用户名: 密码: 验证码:
LED前照灯近光系统实现及散热机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车工业的不断发展以及节能减排、发展低碳经济政策的推行,人们对绿色汽车照明光源的需求与日俱增,使得LED在汽车照明领域的应用越来越广泛,汽车灯具的LED化成为必然的发展趋势。与传统汽车前照灯光源相比,LED具有使用寿命长、体积小、耗能低、可靠耐用、响应快、设计灵活等优点。尽管如此,LED要在汽车前照灯中取代传统光源并非易事,需解决配光性能、驱动电源和散热性能等关键问题。研究中,基于大功率白光LED的光学特性,实现了一种满足标准配光要求的汽车近光灯光学系统;基于LED汽车前照灯的电学特性,对该近光系统对应的驱动电源工作性能展开了研究;以结温和热阻作为控制指标,从被动式散热和主动式散热两个角度揭示了LED前照灯的散热机理。
     汽车前照灯的光学性能,尤其是近光灯的配光性能是影响汽车行驶安全和照明质量的关键因素。研究中,基于大功率白光LED芯片的光电特性和GB25991-2010标准要求,以非成像光学理论和能量守恒定律为指导,实现了一种由变截面椭球体反射器、挡板和自由曲面透镜组成的投影式LED前照灯近光光学系统;基于Monte-Carlo光学追迹原理,对该近光系统的配光性能和光能利用率进行仿真研究;基于多场耦合理论揭示了LED前照灯光学特性与散热性能的相互作用规律。结果表明:该近光系统的配光性能能够满足标准要求,其光能利用率相对于传统椭圆截面投影式近光系统有较大提高;LED前照灯的光学特性与散热性能彼此影响,相互制约,其工作过程是复杂的多场耦合过程。
     汽车照明电源的输出电压稳定性不高、工作环境恶劣。因此,研究一种高效、高精度、恒流、亮度可调且可靠性高的驱动系统,是LED前照灯得以成功应用的基础。根据LED前照灯的电学特性,选择电感升压式拓扑结构,实现了一种基于MAX16832A驱动器的大功率白光LED汽车前照灯驱动系统,并对其工作性能进行了研究分析;基于热耦合效应揭示了驱动电源对LED前照灯热传递作用效果的影响机制。研究表明:不同负载和输入电压下,该驱动系统能输出700mA稳流精度较高的恒定电流;相同负载下,驱动系统转换效率随输入电压增加呈现先增加后降低的趋势;负载为2颗LED时,驱动系统的整体转换效率高于1颗LED负载和3颗LED负载,且输入电压为13V左右时,驱动系统转换效率达到峰值94.3%;该驱动电路启动迅速,性能参数稳定,能满足大功率LED汽车前照灯的工作要求;驱动电源对LED前照灯散热性能的影响较为显著,它与LED光源形成的双耦合热源会使LED前照灯热负荷增加,通过折返式热管理可以同时降低驱动电路和LED光源的发热量,进而降低系统的热负荷。
     LED前照灯工作过程中,大部分输入功率将转化为热能,这些热量若不能及时散去,将导致芯片发光效率下降、使用寿命缩短以及色温漂移。研究了结温和热阻对LED前照灯光学特性和散热机制的影响,根据LED前照灯近场气体流动方式的不同,制定了被动式和主动式两种散热方案,优化了LED前照灯的散热机制。
     基于多场耦合理论研究了自然对流模式下LED前照灯的散热机理,结合传热强化的场协同理论,对散热系统进行了优化,同时完善了LED前照灯的强化散热理论。研究散热器材质对系统散热性能的影响,探寻了散热装置结构变化对系统散热性能产生影响的物理本质。研究表明:环境温度相同时,发热量越大,材料对系统散热性能的影响越大;改变翅片的拔模角度会影响系统的散热效果,随着翅片拔模角度的增大,散热系统最高温度呈现先下降后上升的趋势;对散热器翅片开缝可以改善气流速度场和温度梯度场的协同性,从而强化散热,开缝宽度过小时不利于气体流动,开缝宽度增大后,气体流动较均匀,流场与温度场的协同角变小;被动式散热方案只适用于LED前照灯在较低温度和较小发热功率的条件下工作,为进一步提高散热性能,需要采用强制散热措施。
     建立了LED前照灯散热的热阻网络模型,利用无相变换热方式下气体显热的改变、相变换热方式下工质汽化潜热能的变化以及基于帕尔帖效应的热电制冷理论,对LED前照灯的散热性能进行优化。探寻了导热板散热、热管散热和半导体制冷散热方案下LED前照灯的散热机制。当环境温度最高为80℃、LED发热功率最大为25W时,使LED芯片结温低于125℃作为控制目标。研究了不同散热方案下LED前照灯的传热特点,分析了存在的主要热阻;研究不同控制参数下的热传递作用特性,探寻了强化LED前照灯散热的基本途径。结果表明:热管式和半导体制冷式散热系统的热传递作用效果优于导热板式散热系统;采用风扇辅助导热板散热,其主要热阻存在于导热板的前后端,可使LED前照灯在低于65℃的环境温度下正常工作,但不能满足控制目标;热管式散热系统工作性能的影响因素主要有热管充液率、布置方式以及各组成段的长度;优化热管的受热面积与冷却面积之比,有利于热量对外传导,从而改善热传递作用效果,当蒸发段、绝热段和冷凝段长度分别为30mm、40mm和50mm时,试验得到的芯片结温较低;芯片结温随热管充液率的增加呈现先降低后上升的趋势,当充液率为30%时,热传递作用效果较好;由微热沉、U型热管和散热鳍片组成的“三级”散热系统不仅可以减小接触热阻和扩散热阻,还增加了热管的冷凝面积,使回流工质具有更高的过冷度,能够降低补偿室乃至蒸发段的温度,当环境温度为80℃、发热功率为25W时,测得的芯片结温为107.7℃,能够较好地满足控制目标要求;半导体制冷式散热系统的工作响应时间快、光通量衰减小、装置结构紧凑、散热效果显著,相同工况下,采用该方案的芯片结温仅为105.4℃,能够更好地满足控制目标要求,且其制冷量可以通过改变输入电压或电流来调节。
LEDs are more widely applied in the field of automotive lighting with the sustainable development of automotive industry, the implementation of energy conservation and environment protection, the development of low carbon economy policy, and the increasing demand of green automotive lighting. It is an inevitable development trend that automotive light sources should be LEDs. LED headlamp is a kind of headlamp with LED light source. LED headlamp has the advantages just like long service life, small dimension, low energy consumption, reliability and durability, fast response, flexible design, etc. compared with traditional automotive headlamps. However, it is not easy for LEDs to replace traditional light sources in automotive headlamp unless it solves several key problems just like photometric characteristic, driver properties and heat dispersion. A new kind of automotive passing beam optical system has been designed which could satisfy the requirement of standard based on the photoelectric properties of high power white LED. Researches have been done to study the driving power performance based on LED headlamp's electrical properties. It revealed the LED headlamp's heat dissipation mechanism from two aspects of passive cooling and active cooling with junction temperature and thermal resistance as the control index.
