用户名: 密码: 验证码:
内、外侧半月板后根部完全撕裂对膝关节生物力学影响的有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半月板根部是指半月板前、后角连接胫骨平台髁间区域的部分,并在该部位发生的撕脱伤或放射状撕裂定义为半月板后根部损伤。引起半月板根部损伤的原因有创伤或继发于关节退行性改变。急性损伤一般发生在年轻,活动能力强的病人,而退行性损伤则发生在老年患者。根据目前的文献,只有对半月板后根部损伤有报道,而且以内侧损伤为多见。内侧半月板后根部比外侧容易损伤的原因可能是由于内侧半月板活动度相对较小,而且在负重时所受的载荷比较大造成的。但对于前交叉韧带损伤的病人来说伴发外侧半月板后根部损伤要比内侧多见。随着核磁共振成像及关节镜在临床上的广泛应用以及对半月板生物力学的进一步研究,近年来,对半月板根部损伤诊断和治疗有了一定进展。然而,半月板根部损伤的发病机制以及对整个膝关节生物力学的影响并没有完整的认识。本研究基于高分辨率MRI图像建立膝关节三维有限元模型,然后对模型进行有效性验证;在此基础上建立内、外侧半月板后根部损伤及前交叉韧带和板股韧带缺损的模型,然后对各种损伤模型进行有限元仿真分析,探讨半月板后根部损伤对膝关节接触力学和运动学的影响,并对半月板后根部损伤的诊断和治疗提供理论依据。
     第一部分:膝关节三维有限元模型的建立和验证。本研究的目的在于基于正常人膝关节核磁共振成像扫描数据,建立精确的膝关节三维有限元模型,并进行验证,为下一步实验做基础。利用志愿者左膝关节MRI数据,通过医学影像交互式Mimics软件来建立包括骨组织、关节软骨、半月板、前-后交叉韧带、内-外侧副韧带和后板股韧带的膝关节三维几何模型。利用Geomagic Studio软件对已建立的膝关节三维几何模型进行了优化、修饰。导入Abaqus软件后,参照文献给模型各个部件赋予材料属性。参照同类尸体实验,对膝关节有限元模型进行约束加载。在膝关节伸直位分别加载1000N轴向压缩载荷和134N前向推力,并将分析结果与其他学者体外实验和数字模拟分析结果进行比较,验证模型的有效性。结果表明我们建立了精确、比较完整的包括骨组织,软骨、半月板和主要韧带的膝关节三维有限元模型。验证实验结果与其他学者的体外实验和膝关节有限元数值计算结果相一致,从而验证了膝关节三维有限元模型的可靠性和有效性,为下一步生物力学模拟研究奠定了基础。
     第二部分:内侧半月板后根部完全撕裂的有限元分析。本研究的目的是研究比较内侧半月板后根部完全撕裂对膝关节的生物力学影响。在前期建立的正常膝关节有限元模型基础上,建立内侧半月板后根部完全撕裂和内侧半月板全切除模型,并对各个模型分别施加1000N轴向压缩载荷和134N前向推力,对比研究各个模型的接触力学和运动学改变以及对膝关节前方稳定的影响。当内侧半月板后根部完全撕裂时,在1000N轴向压缩载荷下膝关节内侧间室关节软骨最大接触压力和压应力较正常膝关节明显增加,其大小接近内侧半月板全切除时的内侧间室最大接触压力和压应力值。膝关节外侧间室关节软骨最大接触压力和压应力也有所增加。同时较正常膝关节相比,内侧半月板后根部损伤膝关节股骨发生了明显的内旋和内侧和后方位移,而且受损的内侧半月板发生明显的径向位移。在134N前向推力作用下,较正常膝关节相比内侧半月板后根部损伤膝关节的胫骨有一定的前移,但前移程度小于内侧半月板全切除模型。分析结果表明,内侧半月板后根部完全撕裂导致膝关节接触力学、运动学和前方稳定等方面发生了明显改变,不利于膝关节发挥正常生理功能。
     第三部分:外侧半月板后根部完全撕裂的有限元分析。本研究的目的是研究比较外侧半月板后根部完全撕裂对膝关节的生物力学影响。在前期建立的正常膝关节有限元模型基础上,建立外侧半月板后根部完全撕裂、前交叉韧带缺损合并外侧半月板后根部完全撕裂和外侧半月板全切除模型,并对各个模型分别施加1000N轴向压缩载荷和134N前向推力,对比研究各个模型的接触力学和运动学改变以及对膝关节前方稳定的影响。当外侧半月板后根部完全撕裂时,在1000N轴向压缩载荷下膝关节外侧间室关节软骨最大接触压力和压应力较正常膝关节显著增加。外侧半月板后根部完全撕裂还导致了受损膝关节股骨发生了外旋、外侧和后方位移。前交叉韧带完全缺损合并外侧半月板后根部完全撕裂时的外侧间室最大接触压力和压应力与单纯外侧半月板后根部完全撕裂相比,接触力学方面无明显差异,而在运动学改变方面较单纯外侧半月板后根部完全撕裂进一步恶化。在前向推力作用下,外侧半月板后根部完全撕裂对膝关节的前方稳定无明显影响外侧半月板后根部完全撕裂导致膝关节外侧间室接触压力和压应力明显增加,然而接触压力和压应力值明显小于外侧半月板全切除模型,由此可以看出,受损的外侧半月板还有这一定传导载荷的功能。第四部分:后板股韧带缺损对正常和外侧半月板后根部完全撕裂膝关节生物力学影
     响的有限元分析。本研究通过有限元方法,在前期建立的正常膝关节有限元模型基础上通过人为地将板股韧带切除,比较分析轴向压缩载荷下各个模型在板股韧带切除前、后的应力分布情况,并初步探索后板股韧带的功能以及后板股韧带在外侧半月板后根部损伤膝关节中发挥的作用。结果发现在膝关节伸直位,后板股韧带协助外侧半月板传递一定的载荷,当外侧半月板后根部完全撕裂时,这种传递载荷的作用尤为明显,还能防止后根部撕裂的外侧半月板过度径向位移。
     通过上述研究我们认为内、外侧半月板后根部完全撕裂导致受损膝关节发生了明显的接触力学和运动学改变,不利于膝关节发挥正常的生理功能。由于外侧半月板后角的双附着使外侧半月板后根部损伤的生物力学改变不等同于内侧半月板后根部损伤。该研究有助于认识内、外侧半月板后根部撕裂对膝关节生物力学的继发性改变,对研究半月板后根部损伤的诊疗有重要意义。后板股韧带在膝关节中协助外侧半月板发挥着一定的生理功能,因此我们建议在交叉韧带重建或半月板关节镜诊疗过程中尽量保留板股韧带。
The meniscus root is defined anatomically as the portion of the meniscus that attachesthe anterior and posterior horn of the meniscus to the central tibial plateau. The meniscus roottears caused by trauma or secondary to degenerative joint changes. Acute root tears generallyoccur in young, active individuals, and the elderly patients more likely suffer from attritionaldegenerative radial tearing. According to the available literature, only posterior meniscal roottear has been reported, and the most of the published literature regarding posterior root tearshas focused on medial meniscal root tears. The medial meniscus is less mobile than the lateralmeniscus and carries more force during weight bearing making it more prone to injury.However, posterior lateral meniscus root tears are injuries that are commonly associated withanterior cruciate ligament tears. In recent years, with technological advances in arthroscopyand magnetic resonance imaging and improved biomechanical studies of the meniscus, therehas been some progress in the diagnosis and treatment of injuries to the roots of the meniscus.However, the biomechanical effect of posterior meniscus root tears on the knee has not yetbecome clear. In this study, we developed a finite element model of the knee joint based onhigh resolution MRI images, and verified the validity of the model. The models of medial andlateral posterior meniscus root tear, anterior cruciate ligament and meniscofemoral ligamentdeficiencies, and total meniscectomy of the medial and lateral meniscus were generated on thebasis of the intact knee model. Finite element analysis (FEA) was performed to investigate thebiomechanical effects of the complete posterior root tears of medial and lateral meniscus onthe knee joint and to providing a theoretical basis for the diagnosis and treatment of meniscalroot tears.
