1991; 109: 988-992.
    [9] Madigan MC, Penfold PL, Holden BA, et al. Ultrastructural features of contact lens-induced deep corneal neovascularization and associated stromal leukocytes. Cornea. 1990; 9: 144-151.
    [10] Fromer CH, Klintworth GK. An evaluation of the role of leukocytes in the pathogenesis of experimentally induced corneal vascularization. II. Studies on the effect of leukocytic elimination on corneal vascularization. Am J Pathol. 1975; 81: 531-544.
    [11] Fromer CH, Klintworth GK. An evaluation of the role of leukocytes in the pathogenesis of experimentally induced corneal vascularization. Am J Pathol. 1975; 79: 537-554.
    [12] Fromer CH, Klintworth GK. An evaluation of the role of leukocytes in the pathogenesis of experimentally induced corneal vascularization. III. Studies related to the vasoproliferative capability of polymorphonuclear leukocytes and lymphocytes. Am J Pathol. 1976; 82: 157-170.
    [13] Folkman J, Shing Y. Angiogenesis. J Biol Chem. 1992; 267: 10931-10934.
    [14] Olofsson B, Pajusola K, Kaipainen A, et al. Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proc Natl Acad Sci. 1996; 93: 2576-2581.
    [15] Philipp W, Speicher L, Humpel C. Expression of vascular endothelial growth factor and its receptors in inflamed and vascularized human corneas. Invest Ophthalmol Vis Sci. 2000; 41(9): 2514-2522.
    [16] Cursiefen C, Rummelt C, Kuchle M. Immunohistochemical localization of vascular endothelial growth factor, transforming growth factor alpha, and transforming growth factor beta1 in human corneas with neovascularization. Cornea. 2000; 19: 526-533.
    [17] Tseng SC. Amniotic membrane transplantation for ocular surface reconstruction [J]. Biosci Rep. 2001; 21(4): 481-490.
    [18] Adinolfi M, Akle CA, McColl I, et al. Expression of HLA antigens, beta 2-microglobulin and enzymes by human amniotic epithelial cells. Nature. 1982; 295(5847): 325-327.
    [19] Cao R, Brakenhielm E, Wahlestedt C, et al. Leptin induces vascular permeability and synergistically stimulates angiogenesis with FGF-2 and VEGF. Proc Natl Acad Sci. 2001; 98(11): 6390-6395.
    [20] Edelman JL, Castro MR, Wen Y. Correlation of VEGF expression by leukocytes with the growth and regression of blood vessels in the rat cornea. Invest Ophthalmol Vis Sci. 1999; 40: 1112-1123.
    [21] Wu HM, Yuan Y, Mc Carthy M, et a1. Acidic and basic FGFs dilate arterioles of skeletal muscle through a NO-dependent mechanism[J]. Am J Physiol. 1996; 271(3 Pt 2): H1087-1093.
    [22] Yaug CF, Yasulawa T, Kinura H, et a1. Experimental corneal neovascularization by basic fibroblast growth factor in corporated into gehtin by drogel[J]. Ophthalmic Res. 2000, 32(1): 19-24.
    [23] Sotozono C, He J, Matsumoto Y, et al. Cytokine expression in the alkali-burned cornea. Curr Eye Res. 1997; 16: 670-676.
    [24] Biswas PS, Banerjee K, Kinchington PR, et al. Involvement of IL-6 in the paracrine production of VEGF in ocular HSV-1 infection. Exp Eye Res. 2006; 82: 46-54.
    [25] Frater-Schroder M, Risau W, Hallmann R, et al. Tumor necrosis factor type alpha, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo. Proc Natl Acad Sci. 1987; 84: 5277-5281.
    [26] Yoshida S, Ono M, Shono T, et al. Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor alpha-dependent angiogenesis. Mol Cell Biol. 1997; 17: 4015-4023.
    [27] Berger O, Gan X, Gujuluva C, et al. CXC and CC chemokine receptors on coronary and brain endothelia. Mol Med. 1999; 5: 795-805.
    [28] Koch AE, Polverini PJ, Kunkel SL, et al. Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science. 1992; 258: 1798-1801.
    [29] Strieter RM, Kunkel SL, Elner VM, et al. Interleukin-8. A corneal factor that induces neovascularization. Am J Pathol. 1992; 141: 1279-1284.
    [30] Raport CJ, Gosling J, Schweickart VL, et al. Molecular cloning and functional characterization of a novel human CC chemokine receptor (CCR5) for RANTES, MIP-1beta, and MIP-1alpha. J Biol Chem. 1996; 271: 17161-17166.
    [31] Yoshimura T, Yuhki N, Moore SK, et al. Human monocyte chemoattractant protein-1 (MCP-1). Full-length cDNA cloning, expression in mitogen-stimulated blood mononuclear leukocytes, and sequence similarity to mouse competence gene JE. FEBS Lett. 1989; 244: 487-493.