     The automotive headlamps' optical performance, especially the passing beam's light distribution property is a key factor affecting driving safety and lighting quality. A kind of projection LED headlamp low beam system was designed which comprised variable cross-section ellipsoid reflector, flap and free surface lens. And the system was based on the electrical and optical properties of high power white LED light source, requirements of national standard GB25991-2010, the theory of non-imaging optics as well as the energy conservation law. The simulation research was carried out according to the Monte-Carlo optical tracing method. The constraint relationship between LED headlamp's optical performance and cooling performance was analyzed. The results reveal that the designed LED headlamp low beam system can not only meet the standard requirements but also improve the energy utilization rate. The working process of the LED headlamps is multi field coupling process which contains photoelectric conversion, heat transmission, gas flow and pressure distribution.
     It is the basis of the successful application of LED headlamps to design a kind of driving circuit with high efficiency, high accuracy, constant current, high reliability and adjustable brightness which can be used in harsh conditions since lead-acid batteries are often used as lighting source in cars and it cannot guarantee the high precision stability of the output voltage. In the research, a constant current driving circuit based on the MAX16832A integrated controller has the functions with open circuit protection, short circuit protection, the anti-protection, over-current protection, and PWM dimming was designed according to LED diving power key design points, vehicle power supply voltage and it has been tested in the designed experimental system. The influence of the driving power on LED headlamp's heat dissipation performance was analyzed. The test results show that the driving circuit can output high precision constant current steadily under different load and input voltage. The conversion efficiency increases at first and decreases later with the input voltage change under the same load. The conversion efficiency of the driving circuit with two LED chips as load is higher than that with one or three LED chips as loads respectively. The conversion efficiency gets its peak value of94.3%when the input voltage is about13V. Driving power and LED light source form the double coupling heat sources, which makes the LED headlamps heat load increase. Turn-back type thermal management can reduce driving circuit heat and LED light source heat simultaneously.
     Most of the input power will be converted to heat energy in the working process of LEDs. It will decrease the LED chips'luminous efficiency, shorten the service life, cause color temperature drift and other problems if the heat is not dispersed in time. The influence of junction temperature and heat resistance on LED headlamp's optical properties and the heat dissipation mechanism have been studied, and solutions of passive and active cooling are offered to optimize the heat dissipation mechanism based on different conditions of the near field gas flow.
     The heat dissipation mechanism of LED headlamp under natural convection was studied based on multi-field coupling theory, and the cooling system by the field synergy theory of heat transfer strengthen was optimized. The LED headlamps'heat dissipation strengthen theory would be improved. The radiator material has great influence on the cooling performance of the system. Under the same environmental temperature, the bigger the calorific value is, the greater the material impact on cooling performance of the system will be. Changing the draft angle of the fin will also influence the radiator cooling effect. The highest temperature of the cooling system shows the tendency of rising after falling first with the increase of the fin draft angle. It can improve the synergistic effect of the airflow velocity field and temperature gradient field if the radiator fin is slotted, small slit width will go against gas flow. While the gas flow is more uniform, and the synergy angle of the flow field and temperature field become smaller when the slit width increases. In addition, the direction of the radiator fin may also affect the gas flow pattern, thus affecting the cooling effect. Passive cooling scheme is only applicable to the LED headlamps working under the condition that the environment temperature and heating power is lower. It needs to adopt compulsory cooling measures to optimize the cooling performance.