     Section one: Development and validation of3-D finite element model of knee joint. Theaim of this section is to develop and verify a three-dimensional (3D) computational model ofa knee joint that to be used to predict the biomechanical effect of posterior meniscus root tearson the knee. Numerical data of three-dimensional finite element models of the knee werebased on MRI images of an adult volunteer. The images were processed using MIMICS to construct the knee model consisted of the femur, the tibia and fibula, articular cartilage layers,the menisci and the main ligaments of the knee: anterior cruciate ligament (ACL), posteriorcruciate ligament (PCL), medial collateral ligament (MCL), lateral collateral ligament (LCL)and posterior meniscal femoral ligament(PMFL). The model was refined for finite elementanalysis using Geomagic Studio. Tetrahedral elements were used to mesh the entire model andit was then analyzed in ABAQUS. The material properties of the model were chosen fromvalues identified in the literature. In order to compare the obtained results with previousstudies, a compressive axial load of1000N and an anterior load of134Nwere applied to theFEA model. The results show that we have developed an accurate, relatively complete three-dimensional finite element model of knee joint, including bone tissue, cartilage, meniscus andmajor ligaments. This model was validated using experimental and numerical results obtainedby other authors. The results obtained from our study are in agreement with previouslypublished reports. This validated computational knee model can be used to predict kneebiomechanical mechanics and laid the foundation for further biomechanical study.
     Section two: Finite element analysis of the complete posterior medial meniscus root tear.The purpose of this section was to determine the biomechanical effect of a complete posteriormedial meniscus root tear (PMMRT) on the knee joint. Based on the pre-established,validated finite element model of knee joint, we simulated different cases for intact knee, acomplete PMMRT, and total meniscectomy of the medial meniscus. Isolated axialcompressive load of1000N and anterior load of134N were applied in all cases to comparetheir contact mechanics, kinematics and knee stability. The results show that the completePMMRT increased the peak contact pressure and stress on the medial compartment undercompressive load and its values approximate to medial total meniscectomy. We also foundincreased contact pressure and stress in the lateral compartment, but it was not obviouscompared to the medial compartment. Significant increases in radial displacement of medialmeniscus, femoral internal rotation, posterior and medial translation, compared with the intactknee, were observed in association with the complete PMMRT. The anterior tibial translationunder the anterior tibial load in knee with tear in the posterior root of medial meniscus waslarger than in the intact knee, but it is smaller than values of total medial meniscectomy. Theresults show that the complete PMMRT leads to deleterious alteration of the loading profilesof the medial joint compartment and results in significant changes in knee joint kinematicsand stability. All these are not conducive to play a normal physiological function of the knee.
     Section three: Finite element analysis of the complete posterior lateral meniscus root tear. The purpose of this section was to determine the biomechanical effect of a complete posteriorlateral meniscus root tear (PLMRT) on the knee joint. Based on the pre-established, validated,finite element model of knee joint, we simulate different cases for a complete PLMRT, acomplete PLMRT combined with ACL deficiency, and total meniscectomy of the lateralmeniscus. Isolated compressive load of1000N was applied in all cases to compare theircontact mechanics, kinematics and knee stability. The results show that the complete posteriorlateral meniscus root tear increased the peak contact pressure and stress on the lateralcompartment under compressive load, but it is smaller than values of total medialmeniscectomy. The complete PLMRT leads to significant increases in radial displacement oflateral meniscus, femoral external rotation, lateral and posterior translation, compared withthe intact knee. We also found that in the complete PLMRT combined with ACL deficientknee, there were no significant contact profiles alteration compared to the knee with tear inthe posterior root of lateral meniscus. However, there were deleterious alterations of kneekinematics. The complete PLMRT had no significant effect on the anterior tibial translationunder the anterior tibial load. The results show that the complete PLMRT is not functionallyequivalent to total meniscectomy. The posterior root torn lateral meniscus continues toprovide some load transmission and distribution functions across the joint.
     Section four: Finite element analysis on the function of the posterior meniscofemoralligament on the knee with or without tear in the posterior root of lateral meniscus. Thepurpose of this section was to predict the function of the posterior meniscofemoral ligament(PMFL) on the knee with or without tear in the posterior root of lateral meniscus. In order todetermine the effects of PMFL deficiency on the knee with or without tear in posterior root oflateral meniscus, we used a computer-aided method to artificially remove the PMFL andcompared the contact variables of pre-and post-sectioning. After comparing the contactvariables of before and after removing the PMFL on the knee with or without a tear in theposterior root of the lateral meniscus, our results indicate that the PMFL assists the lateralmeniscus in transmitting a certain amount of stress and load in the lateral compartment of theknee and this effect more obvious in the knee with a torn lateral meniscus. Meanwhile, thePMFL prevents excessive radial displacement of the lateral meniscus with a torn posteriorroot under compressive load.
     Posterior root tears of meniscus lead to deleterious alteration of the biomechanicalenvironment of knee joint. The presence of double attachment of lateral meniscus posteriorhorn makes the biomechanical consequences of PLMRT different from PMMRT. These findings improve our understanding of the effect of meniscal posterior root tear on thebiomechanics of the knee joint and could guide clinicians in making a diagnosis anddetermining the appropriate treatment plan in this type of injury. In addition, based on thebiomechanical contributions of the PMFL found in this study, we suggest PMFL retention inPCL and meniscal surgery.
引文
[1] McBride ID, Reid JG. Biomechanical considerations of the menisci of the knee[J]. CanJ Sport Sci,1988,13(4):175-87.
    [2] Bessette GC. The meniscus[J]. Orthopedics,1992,15(1):35-42.
    [3] Aagaard H, Verdonk R. Function of the normal meniscus and consequences ofmeniscal resection[J]. Scand J Med Sci Sports,1999,9(3):134-40.
    [4] Koski JA, Ibarra C, Rodeo SA, et al. Meniscal injury and repair: clinical status[J].Orthop Clin North Am,2000,31(3):419-36.
