用户名: 密码: 验证码:
组织工程化生物活性骨膜冻存后生物学特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:观察冻存复苏后组织工程化生物活性骨膜的生物学特性和成骨活性。
     方法:从新西兰大白兔骨髓中分离骨髓间充质干细胞(BMSCs),经体外成骨诱导培养后与猪小肠粘膜下层(SIS)构建组织工程化生物活性骨膜,另外将未诱导的骨髓间充质干细胞和猪小肠粘膜下层也构建组织工程化骨膜,而后用含10%二甲基亚砜、50%胎牛血清、40%DMEM冻存液,采用程序性降温法将两种工程化骨膜保存在-196℃液氮中。30天后复苏培养,用MTT法检测种子细胞在支架材料上的生长情况,并用扫描电镜观察种子细胞的生长状态,通过免疫印迹的方法来检测复苏后组织工程骨膜分泌Ⅰ型胶原和骨钙素量的变化,酶组织化学法检测碱性磷酸酶(ALP)分泌的量。
     结果:冻存复苏后BMSCs仍能在SIS上保持良好的生长状况,构建的两种组织工程化生物活性骨膜复苏后在含有成骨诱导剂的培养基中培养可分泌一定量的Ⅰ型胶原、骨钙素和碱性磷酸酶。而且,骨髓间充质干细胞诱导为成骨细胞与小肠粘膜下层构成的工程化骨膜(M1)所含的Ⅰ型胶原的量,与未诱导的骨髓间充质干细胞和小肠粘膜下层构建的工程化骨膜(M2)所含的量差异无统计学意义(P>0.05)。但是M2所分泌的骨钙素和碱性磷酸酶的量高于M1所分泌的量,差异有统计学意义(P<0.05)。
     结论:组织工程化生物活性骨膜冻存复苏后培养仍保持较稳定的生物活性,种子细胞在支架材料上附着生长,并稳定地分泌一定量的Ⅰ型胶原、碱性磷酸酶和骨钙素,具有较强的成骨活性。M2表达成骨活性高于M1。
Objective:To observe the biological characteristics of cryopreserved tissue-engineered periosteum and to examine the osteogenic potential.
     Methods:The bone marrow mesenchymal stem cells(BMSCs)of New Zealand rabbit were first cultivated and osteogenically induced as seeding cells in vitro,then co-cultivated with porcine small intestinal submucosa(SIS).Other BMSCs were not osteogenically induced and co-cultivated with SIS as well.They were both cryopreserved at -196℃in liquid nitrogen for 30 days banking in cryoprotectant, which contains 10%DMSO,50%fetal calf serum by programmed cooling procedure. Subsequently,the biological characteristics of cryopreserved tissue-engineered periosteum were analyzed by scan electronic microscopy(SEM),MTT and ALP detection after resuscitation.In the meantime,the quantity of typeⅠcollagen and osteocalcin secreted by the tissue-engineered periosteum(TEP)was detected by western blotting.
     Rusults:The growth status of BMSCs remains good after resuscitation.The quantity of typeⅠcollagen,osteocalcin and ALP secreted by the two kinds of TEP were higher than SIS.The quantity of typeⅠcollagen in the TEP which was constructed with BMSCs and SIS(M1 group)was not significantly different from the TEP which was constructed with osteoblasts and SIS(M2 group).(P>0.05)Other wise, the quantity of osteocalcin and ALP in the M2 group was all significantly higher than the M1 group.(P<0.05)
     Conclusion:The biology activity of tissue engineered periosteum remained stable and the quantity of typeⅠcollagen,ALP and osteocalcin was secreted at a certain level.The tissue-engineered periosteum showed a highly osteogenetic activity. The expression level of osteogenetic activity in M2 group was higher than M1 group.
引文
[1]裴国献,魏宽海,金丹.组织工程学试验技术[M].北京:人民军医出版社,2006:1-210.
    [2]Mus ina RA,Bekchanova ES,Belyavskii AV,et al.Differentiation potential of mesenchymal stem cells of different origin.Bull Exp Biol Med,2006;141(1):147-151.