     The LED headlamps'radiator thermal resistance network diagram was established and its'heat dissipation performance was optimized by the means of gas sensible heat change under none phase-change, working medium's latent heat of vaporization heat change under phase-change and thermoelectric refrigeration based on post Pal effect theory. The heat dissipation mechanism of LED headlamp has been studied under the schemes of thermal conductive plate cooling, heat pipe radiator and semiconductor refrigeration. The heat dissipation characteristics of different schemes were investigated and the main thermal resistances were founded based on the target of limiting the LED chip junction temperature under125℃when the environment temperature is up to80℃and the largest LED heat power is25W. The results reveal that the cooling performances of heat pipe radiators and semiconductor refrigeration radiator are superior to heat conducting plate radiator. It can ensure that LED headlamps work properly when adopting heat conducting plate radiator with cooling fan below65℃ambient temperature, but it can't meet the design goals. The main thermal resistance of the system exists in both ends of the heat conducting plate. The influence factors of the working performances of the heat pipe radiator include the length of the heat pipe of each segment, the heat pipe liquid filled ratio and the heat pipe arrangement. It can improve cooling effect of heat pipe radiator if the heat pipes have smaller heated area to receive input heat but larger cooling area for heat dissipation. When the evaporation section length, adiabatic section length and condenser section length are30mm,40mm and50mm respectively, the LED chip will get minimum junction temperature. The junction temperature will rise later after reducing first with the increase of heat pipe liquid filled ratio, and the cooling effect is best when the heat pipe liquid filled ratio is30%. The 'three level' heat pipe cooling device consisting of micro-heatsink, U-shape heat pipes and cooling fins has better cooling performance than heat pipes in rectangular layout radiator and heat pipes in plane layout radiator because it can not only reduce the contact thermal resistance and diffusion resistance, but also increase the heat pipes condensing area. The backflow working substance has a higher degree of super-cooling, besides, it can reduce the compensation chamber and the evaporation temperature. The LED headlamp equipped with semiconductor refrigeration radiator has fast response time, small luminous flux attenuation, compact structure, remarkable heat dissipation effect and adjustable refrigerating capacity.
引文
[1]燕坤善,牛萍娟,付贤松.汽车前照灯光源及发展趋势[J].光机电信息,2008(11):36-40.
    [2]傅剑华,李文强,周华,等.LED技术在汽车灯具中的应用[J].照明工程学报,2010,21(3):64-69.
    [3]Opiela, K.S., C.K. Andersen, G. Schertz. Driving After Dark [J]. Public Roads, 2003,66(4):22-25.
    [4]Stephan Berlitz, Dr. Wolfgang Huhn. Lighting Innovations in Concept Cars [A]. In:Thomas P. Pearsall. Proceedings of SPIE, Vol.5663 [C]. SPIE, Bellingham, WA, Photonics in the Automobile,2005:21-28.
    [5]包纪宁(译),周太明(校).前照灯的动向和光源[J].中国照明电器,1999,1:26-30.
    [6]李玉玲.汽车照明的未来:HID还是LED[J].技术与市场,2010,29(7):42-44.
    [7]邵忠瑛,何云堂.汽车前沿照明技术跟踪及研究[J].汽车工程师,2010(9):55-58.
    [8]黄莹,刘峥.LED技术及其在车灯系统中的应用[J].上海汽车,2009(12):28-31.
    [9]刘木清,周德成,梅毅.LED与传统光源光效比较分析——LED用于普通照明市场的前景[J].照明工程学报,2006,17(4).
    [10]王声学,吴广宁,蒋伟,等.LED原理及其照明应用[J].灯与照明,2006,30(4):32-35.
    [11]居家奇(译),林燕丹(译).LED汽车前照灯蓝光成分与不舒适眩光[J].中国照明电器,2006(7):31-33.
    [12]Sivak M.(著),林燕丹(译).LED汽车前照灯:眩光与显色性[J].中国照明电器,2006(5):28-31.
    [13]裘玉平.汽车LED灯的强势和未来发展[EB/OL]. http://blog.sina.com.cn/s/blog_4bc83a7b0100qh3t.html,2011-02-26.
    [14]徐晨洁.LED汽车近光灯的光学设计[D].上海:复旦大学,2009.
    [15]刁智海.汽车前照灯高亮度LED驱动电源的研究[D].杭州:浙江大学,2010.
    [16]陈汉汛,倪尔东,杨慧萍,等.汽车新光源[J].上海汽车,2004(12):35-37.
    [17]朱晓东.大功率白光LED在汽车前照灯设计中的应用研究[D].武汉:武汉理工大学,2007.
    [18]李明.高亮度LED照明的安全性评价[D].杭州:浙江大学,2007.
    [19]周志敏,纪爱华.汽车LED照明驱动电路设计实例[M].北京:机械工业出版社,2011:10-13.
    [20]郑奇.LED汽车前照灯热管理技术研究[D].南京:南京理工大学,2013.