    [5] Anderson MW. MR imaging of the meniscus[J]. Radiol Clin North Am,2002,40(5):1081-94.
    [6] Siegel MG, Roberts CS. Meniscal allografts[J]. Clin Sports Med,1993,12(1):59-80.
    [7] McDevitt CA, Webber RJ. The ultrastructure and biochemistry of meniscal cartilage[J].Clin Orthop Relat Res,1990,(252):8-18.
    [8] Kusayama T, Harner CD, Carlin GJ, et al. Anatomical and biomechanicalcharacteristics of human meniscofemoral ligaments[J]. Knee Surg Sports TraumatolArthrosc,1994,2(4):234-7.
    [9] Gharpuray, Fibrocartilage, in Handbook of Biomaterial Properties[M]. Chapman&Hall: London,1998.
    [10] Fithian DC, Kelly MA, Mow VC. Material properties and structure-functionrelationships in the menisci[J]. Clin Orthop Relat Res,1990,(252):19-31.
    [11] Moore, K.L. and A.F. Dalley, The Lower Limb, in Clinically Oriented Anatomy[M].Lippincott Williams and Wilkins: Philadelphia.1999:552-574.
    [12] Eyre DR, Muir H. The distribution of different molecular species of collagen infibrous, elastic and hyaline cartilages of the pig[J]. Biochem J,1975,151(3):595-602.
    [13] Eyre DR, Wu JJ. Collagen of fibrocartilage: a distinctive molecular phenotype inbovine meniscus[J]. FEBS Lett,1983,158(2):265-70.
    [14] Leslie BW, Gardner DL, McGeough JA, et al. Anisotropic response of the human kneejoint meniscus to unconfined compression[J]. Proc Inst Mech Eng H,2000,214(6):631-5.
    [15] Adams, M.E. and D.W.L. Hutkins, The Extracellular Matrix of the Menisci, in KneeMeniscus: Basic and Clinical Foundations[M]. Raven Press, Ltd.: New York.1992:15-27.
    [16] Mow, V.C., et al., Structure and Function Relationships of the Menisci in the Knee, inKnee Meniscus: Basic and Clinical Foundations[M]. Raven Press, Ltd.: NewYork.1992:37-57.
    [17] Beaupre A, Choukroun R, Guidouin R, et al. Knee menisci. Correlation betweenmicrostructure and biomechanics[J]. Clin Orthop Relat Res,1986,(208):72-5.
    [18] Petersen W, Tillmann B. Collagenous fibril texture of the human knee joint menisci[J].Anat Embryol (Berl),1998,197(4):317-24.
    [19] Day B, Mackenzie WG, Shim SS, et al. The vascular and nerve supply of the humanmeniscus[J]. Arthroscopy,1985,1(1):58-62.
    [20] Clark CR, Ogden JA. Development of the menisci of the human knee joint.Morphological changes and their potential role in childhood meniscal injury[J]. J BoneJoint Surg Am,1983,65(4):538-47.
    [21] Cipolla M, Cerullo G, Puddu G. Microvasculature of the human medial meniscus:operative findings[J]. Arthroscopy,1992,8(4):522-5.
    [22] Arnoczky, S.P., Gross and Vascular Anatomy of the Meniscus and Its Role in MeniscalHealing, Regeneration, and Remodeling, in Knee Meniscus: Basic and ClinicalFoundations[M]. Raven Press, Ltd.: New York.1992:1-14.
    [23] Arnoczky SP, Warren RF. Microvasculature of the human meniscus[J]. Am J SportsMed,1982,10(2):90-5.
    [24] Tissakht M, Ahmed AM. Tensile stress-strain characteristics of the human meniscalmaterial[J]. J Biomech,1995,28(4):411-22.
    [25] Lechner K, Hull ML, Howell SM. Is the circumferential tensile modulus within ahuman medial meniscus affected by the test sample location and cross-sectionalarea[J]. J Orthop Res,2000,18(6):945-51.
    [26] Skaggs DL, Warden WH, Mow VC. Radial tie fibers influence the tensile properties ofthe bovine medial meniscus[J]. J Orthop Res,1994,12(2):176-85.
    [27] Bullough PG, Munuera L, Murphy J, et al. The strength of the menisci of the knee as itrelates to their fine structure[J]. J Bone Joint Surg Br,1970,52(3):564-7.
    [28] Fithian DC, Kelly MA, Mow VC. Material properties and structure-functionrelationships in the menisci[J]. Clin Orthop Relat Res,1990,(252):19-31.
    [29] Mow VC, Kuei SC, Lai WM, et al. Biphasic creep and stress relaxation of articularcartilage in compression? Theory and experiments[J]. J Biomech Eng,1980,102(1):73-84.
    [30] Joshi MD, Suh JK, Marui T, et al. Interspecies variation of compressive biomechanicalproperties of the meniscus[J]. J Biomed Mater Res,1995,29(7):823-8.
    [31] Zhu W, Chern KY, Mow VC. Anisotropic viscoelastic shear properties of bovinemeniscus[J]. Clin Orthop Relat Res,1994,(306):34-45.
    [32] Henning CE. Semilunar cartilage of the knee: function and pathology[J]. Exerc SportSci Rev,1988,16:205-13.
    [33] FAIRBANK TJ. Knee joint changes after meniscectomy[J]. J Bone Joint Surg Br,1948,30B(4):664-70.
    [34] Ahmed AM, Burke DL. In-vitro measurement of static pressure distribution insynovial joints--Part I: Tibial surface of the knee[J]. J Biomech Eng,1983,105(3):216-25.
    [35] Fukubayashi T, Kurosawa H. The contact area and pressure distribution pattern of theknee. A study of normal and osteoarthrotic knee joints[J]. Acta Orthop Scand,1980,51(6):871-9.
    [36] Kettelkamp DB, Jacobs AW. Tibiofemoral contact area--determination andimplications[J]. J Bone Joint Surg Am,1972,54(2):349-56.
    [37] Aspden RM, Yarker YE, Hukins DW. Collagen orientations in the meniscus of theknee joint[J]. J Anat,1985,140(Pt3):371-80.
    [38] Ghosh P, Taylor TK. The knee joint meniscus. A fibrocartilage of some distinction[J].Clin Orthop Relat Res,1987,(224):52-63.
    [39] Jones RS, Keene GC, Learmonth DJ, et al. Direct measurement of hoop strains in theintact and torn human medial meniscus[J]. Clin Biomech (Bristol, Avon),1996,11(5):295-300.
    [40] Sommerlath K, Gillquist J. The effect of a meniscal prosthesis on knee biomechanicsand cartilage. An experimental study in rabbits[J]. Am J Sports Med,1992,20(1):73-81.
    [41] Levy IM, Torzilli PA, Warren RF. The effect of medial meniscectomy onanterior-posterior motion of the knee[J]. J Bone Joint Surg Am,1982,64(6):883-8.
    [42] Seon JK, Gadikota HR, Kozanek M, et al. The effect of anterior cruciate ligamentreconstruction on kinematics of the knee with combined anterior cruciate ligamentinjury and subtotal medial meniscectomy: an in vitro robotic investigation[J].Arthroscopy,2009,25(2):123-30.