    [3]Kronenwett R,Haas R.Differentiation potential of stem cells from bone marrow.Med Klin(Munich),2006;101(1):182-5.
    [4]Krampera M,Pizzolo G,Aprili G,et al.Mesenchymal stem cells for bone,cartilage,tendon and skeletal muscle repair.Bone,2006;39(4):678-83.
    [5]O.V.Payushina,E.I.Domaratskaya,V.I.Starostin.Msesnchymal Stem Cells:Sources,Phenotype,and Differentiation Potential.Biology Bulletin,2006,33(1):2-18.
    [6]Kadiyala S,Young RG,Thide MA.Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro.Cell Transplant,1997;6:125.
    [7]Erices A,Conget P,Minguell JJ.Mesenchymal p rogenitorcells in human umbilical cord blood.Br J Haematol,2000;109(1):235.
    [8]Zuk PA,ZhuM,Mizuno H,et al.Multi-lineage cells from human adipose tissue:implications for cell based therapies.Tissue Eng,2001;7(2):211.
    [9]NoortWA,Kruisselbrink AB,Anker PS,et al.Mesenchymal stem cells promote engraftment of human umbilical cord blood derived CD34+ cells in NOD/SCID mice.Exp Hematol,2002;30(8):870.
    [10]Williams JT,Southerland SS,Souza J,et al.Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes.Am Surg,1999;65(1):22.
    [11]Liu F,Malaval L,Gupta AK,et al.Simultaneous detection ofmultip le bonerelated mRNAs and protein expression during osteoblast differentiation:polymerase chain reaction and immunocytochemical studies addhesingle cell level.Dev Biol,1994;166(1):220.
    [12]J iang Y,Vaessen B,Lenvi KT,et al.Multi-potent progenitor cells can be isolated from post natal marine bone marrow,muscle,and brain.Exp Hematol,2002;30(8):896.
    [13]Almeida PG,ElShabrawyD,Porada C,et al.Differentiative potential of human metanephric mesenchymal cells.ExpHematol,2002;30(12):1454.
    [14]Phinney DG.Building a consensus regarding the nature and origin of mesenchymal.stem cells.2002,38:7-12
    [15]Bianco P,Riminucci M,Gronthos S,et al.Bone marrow stromal stem cells:nature,biology,and potential applications.Stem Cells,2001;19(3):180-92.
    [16]Muraglia A,Cancedda R,Quarto R.Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model.Cell Sci,2000;113(Pt 7):1161-6.
    [17]Bjornson CR,Rietze RL,Reynolds BA,et al.Turning brain into blood:a hematopoietic fate adopted by adult neural stem cells in vivo Science,1999;283(5401):534-7.
    [18]Lagasse E,Connors H,Al-Dhalimy M,Reitsma M,et al.Purified hematopoietic stem cells can differentiate into hepatocytes in vivo.Nat Med,2000;6(11):1229-34.
    [19]Munoz-Elias G,Marcus AJ,Coyne TM,et al.Adult bone marrow stromal cells in the embryonic brain:engraftment,migration,differentiation,and long-term survival.J Neurosci,2004;24(19):4585-95.
    [20]Yoo JU,Barthel TS,Nishimura K,et al.The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells.J Bone Joint Surg Am,1998;80(12):1745-57.
    [21]Qiu Q,Ducheyne P,Gao H,et al.Formation and differentiation of three-dimensional rat marrow stromal cell culture on microcarriers in a rotating-wall vessel.Tissue Eng,1998;4(1):19-34.
    [22]Glowacki J,Mizuno S,Greenberger JS.Perfusion enhances functions of bone marrow stromal cells in three-dimensional culture.Cell Transplant,1998;7(3):319-26.
    [23]Jason Roostaeian,Brian Carlsen,David Simhaee,et al.Characterization of Growth and Osteogenic Differentiation of Rabbit Bone Marrow Stromal Cells.Journa of Surgical Research,2006;133:76-83
    [24]李娜,杨慧.骨髓基质干细胞多向分化的可能机制.中国生物工程杂志,2004;24(7):17-22.