    [21]王丽君.LED汽车前照灯光学系统设计与实现[D].广州:华南理工大学,2012.
    [22]魏辉.基于能量利用率的汽车LED自适应前照灯配光技术研究[D].广州:华南理工大学,2012.
    [23]陶永亮.LED是汽车照明应用发展的趋势[J].轻型汽车技术,2012(1/2):6-10.
    [24]吉林东光瑞宝车灯有限责任公司.我国全LED汽车前照灯研制成功[EB/OL]. http://www.china-led.net/info/2009716/2009716102728.shtml,2009-07-16.
    [25]常州星宇车灯股份有限公司.LED在汽车前灯中的应用与安全[EB/OL]. http://wenku.baidu.com/view/3bf0b2f7ba0d4a7302763a25.html,2010-07-08.
    [26]Xiangbing Zhu, Qian Zhu, Han Wu, et al. Optical design of LED-based automotive headlamps[J]. Optics & Laser Technology,2013 (45):262-266.
    [27]Xiangbing Zhu, Jian Ni, Qiaoyun Chen. An optical design and simulation of LED low-beam headlamps[C].2010,3rd International Photonics & OptoElectronics Meetings (POEM 2010), IOP Publishing:1-8.
    [28]Tun-Chien Teng, Ming-Feng Kuo. Highly precise optical model for simulating light guide plate using LED light source[J]. OPTICS EXPRESS,2010,18 (21):22208-22214.
    [29]余桂英,金骥.LED汽车前照灯高效抛物反射器的研究[J].红外技术,2009,31(6):367-370.
    [30]冯华云,孟庆恩.LED汽车前照灯散热研究现状[J].灯与照明,2009,33(4):41-43.
    [31]朱毅康,刘玉良.LED汽车前照灯的散热机理与模拟[J].浙江海洋学院学报(自然科学版),2011,30(4):367-370.
    [32]宋晓博,葛爱明,王巍,等.一种适用于LED前照灯散热系统的设计与分析[J].照明工程学报,2012,23(2):71-73.
    [33]Yan Lai, Nicolas Cordero. Thermal management of bright LEDs for automotive applications [C]//7th.Int.Conf.on Thermal,Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems,EuroSimE 2006:1-5.
    [34]于新刚.GaN基功率型LED器件及汽车前照灯散热研究[D].北京:清华大学,2008.
    [35]王强.用于汽车照明系统的LED驱动研究[D].重庆:重庆大学,2010.
    [36]姚帅,余桂英.一种LED汽车前照灯驱动电路设计[J].中国照明电器,2009(9):14-18.
    [37]Yan Lai, Nicolas Cordero, Frank Barthel, et al. Liquid cooling of bright LEDs for automotive applications [J]. Applied Thermal Engineering,2009,29:1239-1244.
    [38]余桂英.LED汽车前照灯的研制[DB/OL]. http://wenku.baidu.com/view/0a2485bc960590c69ec3760f.html,2011-01-12.
    [39]国家高技术研究发展计划.“十一五”国家高技术研究发展计划(863计划)新材料领域“半导体照明工程”重大项目课题评审初步结果[EB/OL]. http://wenku.baidu.com/view/eef7144acf84b9d528ea7af5.html,2006.
    [40]高铁成,艾艳锦.高亮度汽车LED前照灯的光学结构设计[C].中国光学学会2010年光学大会论文集,2010:1-4.
    [41]天津一汽夏利汽车股份有限公司.大功率LED车灯研究及规模化应用技术报告[EB/OL]. http://wenku.baidu.com/view/b48afb2ab4daa58da0114aab.html,2009-12-20.
    [42]周太明,李玉泉,许谋和.汽车近光灯配光的国际协调[J].中国照明电器,2000(5):1-5.
    [43]余桂英,金骥.用于投射式LED汽车前照灯的新型配光镜的设计[J].红外与激光工程,2009,38(2):282-286.
    [44]余桂英,陈晓丽,姚帅,等.投射式LED汽车前照灯的光学设计[J].中国计量学院学报,2008,19(1):73-77.
    [45]曾武智,李礼夫.投射式汽车前照灯反射器椭圆曲面的设计[J].中国照明电器,2011(1):15-19,30.
    [46]王洪,王丽君,叶菲菲,等.投射式LED汽车近光灯自由曲面透镜设计[J].红外与激光工程,2012,41(9):2463-2467.
    [47]罗秉东,王亚军,宋宁亮,等.组合式LED自由曲面前照灯的近光配光设计与仿真[J].照明工程学报,2012,23(5):78-83.
    [48]李海涛,张苏娟,张炜,等.液体封装LED汽车远光灯光学设计[J].光子学报,2012,41(11):1327-1330.
    [49]高铁成,艾艳锦,黄椿维,等.多椭球投射式LED前照灯光学设计[J].光学设计,2008,34(增刊):32-33,37.
    [50]Winston R., Minano J.C., Benitez P.. Nonimaging Optics [M]. New York:Elsevier Academic, 2005:43-68.
    [51]蒋金波.LED非成像光学设计[R].深圳:中国国际光电博览会(CIOE),2010.