    [43] Levy, I., P. Torzilli, and I.D. Fisch, The Contribution of the Menisci to the Stability ofthe Knee, in Knee Meniscus: Basic and Clinical Foundations[M].Raven Press, Ltd.:New York.1992:107-116.
    [44] Wieser K, Betz M, Farshad M, et al. Experimental loss of menisci, cartilage andsubchondral bone gradually increases anteroposterior knee laxity[J]. Knee SurgSports Traumatol Arthrosc,2012,20(10):2104-8.
    [45] Musahl V, Citak M, O'Loughlin PF, et al. The effect of medial versus lateralmeniscectomy on the stability of the anterior cruciate ligament-deficient knee[J]. Am JSports Med,2010,38(8):1591-7.
    [46] Radin EL, Paul IL. Does cartilage compliance reduce skeletal impact loads? Therelative force-attenuating properties of articular cartilage, synovial fluid, periarticularsoft tissues and bone[J]. Arthritis Rheum,1970,13(2):139-44.
    [47] MacCONAILL MA. The movements of bones and joints; the synovial fluid and itsassistants[J]. J Bone Joint Surg Br,1950,32-B(2):244-52.
    [48] Gershuni DH, Hargens AR, Danzig LA. Regional nutrition and cellularity of themeniscus. Implications for tear and repair[J]. Sports Med,1988,5(5):322-7.
    [49] Stone KR. Meniscus replacement[J]. Clin Sports Med,1996,15(3):557-71.
    [50] Haut DTL, Hull ML, Rashid MM, et al. How the stiffness of meniscal attachments andmeniscal material properties affect tibio-femoral contact pressure computed using avalidated finite element model of the human knee joint[J]. J Biomech,2003,36(1):19-34.
    [51] Goertzen D, Gillquist J, Messner K. Tensile strength of the tibial meniscal attachmentsin the rabbit[J]. J Biomed Mater Res,1996,30(1):125-8.
    [52] Chen MI, Branch TP, Hutton WC. Is it important to secure the horns during lateralmeniscal transplantation? A cadaveric study[J]. Arthroscopy,1996,12(2):174-81.
    [53] Alhalki MM, Howell SM, Hull ML. How three methods for fixing a medial meniscalautograft affect tibial contact mechanics[J]. Am J Sports Med,1999,27(3):320-8.
    [54] Messner K, Gao J. The menisci of the knee joint. Anatomical and functionalcharacteristics, and a rationale for clinical treatment[J]. J Anat,1998,193(Pt2):161-78.
    [55] Woo SL. Mechanical properties of tendons and ligaments. I. Quasi-static andnonlinear viscoelastic properties[J]. Biorheology,1982,19(3):385-96.
    [56] Villegas DF, Maes JA, Magee SD, et al. Failure properties and strain distributionanalysis of meniscal attachments[J]. J Biomech,2007,40(12):2655-62.
    [57] Villegas DF, Hansen TA, Liu DF, et al. A quantitative study of the microstructure andbiochemistry of the medial meniscal horn attachments[J]. Ann Biomed Eng,2008,36(1):123-31.
    [58] Ahn JH, Lee YS, Chang JY, et al. Arthroscopic all inside repair of the lateral meniscusroot tear[J]. Knee,2009,16(1):77-80.
    [59] Berlet GC, Fowler PJ. The anterior horn of the medical meniscus. An anatomic studyof its insertion[J]. Am J Sports Med,1998,26(4):540-3.
    [60] Kohn D, Moreno B. Meniscus insertion anatomy as a basis for meniscus replacement:a morphological cadaveric study[J]. Arthroscopy,1995,11(1):96-103.
    [61] Kohn D, Moreno B.[Meniscus insertion][J]. Orthopade,1994,23(2):98-101.
    [62] Hauch KN, Villegas DF, Haut DTL. Geometry, time-dependent and failure propertiesof human meniscal attachments[J]. J Biomech,2010,43(3):463-8.
    [63] Petersen W, Tillmann B.[Structure and vascularization of the knee joint menisci][J]. ZOrthop Ihre Grenzgeb,1999,137(1):31-7.
    [64] Gao J, Oqvist G, Messner K. The attachments of the rabbit medial meniscus. Amorphological investigation using image analysis and immunohistochemistry[J]. JAnat,1994,185(Pt3):663-7.
    [65] Gupte CM, Bull AM, Thomas RD, et al. A review of the function and biomechanics ofthe meniscofemoral ligaments[J]. Arthroscopy,2003,19(2):161-71.
    [66]姜华东,吕小琴,等.膝关节板股韧带的解剖观测及其意义[J].中国临床解剖学杂志,2001,19(4):339-340.
    [67] Cho JM, Suh JS, Na JB, et al. Variations in meniscofemoral ligaments at anatomicalstudy and MR imaging[J]. Skeletal Radiol,1999,28(4):189-95.
    [68] Ranalletta M, Rossi W, Paterno M, et al. Incidence of the anterior meniscofemoralligament: an arthroscopic study in anterior cruciate ligament-deficient knees[J].Arthroscopy,2007,23(3):275-7.
    [69] Han SH, Kim DI, Choi SG, et al. The posterior meniscofemoral ligament: morphologicstudy and anatomic classification[J]. Clin Anat,2012,25(5):634-40.
    [70] Gupte CM, Smith A, Jamieson N, et al. Meniscofemoral ligaments--structural andmaterial properties[J]. J Biomech,2002,35(12):1623-9.
    [71] Amis AA, Gupte CM, Bull AM, et al. Anatomy of the posterior cruciate ligament andthe meniscofemoral ligaments[J]. Knee Surg Sports Traumatol Arthrosc,2006,14(3):257-63.
    [72] Clancy WG Jr, Shelbourne KD, Zoellner GB, et al. Treatment of knee joint instabilitysecondary to rupture of the posterior cruciate ligament. Report of a new procedure[J].J Bone Joint Surg Am,1983,65(3):310-22.
    [73] Lertwanich P, Martins CA, Kato Y, et al. Contribution of the meniscofemoral ligamentas a restraint to the posterior tibial translation in a porcine knee[J]. Knee Surg SportsTraumatol Arthrosc,2010,18(9):1277-81.
    [74] Gupte CM, Bull AM, Thomas RD, et al. The meniscofemoral ligaments: secondaryrestraints to the posterior drawer. Analysis of anteroposterior and rotary laxity in theintact and posterior-cruciate-deficient knee[J]. J Bone Joint Surg Br,2003,85(5):765-73.
    [75] Cho S, Ko S, Woo JK. Meniscus-stabilizing function of the meniscofemoral ligament:experimental study of pig knee joints[J]. Arthroscopy,2006,22(8):872-7.
    [76] Poynton A, Moran CJ, Moran R, et al. The meniscofemoral ligaments influence lateralmeniscal motion at the human knee joint[J]. Arthroscopy,2011,27(3):365-71.
    [77] Amadi HO, Gupte CM, Lie DT, et al. A biomechanical study of the meniscofemoralligaments and their contribution to contact pressure reduction in the knee[J]. KneeSurg Sports Traumatol Arthrosc,2008,16(11):1004-8.