    [25]Catelas I,Sese N,Wu BM,et al.Human mesenchymal stem cell proliferation and osteogenic differentiation in fibrin gels in vitro.Tissue Eng 2006;12(8):2385-96.
    [26]Jiang Y,Jahagirdar BN,Reinhardt RL,et al.Pluripotency of mesenchymal stem cells derived from adult marrow.Nature 2002;418(6893):41-9.
    [27]Deans RJ,Moseley AB.Mesenchymal stem cells:biology and potential clinical uses.Exp Hematol,2001;28:875-84.
    [28]Cool SM,Nurcombe V.Substrate induction of osteogenesis from marrow-derived mesenchymal precursors.Stem Cells Dev,2005;14(6):632-42.
    [29]Allampall K.Effect of ascorbic acid and growth factors on collagen metabolism of flexor vetinaculum cells from individuals with and without carpal tunnel syndrome.J Occup Environ Med,2000;42(3):251-55.
    [30]Coelho MJ,Fernandes MH.Human bone cell cultures in biocompati2bity testing.Part 2:effect of ascorbic acid.β-glycerophosphate and dexamethasone on osteoblast differentiation.Biomaterials,2000;21:1095-102.
    [31]吴清法,吴祖泽,董波,等.微载体悬浮培养成人骨髓间充质干细胞[J].中国实验血液学杂志,2003;11(1):15-21.
    [32]曹谊林,崔磊,刘伟.组织工程在创伤骨科领域的研究进展[J].中华创伤骨科杂志,2004;6:724-727.
    [33]杨志明.组织工程[M].北京:化学工业出版社,2002:1-280
    [34]Lantz GC,Badylak SF,Hiles MC et al.Small intestinal submucosa as a vascular raft:a review.J Invest Surg,1993;6:297-310.
    [35]Cowles EA,Brailey LL,Gronowicz GA.Integrin-mediated signaling regulates AP-1 transcription factors and proliferation in osteoblasts.J Biomed Mater Res,2000;52(4):725-37.
    [36]McDevitt CA,Wildey GM,Cutrone RM.Transforming growth factor-betal in a sterilized tissue derived from the pig small intestine submucosa.J Biomed Mater Res A,2003;67A(2):637-40.
    [37]Hurst RE,Bonner RB.Mapping of the distribution of significant proteins and proteoglycans in small intestinal submucosa by fluorescence microscopy.J Biomater Sci Polym Ed,2001;12(11):1267-79.
    [38]Hoddle JP,Record RD,Liang HA,et al.Vascular endothelial growth factor in porcine-derived extracellular matrix.Endothelium,2001;8(1):11-24.
    [39]Stanford CM,Solursh M,Keller JC.Significant role of adhesion properties of primary osteoblast-like cells in early adhesion events for chondroitin sulfate and dermatan sulfate surface molecules.J Biomed Mater Res,1999;47(3):345-52.
    [40]Talts U,Kuhn U,Roos G,et al.Modulation of extracellular matrix adhesiveness by neurocan and identification of its molecular basis.Exp Cell Res,2000;259(2):378-88.
    [41]Badylak SF,Record R,Lindberg K,et al.J Biomater Sci Polym Ed,1998;9(8):863-78.
    [42]张开刚,曾炳芳,张长青,等.小肠粘膜下层的制备及细胞相容性的实验研究.中华创伤骨科杂志,2005;7(4):344-48.
    [43]Record RD,Hillegonds D,Simmons C,et al.In vivo degradation of 14C-labeled small intestinal submucosa(SIS)when used for urinary bladder repair.Biomaterials,2001;22(19):2653-9
    [44]Kropp BP,Cheng EY Bioengineering organs using small intestinal submucosa scaffolds:in vivo tissue-engineering technology..J Endourol,2000;14(1):59-62.
    [45]Palmer EM,Beufase BA,Nagal T,et al.Human helper T cell activation and differentiation is suppressed by porcine small intestinal submucosa.Tissue Eng,2002;8(5):893-900
    [46]Palmer EM,Baum LG,van Seventer GA.Small intestinal submucosa induces loss of mitochondrial integrity and caspase-dependent apoptosis in human T cells.Tissue Eng,2003;9(2):307-314.