    [52]黄健.非成像光学系统设计方法及其在LED道路照明工程中的应用[D].杭州:浙江大学,2008.
    [53]李澄,李农.非成像光学应用于LED照明的研究[J].照明工程学报,2011,22(5):90-94.
    [54]杨毅,钱可元,罗毅.一种新型的基于非成像光学的LED均匀照明系统[J].光学技术,2007,33(1):110-112.
    [55]朱焯炜,苏宙平,陈国庆.LED绿色照明及其非成像光学设计[J].物理通报,2012(2):112-113.
    [56]孙瑞宏.高功率LED应用于车前灯之设计[D].台湾:国立中央大学,2006.
    [57]中国半导体照明网.LED的光学原理[EB/OL]. http://www.china-led.net/info/200718/580.shtml,2005-12-15.
    [58]屠其非.白光LED应用于汽车前照灯照明中的研究[D].上海:复旦大学,2007.
    [59]徐国芳,饶海波,余心梅,等.白光LED的实现及荧光粉材料的选取[J].现代显示,2007,78:59-63.
    [60]谢平.功率型白光LED的实现及应用[J].灯与照明,2008,32(1):8-10.
    [61]吴中林,徐华斌,刘传先,等.大功率白光LED的封装技术研究[J].上海第二工业大学学报,2008,25(3):170-173.
    [62]郭磊.白光LED驱动器芯片设计技术研究[D].西安:西安电子科技大学,2007.
    [63]王尔镇.高效率白光LED的技术开发[J].照明工程学报,2003,11(4):23-28,31.
    [64]GB25991-2010.汽车用LED前照灯[S].北京:中国标准出版社,2011.
    [65]李为军.提高GaN基发光二极管外量子效率的途径[J].中国照明电器,2010(3):15-20.
    [66]邓云龙,廖常俊,刘颂豪,等.高亮度发光二极管外量子效率的计算[J].量子电子学报,2002,19(1):65-69.
    [67]林岳明,张俊兵,曾祥华AlGalnP LED出光效率的模拟[J].发光学报,2009,30(2):201-208.
    [68]宋国华,缪建文,施建珍,等.一种提高白光LED相关色温分布均匀性的方法[J].光电子·激光,2010,21(7):983-987.
    [69]林岳,叶烈武,刘文杰,等.LED光源相关色温计算新方法[J].计量学报,2010,31(5):436-439.
    [70]中国半导体照明网.白光LED引发照明技术革命[EB/OL]. http://www.china-led.net/info/200862/200862173700.shtml,2008-06-02.
    [71]李小红,柴储芬,王亚琴.LED芯片激发荧光粉合成白光照明光源显色性的控制[J].现代显示,2006(59-60):34-37.
    [72]夏天,何华强,刘元红,等.荧光粉在高显色性白光LED中的应用研究[J].照明工程学报,2011,22(5):95-98.
    [73]PHILIPS LUMILEDS. LUXEON Altilon汽车前照灯光源技术规格书DS66[DB/OL]. http://img.hqew.com/File/Others/290000-299999/295138/Electronic/201212172221 4290914.pdf.
    [74]CREE. Cree Xlamp MC-E LED产品系列技术数据表[DB/OL]. http://www.creemediahost.com/products/pdf-scn/XLampMC-E.pdf.
    [75]OSRAM opto Semiconductors. OSRAM OSTAR Headlamp and Headlamp Pro-Details on Handling Mounting and electrical Connection[DB/OL]. http://catalog.osram-os.com/catalogue/catalogue.do?favOid=000000020 0019df2029700b7&act=showBookmark.
    [76]张堪琳.汽车前照灯配光性能的检测与调整[J].汽车电器,2000,3:54-55.
    [77]朱中迈,宋贤杰.汽车前照灯光型分布快速测试系统[J].照明工程学报,1999,10(3):33-37.
    [78]黄佐贤.现代汽车灯具[M].北京:长虹出版社,2003:8-12.
    [79]武汉,朱向冰,朱骞,等.数字微镜元件式自适应前照灯光学设计[J].红外与激光工程,2013,42(4):955-959.
    [80]Huang M. S., Hung C. C., Fang Y. C., et al. Optical design and optimization of light emitting diode automotive headlight with digital micromirror device light emitting diode [J]. Optik, 2010,121(10):944-952.
    [81]Hung C. C., Fang Y. C., Huang M. S., et al. Optical design of automotive headlight system incorporating digital micromirror device [J]. Applied Optics,2010,49(22):4182-4187.
    [82]Refai Hakki H., Sluss Jr James J., Tull Monte P.. Digital micromirror device for optical scanning application [J]. Opt Eng,2007(46):085401.
    [83]Ming-Shyan Huang, Chuan-ChengHung, Yi-ChinFang. Optical design and optimization of light emitting diode automotive head light with digital micromirror device light emitting diode [J]. 2010,121(10):944-952.
    [84]Joo Jae Young, Kang Chang Seog, Park Soon Sub, et al. LED beam shaping lens based on the near-field illumination [J]. Opt. Express,2009,17(26):23449-23458.
    [85]Zheng Zhenrong, Hao Xiang, Liu Xu. Freeform surface lens for LED uniform illumination [J]. Applied Optics,2009,48(35):6627-6634.