    [78]刘平,敖英芳.膝关节后交叉韧带及板股韧带临床解剖学研究[J].中国运动医学杂志,2008,(02):189-193.
    [79] Koenig JH, Ranawat AS, Umans HR, et al. Meniscal root tears: diagnosis andtreatment[J]. Arthroscopy,2009,25(9):1025-32.
    [80] Ozkoc G, Circi E, Gonc U, et al. Radial tears in the root of the posterior horn of themedial meniscus[J]. Knee Surg Sports Traumatol Arthrosc,2008,16(9):849-54.
    [81] Kim YJ, Kim JG, Chang SH, et al. Posterior root tear of the medial meniscus inmultiple knee ligament injuries[J]. Knee,2010,17(5):324-8.
    [82] Matava MJ, Kim YM. Tibial avulsion fracture of the posterior root of the medialmeniscus in a skeletally-immature child-a case report[J]. Knee,2011,18(1):62-5.
    [83] Vedi V, Williams A, Tennant SJ, et al. Meniscal movement. An in-vivo study usingdynamic MRI[J]. J Bone Joint Surg Br,1999,81(1):37-41.
    [84] Brody JM, Lin HM, Hulstyn MJ, et al. Lateral meniscus root tear and meniscusextrusion with anterior cruciate ligament tear[J]. Radiology,2006,239(3):805-10.
    [85] Park LS, Jacobson JA, Jamadar DA, et al. Posterior horn lateral meniscal tearssimulating meniscofemoral ligament attachment in the setting of ACL tear: MRIfindings[J]. Skeletal Radiol,2007,36(5):399-403.
    [86] Ahn JH, Wang JH, Yoo JC, et al. A pull out suture for transection of the posterior hornof the medial meniscus: using a posterior trans-septal portal[J]. Knee Surg SportsTraumatol Arthrosc,2007,15(12):1510-3.
    [87] Bin SI, Kim JM, Shin SJ. Radial tears of the posterior horn of the medial meniscus[J].Arthroscopy,2004,20(4):373-8.
    [88] Jones AO, Houang MT, Low RS, et al. Medial meniscus posterior root attachmentinjury and degeneration: MRI findings[J]. Australas Radiol,2006,50(4):306-13.
    [89] Robertson DD, Armfield DR, Towers JD, et al. Meniscal root injury and spontaneousosteonecrosis of the knee: an observation[J]. J Bone Joint Surg Br,2009,91(2):190-5.
    [90] Hwang BY, Kim SJ, Lee SW, et al. Risk factors for medial meniscus posterior roottear[J]. Am J Sports Med,2012,40(7):1606-10.
    [91] Rosslenbroich SB, Borgmann J, Herbort M, et al. Root tear of the meniscus:biomechanical evaluation of an arthroscopic refixation technique[J]. Arch OrthopTrauma Surg,2012.
    [92] Hein CN, Deperio JG, Ehrensberger MT, et al. Effects of medial meniscal posteriorhorn avulsion and repair on meniscal displacement[J]. Knee,2010.
    [93] Marzo JM, Gurske-DePerio J. Effects of medial meniscus posterior horn avulsion andrepair on tibiofemoral contact area and peak contact pressure with clinicalimplications[J]. Am J Sports Med,2009,37(1):124-9.
    [94] Seo JH, Li G, Shetty GM, et al. Effect of repair of radial tears at the root of theposterior horn of the medial meniscus with the pullout suture technique: abiomechanical study using porcine knees[J]. Arthroscopy,2009,25(11):1281-7.
    [95] Harner CD, Mauro CS, Lesniak BP, et al. Biomechanical consequences of a tear of theposterior root of the medial meniscus. Surgical technique[J]. J Bone Joint Surg Am,2009,91Suppl2:257-70.
    [96] Allaire R, Muriuki M, Gilbertson L, et al. Biomechanical consequences of a tear of theposterior root of the medial meniscus. Similar to total meniscectomy[J]. J Bone JointSurg Am,2008,90(9):1922-31.
    [97] Starke C, Kopf S, Grobel KH, et al. The effect of a nonanatomic repair of the meniscalhorn attachment on meniscal tension: a biomechanical study[J]. Arthroscopy,2010,26(3):358-65.
    [98] Seil R, Duck K, Pape D. A clinical sign to detect root avulsions of the posterior hornof the medial meniscus[J]. Knee Surg Sports Traumatol Arthrosc,2011.
    [99] Brody JM, Hulstyn MJ, Fleming BC, et al. The meniscal roots: gross anatomiccorrelation with3-T MRI findings[J]. AJR Am J Roentgenol,2007,188(5):W446-50.
    [100] Costa CR, Morrison WB, Carrino JA. Medial meniscus extrusion on knee MRI: isextent associated with severity of degeneration or type of tear[J]. AJR Am JRoentgenol,2004,183(1):17-23.
    [101] Choi CJ, Choi YJ, Lee JJ, et al. Magnetic resonance imaging evidence of meniscalextrusion in medial meniscus posterior root tear[J]. Arthroscopy,2010,26(12):1602-6.
    [102] Lerer DB, Umans HR, Hu MX, et al. The role of meniscal root pathology and radialmeniscal tear in medial meniscal extrusion[J]. Skeletal Radiol,2004,33(10):569-74.
    [103] Magee T. MR findings of meniscal extrusion correlated with arthroscopy[J]. J MagnReson Imaging,2008,28(2):466-70.
    [104] Lee DH, Lee BS, Kim JM, et al. Predictors of degenerative medial meniscus extrusion:radial component and knee osteoarthritis[J]. Knee Surg Sports Traumatol Arthrosc,2011,19(2):222-9.
    [105] De Smet AA, Blankenbaker DG, Kijowski R, et al. MR diagnosis of posterior roottears of the lateral meniscus using arthroscopy as the reference standard[J]. AJR Am JRoentgenol,2009,192(2):480-6.
    [106] Lim HC, Bae JH, Wang JH, et al. Non-operative treatment of degenerative posteriorroot tear of the medial meniscus[J]. Knee Surg Sports Traumatol Arthrosc,2010,18(4):535-9.
    [107] KELLGREN JH, LAWRENCE JS. Radiological assessment of osteo-arthrosis[J]. AnnRheum Dis,1957,16(4):494-502.
    [108] Han SB, Shetty GM, Lee DH, et al. Unfavorable results of partial meniscectomy forcomplete posterior medial meniscus root tear with early osteoarthritis: a5-to8-yearfollow-up study[J]. Arthroscopy,2010,26(10):1326-32.
    [109] West R V, Kim J, Armfield D, et al. Lateral meniscal root tears associated with anteriorcruciateligament injury: classification and management[J]. Arthroscopy,2004;20(suppl1):32–33.
    [110] Raustol OA, Poelstra KA, Chhabra A, et al. The meniscal ossicle revisited: etiologyand an arthroscopic technique for treatment[J]. Arthroscopy,2006,22(6):687.e1-3.