    [32] Goede V, Brogelli L, Ziche M, et al. Induction of inflammatory angiogenesis by monocyte chemoattractant protein-1. Int J Cancer. 1999; 82: 765-770.
    [33] Tachibana K, Hirota S, Iizasa H, et a1. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature. l998; 393(6685): 59l-594.
    [34] Toksoy A, Muller V, Gillitzer R, et a1. Biphasic expression of stromal cell-derived factor 1 during human wound healing. Br J Dermatol. 2007; l57(6): l148-l154.
    [35] Gallagher KA, Liu ZJ, Xiao M, et a1. Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-l alpha. J Clin Invest. 2007; l17(5): 1249-1259.
    [36] Petit I, Jin D, Rafii S, et a1. The SDF-l-CXCR4 signaling pathway:a molecular hub modulating neoangiogenesis. Trends Inmmnol. 2007; 28(7): 299-307.
    [37] Vaporciyan AA, DeLisser HM, Yan HC, et al. Involvement of platelet-endothelial celladhesion molecule-1 in neutrophil recruitment in vivo. Science. 1993; 262: 1580-1582.
    [38] Muller WA, Weigl SA, Deng X, et al. PECAM-1 is required for transendothelial migration of leukocytes. J Exp Med. 1993; 178: 449-460.
    [39] Moromizato Y, Stechschulte S, Miyamoto K, et al. CD18 and ICAM-1-dependent corneal neovascularization and inflammation after limbal injury. Am J Pathol. 2000; 157: 1277-1281.
    [40] Bazan H, Ottino P. The role of platelet-activating factor in the corneal response to injury. Prog Retin Eye Res. 2002; 21: 449-464.
    [41] Bazan HE. Cellular and molecular events in corneal wound healing: significance of lipid signalling. Exp Eye Res. 2005; 80: 453-463.
    [42] Bazan HE, Reddy ST, Lin N. Platelet-activating factor (PAF) accumulation correlates with injury in the cornea. Exp Eye Res. 1991; 52: 481-491.
    [43] Gomez DE, Alonso DF, Yoshiji H, et al. Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol. 1997; 74: 111-122.
    [44] Sivak JM, Fini ME. MMPs in the eye: emerging roles for matrix metalloproteinases in ocular physiology. Prog Retin Eye Res. 2002; 21: 1-14.
    [45] Vu TH, Shipley JM, Bergers G, et al. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell. 1998; 93: 411-422.
    [46] Zhou Z, Apte SS, Soininen R, et al. Impaired endochondral ossification and angiogenesis in mice deficient in membranetype matrix metalloproteinase I. Proc Natl Acad Sci. 2000; 97: 4052-4057.
    [47] Itoh T, Tanioka M, Yoshida H, et al. Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res. 1998; 58: 1048-1051.
    [48] Kato T, Kure T, Chang JH, et al. Diminished corneal angiogenesis in gelatinase deficient mice. FEBS Lett. 2001; 508: 187-190.
    [49] Samolov B, Steen B, Seregard S, et al. Delayed inflammation-associated cornealneovascularization in MMP-2-deficient mice. Exp Eye Res. 2005; 80: 159-166
    [50] Moser TL, Stack MS, Asplin I, et al. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci. 1999; 96: 2811-2816.
    [51] Tarui T, Miles LA, Takada Y. Specific interaction of angiostatin with integrin alpha(v)beta(3) in endothelial cells. J Biol Chem. 2001; 276: 39562-39568.
    [52] Gabison E, Chang JH, Hernandez-Quintela E, et al. Anti-angiogenic role of angiostatin during corneal wound healing. Exp Eye Res. 2004; 78: 579-589.
    [53] Halfter W, Dong S, Schurer B, et al. Collagen XVIII is a basement membrane heparan sulfate proteoglycan. J Biol Chem. 1998; 273: 25404-25412.
    [54] Dhanabal M, Ramchandran R, Waterman MJ, et al. Endostatin induces endothelial cell apoptosis. J Biol Chem. 1999; 274: 11721-11726.
    [55] Dixelius J, Larsson H, Sasaki T, et al. Endostatin-induced tyrosine kinase signaling through the Shb adaptor protein regulates endothelial cell apoptosis. Blood. 2000; 95: 3403-3411.
    [56] Rehn M, Veikkola T, Kukk-Valdre E, et al. Interaction of endostatin with integrins implicated in angiogenesis. Proc Natl Acad Sci. 2001; 98: 1024-1029.
    [57] Kim YM, Hwang S, Kim YM, et al. Endostatin blocks vascular endothelial growth factor-mediated signaling via direct interaction with KDR/Flk-1. J Biol Chem. 2002; 277: 27872-27879.
    [58] Ortego J, Escribano J, Becerra SP, et al. Gene expression of the neurotrophic pigment epithelium-derived factor in the human ciliary epithelium: synthesis and secretion into the aqueous humor. Invest Ophthalmol Vis Sci. 1996; 37: 2759-2767.
    [59] Dawson DW, Volpert OV, Gillis P, et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science. 1999; 285: 245-248.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700