    [86]王洪,张小凡,王海宏,等.自由曲面LED路灯反射器设计[J].红外与激光工程,2010,39(4):727-731.
    [87]Florian R. Fournier, William J. Cassarly, Jannick P. Rolland. Fast freeform reflector generation using source-target maps [J]. Opt. Express,2010,18(5):5295-5304.
    [88]Andre Domhardt, Udo Rohlfing, Simon Weingaertner. New design tools for LED headlamps [A]. In:Francis Berghmans, Anna Grazia Mignani, Antonello Cutolo, et al. Proc. of SPIE, Vol.7003 [C]. Optical Sensors 2008:70032C-1-70032C-10.
    [89]曾武智.基于汽车自适应前照灯的车灯配光关键技术研究[D].广州:华南理工大学,2011.
    [90]Yuan Chang Liou. An anamorphic automobile headlamp design [J]. Proc.IMechE Part D: J.Automobile Engineering,2008,222:963-974.
    [91]赖伟,陈伟民,章鹏,等.基于LED光强分布的摩托车信号灯配光设计[J].光学技术,2010,36(1):130-133.
    [92]王尚.基于LED阵列的自由曲面光学系统与控制系统研究[D].武汉:华中科技大学,2012.
    [93]Fei Chen, Kai Wang, Zong Qin, et al. Design method of high-efficient LED headlamp lens [J]. OPTICS EXPRESS,2010,18(20):20926-20938.
    [94]李成录,张永仁.基于贝叶斯与马尔科夫链蒙特卡洛融合算法的图像处理探究[J].电子测试,2013(16):26-27.
    [95]邵伟.蒙特卡洛方法及在一些统计模型中的应用[D].济南:山东大学,2012.
    [96]刘智超,蔡文生,邵学广.蒙特卡洛交义验证用于近红外光谱奇异样本的识别[J].中国科学(B辑:化学),2008,38(4):316-323.
    [97]付贤政.高亮度车用灯驱动电路研究[J].榆林学院学报,2011,21(4):51-53.
    [98]陆治国,吴春军,赵丽丽,等.基于降压型LED驱动电路分析和研究[J].深圳信息职业技术学院学报,2011,9(3):79-84.
    [99]Sung-Soo Hong, Byungcho Choi. Technique for developing averaged duty ratio model for DC-DC converters employing constant on-time control [A]. Electronics Letters, IEEE,2000, vol.36, issue:5, pp:397-399.
    [100]Holcomb M.O., Mueller-Mach R. etc. The LED lightbulb:are we there yet? Progress and challenges for solid state illumination [A]. Lasers and Electro-Optics,2003, pp:4.
    [101]李传伟.LED驱动电源可靠性设计研究[J].灯与照明,2011,35(3):44-46.
    [102]陈越,吴新科,钱照明.基于LLC拓扑的宽电压输出LED驱动电源研究[J].电力电子技术,2011,45(3):79-81.
    [103]Teng Liu, Ziying Zhou, Aiming Xiong, et al. A novel precise design method for LLC series resonant converter [A]. Telecommunications Energy Conference,2006 [C].2006:150-155.
    [104]蒋天堂.LED的特性及驱动电源的发展趋势[J].照明工程学报,2011,22(3):58-60.
    [105]沈霞,王洪诚,蒋林,等.基于反激变换器的高功率因数LED驱动电源设计[J].电力自动化设备,2011,31(6):140-143.
    [106]CHIU Huangjen, CHENG Shihjen. LED backlight driving system for large-scale LCD panels [J]. IEEE Transactions on Industrial Electronics,2007,54 (5):2751-2760.
    [107]曹卫锋,王玉琴,胡智宏.大功率白光LED恒流驱动电路系统设计[J].郑州大学学报(理学版),2012,44(3):111-114.
    [108]吴蓉,邓茂林,付贤松.基于MAX16832C驱动器的大功率LED电源[J].半导体技术,2011,36(4):296-299.
    [109]姚帅,余桂英.一种LED汽车前照灯驱动电路设计[J].中国照明电器,2009(9):14-18.
    [110]Michael H, Wolfgang H. Design claims and technical solution steps generat ing the world first full LED headlamp[C]. SAE Technical Paper Series,2008:14-17.
    [111]刘益宏,屠大维.LED汽车前照灯驱动电路设计与仿真[J].现代电子技术,2011,34(6):203-207.
    [112]Maxim Inc.2MHz high-brightness LED drivers with integrated MOSFET and high-side current sense. USA MAX16832A/MAX16832C [P].2009.
    [113]Micro Commercial Components. SS210 Datasheet [DB/OL]. http://www.alldatasheet.com/datasheet-pdf/pdf/74388/MCC/SS210.html.
    [114]刘木清.照明用LED光效的热特性及其测试与评价方法的研究[D].上海:复旦大学,2009.
    [115]陈华.8W白光LED多芯片组件的热分析[D].武汉:华中科技大学,2007.
    [116]王乐.白光LED高效封装结构及灯具级散热机理的研究[D].杭州:浙江大学,2011.
    [117]程婷.大功率白光LED照明器件中散热问题的研究[D].武汉:华中科技大学,2009.