    [111] Hamada M, Miyama T, Takeyasu Y, et al. Arthroscopic reduction and internal fixationof an avulsion fracture of the posterior horn of the lateral meniscus[J]. Knee SurgSports Traumatol Arthrosc,2007,15(4):427-30.
    [112] Ahn JH, Ha CW. Posterior trans-septal portal for arthroscopic surgery of the kneejoint[J]. Arthroscopy,2000,16(7):774-9.
    [113] Lee YS, Ahn JH, Min BH, et al. Arthroscopic loose body removal and cystdecompression using a posterior trans-septal portal in the blind spot during kneearthroscopy--technical report[J]. Knee,2011,18(1):55-8.
    [114] Ahn JH, Chung YS, Oh I. Arthroscopic posterior cruciate ligament reconstructionusing the posterior trans-septal portal[J]. Arthroscopy,2003,19(1):101-7.
    [115] Cosgarea AJ, Kramer DE, Bahk MS, et al. Proximity of the popliteal artery to the PCLduring simulated knee arthroscopy: implications for establishing the posteriortrans-septal portal[J]. J Knee Surg,2006,19(3):181-5.
    [116] Ahn JH, Lee SH, Ha HC. Removal of a femoral interference screw that migratedposteriorly, using a posterior trans-septal portal: a case report[J]. Knee Surg SportsTraumatol Arthrosc,2007,15(5):569-72.
    [117] Ahn JH, Wang JH, Lim HC, et al. Double transosseous pull out suture technique fortransection of posterior horn of medial meniscus[J]. Arch Orthop Trauma Surg,2009,129(3):387-92.
    [118] Engelsohn E, Umans H, Difelice GS. Marginal fractures of the medial tibial plateau:possible association with medial meniscal root tear[J]. Skeletal Radiol,2007,36(1):73-6.
    [119] Choi NH, Son KM, Victoroff BN. Arthroscopic all-inside repair for a tear of posteriorroot of the medial meniscus: a technical note[J]. Knee Surg Sports Traumatol Arthrosc,2008,16(9):891-3.
    [120] Kim JH, Shin DE, Dan JM, et al. Arthroscopic suture anchor repair of posterior rootattachment injury in medial meniscus: technical note[J]. Arch Orthop Trauma Surg,2009,129(8):1085-8.
    [121] Kim SB, Ha JK, Lee SW, et al. Medial meniscus root tear refixation: comparison ofclinical, radiologic, and arthroscopic findings with medial meniscectomy[J].Arthroscopy,2011,27(3):346-54.
    [122] Lee JH, Lim YJ, Kim KB, et al. Arthroscopic pullout suture repair of posterior roottear of the medial meniscus: radiographic and clinical results with a2-yearfollow-up[J]. Arthroscopy,2009,25(9):951-8.
    [123] Toutoungi DE, Zavatsky AB, O'Connor JJ. Parameter sensitivity of a mathematicalmodel of the anterior cruciate ligament[J]. Proc Inst Mech Eng H,1997,211(3):235-46.
    [124] Toutoungi DE, Lu TW, Leardini A, et al. Cruciate ligament forces in the human kneeduring rehabilitation exercises[J]. Clin Biomech (Bristol, Avon),2000,15(3):176-87.
    [125] Andriacchi TP. Dynamics of knee malalignment[J]. Orthop Clin North Am,1994,25(3):395-403.
    [126] Andriacchi TP, Mundermann A, Smith RL, et al. A framework for the in vivopathomechanics of osteoarthritis at the knee[J]. Ann Biomed Eng,2004,32(3):447-57.
    [127] Hsu RW, Himeno S, Coventry MB, et al. Normal axial alignment of the lowerextremity and load-bearing distribution at the knee[J]. Clin Orthop Relat Res,1990,(255):215-27.
    [128] Schipplein OD, Andriacchi TP. Interaction between active and passive knee stabilizersduring level walking[J]. J Orthop Res,1991,9(1):113-9.
    [129] Zhao D, Banks SA, Mitchell KH, et al. Correlation between the knee adduction torqueand medial contact force for a variety of gait patterns[J]. J Orthop Res,2007,25(6):789-97.
    [130] Bai B, Kummer FJ, Sala DA, et al. Effect of articular step-off and meniscectomy onjoint alignment and contact pressures for fractures of the lateral tibial plateau[J]. JOrthop Trauma,2001,15(2):101-6.
    [131] Wongchaisuwat C, Hemami H, Buchner HJ. Control of sliding and rolling at naturaljoints[J]. J Biomech Eng,1984,106(4):368-75.
    [132] AufderHeide AC, Athanasiou KA. Mechanical stimulation toward tissue engineeringof the knee meniscus. Ann Biomed Eng,2004,32(8):1161-74.
    [133] Jackson JP. Degenerative changes in the knee after meniscectomy[J]. Br Med J,1968,2(5604):525-7.
    [134] Englund M, Roos EM, Lohmander LS. Impact of type of meniscal tear onradiographic and symptomatic knee osteoarthritis: a sixteen-year followup ofmeniscectomy with matched controls[J]. Arthritis Rheum,2003,48(8):2178-87.
    [135] Haut DTL, Hull ML, Rashid MM, et al. The sensitivity of tibiofemoral contactpressure to the size and shape of the lateral and medial menisci[J]. J Orthop Res,2004,22(4):807-14.
    [136] Cottrell JM, Scholten P, Wanich T, et al. A new technique to measure the dynamiccontact pressures on the Tibial Plateau[J]. J Biomech,2008,41(10):2324-9.
    [137] De Smet AA, Graf BK. Meniscal tears missed on MR imaging: relationship tomeniscal tear patterns and anterior cruciate ligament tears[J]. AJR Am J Roentgenol,1994,162(4):905-11.
    [138] Zhang H, Vrahas MS, Baratta RV, et al. Damage to rabbit femoral articular cartilagefollowing direct impacts of uniform stresses: an in vitro study[J]. Clin Biomech(Bristol, Avon),1999,14(8):543-8.
    [1390] Kerin AJ, Wisnom MR, Adams MA. The compressive strength of articular cartilage[J].Proc Inst Mech Eng H,1998,212(4):273-80.
    [140] Akizuki S, Mow VC, Muller F, et al. Tensile properties of human knee joint cartilage:I. Influence of ionic conditions, weight bearing, and fibrillation on the tensilemodulus[J]. J Orthop Res,1986,4(4):379-92.
    [141] Pena E, Calvo B, Martinez MA, et al. A three-dimensional finite element analysis ofthe combined behavior of ligaments and menisci in the healthy human knee joint[J]. JBiomech,2006,39(9):1686-701.
    [142] Pena E, Calvo B, Martinez MA, et al. Computer simulation of damage on distalfemoral articular cartilage after meniscectomies[J]. Comput Biol Med,2008,38(1):69-81.
    [143] Pena E, Calvo B, Martinez MA, et al. Finite element analysis of the effect of meniscaltears and meniscectomies on human knee biomechanics[J]. Clin Biomech (Bristol,Avon),2005,20(5):498-507.