    [47]Allman AJ,Mcpherson TB,Badylak SF,et al.Xenogeneic extracellular matrix grafts elicit a TH2-restricted immune response.Transplantation,2001;71(11):1631-40.
    [48]Allman AJ,Mcpherson TB,Merrill LC,et al.The Th2-restricted immune response to xenogeneic small intestinal submucosa does not influence systemic protective immunity to viral and bacterial pathogens.Tissur Eng,2002;8(1):53-62.
    [49]Raeder RH,Badylak SF,Sheehan C,et al.Natural anti-galactose alphal,3galactose antibodies delay,but do not prevent the acceptance of extracellular matrix xenografts.Transp 1 Immunol,2002;10(1):15.
    [50]McPherson TB,Liang H,Record RD,et al.Galalpha(1,3)Galepitope in porcine small intestinal submucosa.Tissue Eng,2000;6(3):233
    [51]张凤兰,李华,徐立群,等.小肠粘膜下层组织工程支架材料的生物相容性研究.组织工程与重建杂志,2006;2(2):73-75.
    [52]Sarikaya A,Record R,Wu CC,et al.Antimicrobial activity associated with extracellular matrix.T issue Eng,2002;8(1):63.
    [53]Sacks MS,Gloeckner DC.Quantification of the fiber architecture and biaxialmechanical behavior of porcine intestinal submucosa.J Biomed Mater Res, 1999;46(1):1.
    [54]顾延,戴克戎,薛文东,等.体内组织工程材料.小肠黏膜下层的力学性能.医用生物力学,2001;16(3):160.
    [55]Whitson BA,Cheng BC,Kokini K,et al.Multilam inate resorbable biomedical device under biaxial loading.J Biomed Mater Res,1998;43(3):277.
    [56]Malizos KN,Papatheodorou LK.The healing potential of the periosteum molecular aspects.Injury 2005;36(Suppl 3):S13-9.
    [57]Eyre-Brook AL.The periosteum:its function reassessed.Clin Orthop Relat Res,1984(189):300-7.
    [58]Seeman E.Periosteal bone formation-a neglected determinant of bone strength.N Engl J Med,2003;349(4):320-3.
    [59]O'Driscoll SW.Preclinical cartilage repair:Current status and future perspectives.Clin Orthop Relat Res,2001;(391 Suppl):S397-401.
    [60]Emans PJ,Surtel DA,Frings EJ,et al.In vivo generation of cartilage from periosteum.Tissue Eng 2005;11(3-4):369-77.
    [61]Knothe UR,Springfield DS.A novel surgical procedure for bridging of massive bone defects.World J Surg Oncol,2005;3(1):7.
    [62]Fuchs B,Steinmann SP,Bishop AT.Free vascularized corticoperiosteal bone graft for the treatment of persistent nonunion of the clavicle.J Shoulder Elbow Surg 2005;14(3):264-8.
    [63]Vogelin E,Jones NF,Huang JI,et al.Healing of a critical-sized defect in the rat femur with use of a vascularized periosteal flap,a biodegradable matrix,and bone morphogenetic protein.J Bone Jt Surg Am,2005;87(6):1323-31.
    [64]秦延武,杨志明.组织工程研究与开发中的冻存技术.生物医学工程学杂志,2004;21(5):856-60.
    [65]贾晓明,纪晓峰,,Yang H,等.细胞连接对组织冷冻损伤的作用.中华外科杂志,2001;39(12):954-7.
    [66]唐林俊,雷军,方光荣,等.超深低温处理的异体肌腱移植.中华手外科杂志,2001;17(supple):1-3.
    [67]Carpenter JF,Arakawa T,Crowe JH.,et al.Interactions of stabilizing additives with proteins during freeze-thawing and freeze-drying.Dev Biol Stand,1992;74:225-39.