    [118]沈亚峰.LED灯具散热建模仿真关键问题研究[J].半导体光电,2013,34(4):630-634.
    [119]杨辉,杨维明,陈建新,等.LED路灯的散热设计及可靠性研究[J].照明工程学报,2013,24(2):49-52.
    [120]陈全.大功率LED结温测试及其在封装热管理中的应用研究[D].武汉:华中科技大学,2012.
    [121]郭威,陈继兵,安兵.LED光源的结温测量方法[J].电子工业技术,2012,33(6):320-322,340.
    [122]Chhajed S, Xi Y, Th Gessmann, et al. Junction temperature in light-emitting diodes assessed by different methods [J]. Proe SPIE,2005,5739:16224.
    [123]Han-Youl Ryu, Kyoung-Ho Ha. Measurement of junction temperature in GaN-based laser diodes using voltage-temperature characteristics [J]. Appl. Phys Lett,2005,87:093506.
    [124]Gu Yiming, Narendnan N. A non-contact method for determining junction temperature of phosphor-converte white LEDs [J]. Proe SPIE,2004,5187:107-114.
    [125]钟前刚,方亮,何建,等.阳极氧化铝基板封装LED的结温与热阻的研究[J].半导体光电,2010,31(6):842-845.
    [126]张海兵,吕毅军.功率型LED电压温度系数的研究[J].光电子·激光,2008,19(12):1580-1583.
    [127]A. Keppens, W. R. Ryckaert, G. Deconinck, et al. High power light-emitting diode junction temperature determination from current-voltage characteristics [J]. J. Appl. Phys.,2008,104(9): 093104.
    [128]Y. Q. Zong, P. T. Chou, M. T. LIN, et al. Practical method for measurement of AC-driven LEDs at a given junction temperature by using active heat sinks [J]. Proceedings of SPIE,2009, 7422:742208.
    [129]费翔,钱可元,罗毅.大功率LED结温测量及发光特性研究[J].光电子·激光,2008,19:289-293.
    [130]Kelvin Shin. LED junction temperature measurement and its applications to automotive lamp design [A]. In:SAE International. SAE TECHNICAL PAPER SERIES [C].2004 SAE World Congress, Detroit, Michigan,2004:2004-01-0224.
    [131]M.Y. Tsai, C.H. Chen, C.S. Kang. Thermal measurements and analyses of low-cost high-power LED packages and their modules [J]. Microelectron Reliab,2012,52:845-854.
    [132]杨世铭,陶文铨.传热学(第四版)[M].北京:高等教育出版社,2006:4-15.
    [133]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001:
    [134]陈海路,胡书春,王男,等.大功率LED器件散热技术与散热材料研究进展[J].功能材料,2013,44(增刊):15-20,27.
    [135]沈忠良,卢冰,李思文,等.大功率LED强化散热技术进展[J].轻工机械,2013,31(2):107-112.
    [136]田大垒,关荣锋,王杏,等.基于热电制冷的大功率LED散热性能分析[J].电子与封装,2009,9(1):35-38.
    [137]陈伟,罗小兵,程婷,等.大功率LED用微喷射流冷却系统的实验研究[J].半导体光电,2007,28(4):478-483.
    [138]陈柏仁,马小康,蓝浩玮,等.蜂巢式散热鳍片应用于高功率LED散热的研究[J].太原理工大学学报,2010,41(5):9-14.
    [139]田水,杨峻,王海波.大功率LED热管散热器研究[J].照明工程学报,2013,24(2):44-48.
    [140]Lan Kim, Jong Hwa Choi, Sun Ho Jang, Moo Whan Shin. Thermal analysis of LED array system with heat pipe [J]. ThermochimicaActa,2007,455:21-25.
    [141]马强.大功率LED用热管散热性能实验与两相流模拟[D].南昌:南昌大学,2012.
    [142]王强.大功率集成LED翅片式重力热管散热器的传热特性研究[D].重庆:重庆大学,2012.
    [143]童思成.大功率集成式LED热管散热器的研究[D].杭州:浙江工业大学,2012.
    [144]姬升涛.功率型发光二极管散热器结构优化设计[D].广州:华南理工大学,2011.
    [145]Lanchao Liu, Reng asam y ponnappan. Heat transfer characteristics of spray cooling in a closed loop [J]. International Journal of Heat and Mass Transfer,2003(46):3737-3746.
    [146]鲁祥友.照明用大功率LED热管散热器的研究[D].上海:上海理工大学,2009.
    [147]Vasiliev L, Lossouarn D, Romestant C, et al.. Loop heat pipe for cooling of high-power electronic components. International Journal of Heat and Mass Transfer,2009,52(1-2): 301-308.
    [148]李万平.计算流体力学[M].武汉:华中科技大学出版社,2004:1-6.
    [149]王世安,尹贵鲁.CFD在飞机设计中的应用[J].航空科学技术,2002(6):33-35.
    [150]沈俊,傅立敏,黎妹红,等.CFD软件及其在汽车领域的应用[J].汽车研究与开发,2000(5):26-28,43.
    [151]何川,高园园,陈启勇.翅片散热板大空间自然对流散热数值方法探讨[J].半导体光电,2011,32(5):653-656,706.