    [144] Pena E, Calvo B, Martinez MA, et al. Why lateral meniscectomy is more dangerousthan medial meniscectomy. A finite element study[J]. J Orthop Res,2006,24(5):1001-10.
    [145] Keaveny TM, Hayes WC. Mechanical properties of cortical and trabecular bone[M].Bone. Vol. VII. Bone growth, part B. Boca Raton: CRC Press.1993:285–344.
    [146] Schnackenburg KE, Macdonald HM, Ferber R, et al. Bone quality and muscle strengthin female athletes with lower limb stress fractures[J]. Med Sci Sports Exerc,2011,43(11):2110-9.
    [147] Boyle C, Kim IY. Comparison of different hip prosthesis shapes consideringmicro-level bone remodeling and stress-shielding criteria using three-dimensionaldesign space topology optimization[J]. J Biomech,2011,44(9):1722-8.
    [148] Martelli S, Taddei F, Cristofolini L, et al. Extensive risk analysis of mechanical failurefor an epiphyseal hip prothesis: a combined numerical-experimental approach[J].Proc Inst Mech Eng H,2011,225(2):126-40.
    [149] Bendjaballah MZ, Shirazi-Adl A, Zukor DJ. Finite element analysis of human kneejoint in varus-valgus[J]. Clin Biomech (Bristol, Avon),1997,12(3):139-148.
    [150] Bendjaballah MZ, Shirazi-Adl A, Zukor DJ. Biomechanical response of the passivehuman knee joint under anterior-posterior forces[J]. Clin Biomech (Bristol, Avon),1998,13(8):625-633.
    [151] Lu YM, Hutton WC, Gharpuray VM. Do bending, twisting, and diurnal fluid changesin the disc affect the propensity to prolapse? A viscoelastic finite element model[J].Spine (Phila Pa1976),1996,21(22):2570-9.
    [152] Bedewi PG, Digges KH. Investigating ankle injury mechanisms in offset frontalcollisions utilizing computer modeling and case-study data[C].43rd Stapp Car CrashConference; San Diego (CA); c1999:185-202.
    [153] Donahue TL, Hull ML, Rashid MM, et al. A finite element model of the human kneejoint for the study of tibio-femoral contact[J]. J Biomech Eng,2002,124(3):273-80.
    [154] Jasin HE. Structure and function of the articular cartilage surface[J]. Scand JRheumatol Suppl,1995,101:51-5.
    [155] Jurvelin J, Saamanen AM, Arokoski J, et al. Biomechanical properties of the canineknee articular cartilage as related to matrix proteoglycans and collagen[J]. Eng Med,1988,17(4):157-62.
    [156] Blankevoort L, Kuiper JH, Huiskes R, et al. Articular contact in a three-dimensionalmodel of the knee[J]. J Biomech,1991,24(11):1019-31.
    [157] Blankevoort L, Huiskes R. Validation of a three-dimensional model of the knee[J]. JBiomech,1996,29(7):955-61.
    [158] Mommersteeg TJ, Huiskes R, Blankevoort L, et al. A global verification study of aquasi-static knee model with multi-bundle ligaments[J]. J Biomech,1996,29(12):1659-64.
    [159] Buchler P, Ramaniraka NA, Rakotomanana LR, et al. A finite element model of theshoulder: application to the comparison of normal and osteoarthritic joints[J]. ClinBiomech (Bristol, Avon),2002,17(9-10):630-9.
    [160] Shirazi R, Shirazi-Adl A, Hurtig M. Role of cartilage collagen fibrils networks in kneejoint biomechanics under compression[J]. J Biomech,2008,41(16):3340-8.
    [161] Shirazi R, Shirazi-Adl A. Analysis of partial meniscectomy and ACL reconstruction inknee joint biomechanics under a combined loading[J]. Clin Biomech (Bristol, Avon),2009,24(9):755-61.
    [162] Gu KB, Li LP. A human knee joint model considering fluid pressure and fiberorientation in cartilages and menisci[J]. Med Eng Phys,2011,33(4):497-503.
    [163] Li G, Lopez O, Rubash H. Variability of a three-dimensional finite element modelconstructed using magnetic resonance images of a knee for joint contact stressanalysis[J]. J Biomech Eng,2001,123(4):341-6.
    [164] Li G, Gil J, Kanamori A, et al. A validated three-dimensional computational model of ahuman knee joint[J]. J Biomech Eng,1999,121(6):657-62.
    [165] Li G, Suggs J, Gill T. The effect of anterior cruciate ligament injury on knee jointfunction under a simulated muscle load: a three-dimensional computationalsimulation[J]. Ann Biomed Eng,2002,30(5):713-20.
    [166] Dhaher YY, Kwon TH, Barry M. The effect of connective tissue material uncertaintieson knee joint mechanics under isolated loading conditions[J]. J Biomech,2010,43(16):3118-25.
    [167] Yao J, Snibbe J, Maloney M, et al. Stresses and strains in the medial meniscus of anACL deficient knee under anterior loading: a finite element analysis with image-basedexperimental validation[J]. J Biomech Eng,2006,128(1):135-41.
    [168]钱齐荣,周伟明,等.不同体位骶髂关节周围韧带应力分布的三维有限元研究[J].骨与关节损伤杂志,2001,16(3):191-193.
    [169] Hussain M, Nassr A, Natarajan RN, et al. Biomechanical effects of anterior, posterior,and combined anterior-posterior instrumentation techniques on the stability of amultilevel cervical corpectomy construct: a finite element model analysis[J]. Spine J,2011,11(4):324-30.
    [170] Weiss JA, Gardiner JC. Computational modeling of ligament mechanics[J]. Crit RevBiomed Eng,2001,29(3):303-71.
    [171] Cheung JT, Zhang M, An KN. Effects of plantar fascia stiffness on the biomechanicalresponses of the ankle-foot complex[J]. Clin Biomech (Bristol, Avon),2004,19(8):839-46.
    [172] Pena E, Calvo B, Martinez MA, et al. A three-dimensional finite element analysis ofthe combined behavior of ligaments and menisci in the healthy human knee joint[J]. JBiomech,2006,39(9):1686-701.
    [173] Bae JY, Park KS, Seon JK, et al. Biomechanical analysis of the effects of medialmeniscectomy on degenerative osteoarthritis[J]. Med Biol Eng Comput,2011.
    [174] Shepherd DE, Seedhom BB. The 'instantaneous' compressive modulus of humanarticular cartilage in joints ofthe lower limb[J]. Rheumatology (Oxford),1999,38(2):124-32.
    [175] Yang NH, Canavan PK, Nayeb-Hashemi H. The effect of the frontal planetibiofemoral angle and varus knee moment on the contact stress and strain at the kneecartilage[J]. J Appl Biomech,2010,26(4):432-43.
    [176] Leach RE, Baumgard S, Broom J. Obesity: its relationship to osteoarthritis of theknee[J]. Clin Orthop Relat Res,1973,(93):271-3.
    [177] Smillie IS. Injuries of the knee joint[M].5th ed. Curchill Livingston, Edinburgh,1978:114-118.