    [68]Tao LR,Hua TC.Microscopic study of crystal growth in cryopreservation agent solutions and water.Ann N Y Acad Sci,2002;972:151-7.
    [69]Wingenfeld C,Egli RJ,Hempfing A,et al.Cryopreservation of osteochondral allografts:Dimethyl sulfoxide promotes angiogenesis and immune tolerance in mice.Bone Joint Surg Am.2002;84-A(8):1420-9.
    [70]Rall WF,Fahy GM.Ice-free cryopreserbation of mouse embryos at-196℃ by vitrification.Nature.1985;313(6003):573-5.
    [71]Karlsson JO,Eroglu A,Toth TL,.Fertilization and development of mouse oocytes cryopreserved using a theoretically optimized protocol.Hum Reprod,1996;11(6):1296-305.
    [72]Abraham GA,Murray J,Billiar K,et al.Evaluation of the porcine intestinal collagen layer as a biomaterial.J Biomed Mater Res,2000;51(3):442-52.
    [73]J 萨姆布鲁克.分子克隆实验指南(第二版)[M].美国;冷港泉出版社,1992:880-898.
    [74]Hermann Schagger.Tricine-SDS-PAGE.Nature Protocols,2006;1(1):16-22.
    [75]O'Driscoll SW,Meisam iB,Miura Y,et al.Viability of periosteal tissue obtained postmortem.Cell Y ransplant,1999;8(6):611-16.
    [76]C arranza-Bencano A,Garcia-Paino L,Arm as Padron JR,et al.Neochondrogenesis in repair of full-thickness articular cartilage defects using free autogenous periosteal grafts in the rabbit.A follow-up in six months.Osteoarthritis Cartilage,2000;8(5):351-58.
    [77]Chang P C,Pradhan RM,Mitra AK,et al.The results of autogenous tibialperiosteal transplants for full thickness cartilage defects in the knee joints of pigs.Ann Acad Med Singapore,1999;28(1):8-14.
    [78]秦煜.骨折愈合、延迟愈合和骨不连冲华创伤骨科杂志,2004;6(9):1059-62.
    [79]秦延武,杨志明.组织工程研究与开发中的冻存技术.生物医学工程学杂志,2004;21(5):856-60.
    [80]Levy MM,Joyner CJ,Virdi AS,et al.Osteoprogenitor cells of mature human skeletal muscle tissue:an in vitro study.Bone,2001;29(4):317-22.
    [81]Aubin JE,Liu F,Malaval L,Gupta AK.Osteoblast and chondroblast differentiation[J].Bone,1995,17(suppl):77S-83S.
    [82]Alborzi A,Mac-K G,Lackin CA,et al.Endochondral and intramembranous feral bone development:osteoblastic cell proliferation,and expression of alkaline phosphatase,m-twist,and histone H4.Craniofacial Genet Dev Biol,1996;16(2):94-101.
    [83]Klees RF,Salasznyk RM,Kingsley K,et al.Laminin-5 induces osteogenic gene expression in human mesenchymal stem cells through an ERK-dependent pathway.Mol.Biol.Cell,2005;16(2):881-90.
    [84]Salasznyk RM,Williams WA,Boskey A,et al.Adhesion to Vitronectin and Collagen I Promotes Osteogenic Differentiation of Human Mesenchymal Stem Cells.J Biomed Biotechnol,2004,2004(1):24-34.
    [85]Edwin A Clark,Joan S Brugge.Integrins and signal transduction pathways:The road taken.Science,1995;268:233.
    [86]Moursi AM,Globus RK,Demsky CH,et al.Interactions between integrin receptors and fibronectin are required for calvarial osteoblast differentiation in vitro.J Cell Sci,1997;110(10):2187
    [87]Willian D,For F,Zutter M,et al.Identification of a tetrapeptide recognition sequence for the α2β1 integrin in collagen.J Biol Chem,1991;266(12):7363.
    [88]阳富春,杨志明,周悦婷,等.猕猴组织工程化骨异体植入修复骨缺损T淋巴细胞亚群的检测.中华实验外科杂志,2004;21:12-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700