    [152]周龙早,龙海敏,吴丰顺.大功率发光二极管的热管理及其散热设计[J].电子工艺技术,2010,31(2):63-67.
    [153]王乐,吴珂,俞益波,等.基于CFD的LED阵列自然对流散热研究[J].光电子·激光,2010,21(12):1758-1762.
    [154]Paisarn Naphon, Setha Klangchart, Somchai Wongwises. Numerical investigation on the heat transfer and flow in the mini-fin heat sink for CPU[J]. International Communications in Heat and Mass Transfer,2009,36:834-840.
    [155]Reiyu Chein, Janghwa Chen. Numerical study of the inlet/outlet arrangement effect on microchannel heat sink performance[J]. International Journal of Thermal Sciences,2009,48: 1627-1638.
    [156]Hsiu-Che Wang, Nels E. Jewell-Larsen, Alexander V. Mamishev. Thermal management of microelectronics with electrostatic fluid accelerators[J]. Applied Thermal Engineering,2013, 51:190-211.
    [157]Hamid Reza Seyf, Morteza Feizbakhshi. Computational analysis of nanofluid effects on convective heat transfer enhancement of micro-pin-fin heat sinks[J]. International Journal of Thermal Sciences,2012,58:168-179.
    [158]Ilker Tari, Mehdi Mehrtash. Natural convection heat transfer from inclined plate-fin heat sinks [J]. International Journal of Heat and Mass Transfer,2013,56:574-593.
    [159]Seung-Hwan Yu, Kwan-Soo Lee, Se-Jin Yook. Optimum design of a radial heat sink under natural convection [J]. International Journal of Heat and Mass Transfer,2011,54:2499-2505.
    [160]Hsueh-Han Wua, Kuan-HongLin, Shun-TianLin. A study on the heat dissipation of high power multi-chip COB LEDs [J]. Microelectronics Journal,2012,43:280-287.
    [161]Hui Huang Cheng, De-Shau Huang, Ming-Tzer Lin. Heat dissipation design and analysis of high power LED array using the finite element method [J]. Microelectronics Reliability, 2012,52:905-911.
    [162]孙佳慧.有限体积法和有限元方法之间的比较[J].长春师范学院学报(自然科学版),2011,30(4):13-14.
    [163]曹秀雷.扩散型方程的一类有限体积法[D].长春:吉林大学,2011.
    [164]曹海涛.多尺度有限体积法及其应用[D].苏州:苏州大学,2005.
    [165]上海坤道信息技术有限公司.FLOEFD全球唯一无缝嵌入CAD环境的流体/传热分析软件[EB/OL]. http://www.simu-cad.com/userfiles/FloEFD.pdf.
    [166]曹阳.投射式LEWD1G型LED汽车前照灯散热分析[D].北京:清华大学,2007.
    [167]K.C. Yung, H. Liem, H.S. Choy, et al.. Thermal performance of high brightness LED array package on PCB[J]. International Communications in Heat and Mass Transfer,2010,37: 1266-1277.
    [168]过增元,黄素逸.场协同原理与强化传热技术[M].北京:中国电力出版社,2004:7-8.
    [169]张万路.功率型LED热学建模与结温测试分析[D].上海:复旦大学,2009.
    [170]王志斌,张跃宾,王忠东,等.基于热阻网络的大功率LED热管散热研究[J].应用光学,2012,33(6):1014-1018.
    [171]Xiang-you Lu, Tse-Chao Hua, Mei-jing Liu, et al.. Thermal analysis of loop heat pipe used for high-power LED [J]. Thermochimica Acta,2009,493:25-29.
    [172]Xiang-you Lu, Tse-ChaoHua, Yan-pingWanga. Thermal analysis of high power LED package with heat pipe heat sink [J]. Microelectronics Journal,2011,42:1257-1262.
    [173]Shuangfeng Wang, Weibao Zhang, Xianfeng Zhang, et al.. Study on start-up characteristics of loop heat pipe under low-power [J]. International Journal of Heat and Mass Transfer,2011, 54:1002-1007.
    [174]寇志海.蒸发薄液膜及新型微槽平板热管传热性能的研究[D].大连:大连理工大学,2011.
    [175]郑同场,李炳乾,夏正浩.半导体制冷的大功率LED模组散热模拟[J].半导体光电,2010,31(2):210-212,299.
    [176]Jiin-Yuh Jang a, Ying-Chi Tsai, Chan-Wei Wu. A study of 3-D numerical simulation and comparison with experimental results on turbulent flow of venting flue gas using thermoelectric generator modules and plate fin heat sink [J]. Energy,2013,53:270-281.
    [177]Y. Sungtaek Ju. Solid-State Refrigeration Based on the Electrocaloric Effect for Electronics Cooling [J]. Journal of Electronic Packaging,2010,132:041004-1-041004-6.
    [178]戴源德,温鸿,于娜,等.热管散热半导体制冷系统的实验研究[J].南昌大学学报(工科版),2013,35(1):54-57.
    [179]久大电子.温差电致冷元件技术规格书[EB/OL]. http://www.docin.com/p-77073710.html.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700