    [178] Bendjaballah MZ, Shirazi-adl A, Zukor DJ. Biomachanics of the human knee joint incompression: reconstruction, mesh generation and finite element analysis[J]. The Knee.1995;2:69–79.
    [179] Gabriel MT, Wong EK, Woo SL, et al. Distribution of in situ forces in the anteriorcruciate ligament in response to rotatory loads[J]. J Orthop Res,2004,22(1):85-9.
    [180] Song Y, Debski RE, Musahl V, et al. A three-dimensional finite element model of thehuman anterior cruciate ligament: a computational analysis with experimentalvalidation[J]. J Biomech,2004,37(3):383-90.
    [181] Netravali NA, Koo S, Giori NJ, et al. The effect of kinematic and kinetic changes onmeniscal strains during gait[J]. J Biomech Eng,2011,133(1):011006.
    [182] Ramos A, Simoes JA. Tetrahedral versus hexahedral finite elements in numericalmodelling of the proximal femur[J]. Med Eng Phys,2006,28(9):916-24.
    [183] Viceconti M, Bellingeri L, Cristofolini L, et al. A comparative study on differentmethods of automatic mesh generation of human femurs[J]. Med Eng Phys,1998,20(1):1-10.
    [184] Muccini R, Baleani M, Viceconti M. Selection of the best element type in the finiteelement analysis of hip prostheses[J]. J Med Eng Technol,2000,24(4):145-8.
    [185] Meakin JR, Shrive NG, Frank CB, et al. Finite element analysis of the meniscus: theinfluence of geometry and material properties on its behaviour[J]. Knee,2003,10(1):33-41.
    [186] Triedman JK, Jolley M, Stinstra J, et al. Predictive modeling of defibrillation usinghexahedral and tetrahedral finite element models: recent advances[J]. J Electrocardiol,2008,41(6):483-6.
    [187] Farrokhi S, Keyak JH, Powers CM. Individuals with patellofemoral pain exhibitgreater patellofemoral joint stress: a finite element analysis study[J]. OsteoarthritisCartilage,2011,19(3):287-94.
    [188] Eberhardt AW, Keer LM, Lewis JL, et al. An analytical model of joint contact[J]. JBiomech Eng,1990,112(4):407-13.
    [189] Donzelli PS, Spilker RL, Ateshian GA, et al. Contact analysis of biphasic transverselyisotropic cartilage layers and correlations with tissue failure[J]. J Biomech,1999,32(10):1037-47.
    [190] Kurosawa H, Fukubayashi T, Nakajima H. Load-bearing mode of the knee joint:physical behavior of the knee joint with or without menisci[J]. Clin Orthop RelatRes,1980,(149):283-90.
    [191] Brown TD, Shaw DT. In vitro contact stress distribution on the femoral condyles[J]. JOrthop Res,1984,2(2):190-9.
    [192] Walker PS, Erkman MJ. The role of the menisci in force transmission across theknee[J]. Clin Orthop Relat Res,1975,(109):184-92.
    [193] Bonneux I, Vandekerckhove B. Arthroscopic partial lateral meniscectomy long-termresults in athletes[J]. Acta Orthop Belg,2002,68(4):356-61.
    [194] McDermott ID, Amis AA. The consequences of meniscectomy[J]. J Bone Joint SurgBr,2006,88(12):1549-56.
    [195] Yang N, Nayeb-Hashemi H, Canavan PK. The combined effect of frontal planetibiofemoral knee angle and meniscectomy on the cartilage contact stresses andstrains[J]. Ann Biomed Eng,2009,37(11):2360-72.
    [196] Petersen W, Zantop T.Avulsion injury to the posterior horn of the lateral meniscus.Technique for arthroscopic refixation[J]. Unfallchirurg,2006,109(11):984-7.
    [197] Pagnani MJ, Cooper DE, Warren RF. Extrusion of the medial meniscus[J].Arthroscopy,1991,7(3):297-300.
    [198] Gale DR, Chaisson CE, Totterman SM, et al. Meniscal subluxation: association withosteoarthritis and joint space narrowing[J]. Osteoarthritis Cartilage,1999,7(6):526-32.
    [199] Hunter DJ, Zhang YQ, Tu X, et al. Change in joint space width: hyaline articularcartilage loss or alteration in meniscus[J]. Arthritis Rheum,2006,54(8):2488-95.
    [200] Sugita T, Kawamata T, Ohnuma M, et al. Radial displacement of the medial meniscusin varus osteoarthritis of the knee[J]. Clin Orthop Relat Res,2001,(387):171-7.
    [201] Ikeuchi K, Sakoda H, Sakaue R, et al. A new method for accurate measurement ofdisplacement of the knee menisci[J]. Proc Inst Mech Eng H,1998,212(3):183-8.
    [202] Ahn JH, Lee YS, Yoo JC, et al. Results of arthroscopic all-inside repair for lateralmeniscus root tear in patients undergoing concomitant anterior cruciate ligamentreconstruction[J]. Arthroscopy,2010,26(1):67-75.
    [203] Keene GC, Bickerstaff D, Rae PJ, et al. The natural history of meniscal tears inanterior cruciate ligament insufficiency[J]. Am J Sports Med,1993,21(5):672-9.
    [204] Wickiewicz TL. Meniscal injuries in the cruciate-deficient knee[J]. Clin Sports Med,1990,9(3):681-94.
    [205] Bellabarba C, Bush-Joseph CA, Bach BR Jr. Patterns of meniscal injury in the anteriorcruciate-deficient knee: a review of the literature[J]. Am J Orthop (Belle Mead NJ),1997,26(1):18-23.
    [206] Paletta GA Jr, Levine DS, O'Brien SJ, et al. Patterns of meniscal injury associated withacute anterior cruciate ligament injury in skiers[J]. Am J Sports Med,1992,20(5):542-7.
    [207] Shelbourne KD, Gray T. Anterior cruciate ligament reconstruction with autogenouspatellar tendon graft followed by accelerated rehabilitation. A two-to nine-yearfollowup[J]. Am J Sports Med,1997,25(6):786-95.
    [208] Slauterbeck JR, Kousa P, Clifton BC, et al. Geographic mapping of meniscus andcartilage lesions associated with anterior cruciate ligament injuries[J]. J Bone JointSurg Am,2009,91(9):2094-103.
    [209] Fazalare JJ, McCormick KR, Babins DB. Meniscal repair of the knee[J]. Orthopedics,2009,32(3):199.
    [210] Paletta GA Jr, Manning T, Snell E, Parker R, Bergfeld J. The effect of allograftmeniscal replacement on intraarticular contact area and pressures in the human knee. Abiomechanical study[J]. Am J Sports Med.1997.25(5):692-8.
    [211] Shelbourne KD, Roberson TA, Gray T. Long-term evaluation of posterior lateralmeniscus root tears left in situ at the time of anterior cruciate ligamentreconstruction[J]. Am J Sports Med,2011,39(7):1439-43.
    [212] Schillhammer CK, Werner FW, Scuderi MG, et al. Repair of lateral meniscus posteriorhorn detachment lesions: a biomechanical evaluation[J]. Am J Sports Med,2012,40(11):2604-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700