用户名: 密码: 验证码:
火灾爆炸作用下轻钢框架结构连续倒塌机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十年来,国内外火灾和爆炸事件时有发生。一方面,工业发展迅速提升,由化工易燃易爆物导致潜在的火灾和爆炸事故发生的可能性增加。另一方面,世界上恐怖主义袭击事件频繁发生,导致部分大型公共建筑在火灾和爆炸作用下发生倒塌,造成严重的人员伤亡和巨大的财产损失。由此可见,火灾和爆炸通常相伴发生,因此,针对火灾和爆炸联合作用下建筑结构连续性倒塌问题的研究具有现实意义。近年来,轻钢结构被广泛地应用于建设公共建筑、民用住宅、工业厂房等。然而,目前针对轻钢框架结构在火灾和爆炸联合作用下倒塌机理问题的研究还是很少。本文针对火灾爆炸作用下轻钢框架结构倒塌机理及防护措施进行了系统的研究。通过建立新的钢材本构关系用来综合考虑高温软化效应与高速应变率效应,建立火灾爆炸作用下轻钢柱损伤评估方法,开展了轻钢框架结构倒塌过程及机理的研究,并提出了初步的防护措施。主要的研究内容和成果包括:
     (1)建立了考虑火灾(高温软化效应)和爆炸(高速应变率效应)的钢材本构关系模型。在传统的Johnson-Cook模型和Perzyna模型的基础上,考虑应变率与宏观的爆炸“比例距离”之间的关系,并通过欧洲规范3(Eurocode3)中标准升温曲线来考虑温度效应参数,建立修正后的Johnson-Cook本构关系模型。采用本文提出的综合考虑高温软化效应和高速应变率效应的钢材本构关系模型,考虑柱高、比例距离、轴压比、支座约束等参数对轻钢柱火灾爆炸作用下的破坏影响因素以及其破坏模式进行分析。结果表明:当“比例距离”及支座约束条件一定时,长细比较小的柱子对抗火灾爆炸有利;采用底端固接约束或两端固接约束的支座条件,对抗火灾爆炸能力较强;通过增大“比例距离”可以有效地提高轻钢柱抗火灾爆炸的能力;轻钢柱破坏模式主要分为剪切破坏、弯剪破坏、弯曲破坏三种,破坏模式主要受支座约束条件的影响。
     (2)将火灾爆炸作用下轻钢柱的破坏过程及破坏模式分成三种情况进行研究:单独考虑爆炸作用情况;综合考虑火灾爆炸作用情况:火灾爆炸发生后继续升温情况。以铰接-固接支座约束条件下的轻钢柱为研究对象,通过分析得出以下结论:轻钢柱在火灾爆炸作用下的破坏模式多为弯曲破坏;火灾爆炸作用下轻钢柱跨中挠度随着温度的升高而增大;提出了单独考虑爆炸荷载作用和不同温度场下爆炸荷载作用轻钢柱变形简图,为火灾爆炸作用下轻钢柱的动力响应和破坏模式的简化分析提供依据;对轻钢柱柱头转角与温度影响程度的关系进行了区域划定,即安全区、影响区、严重影响区;提出了判定轻钢柱破坏的损伤程度的指标D,并汁算出不同阶段损伤程度值;根据P-I关系基本原理,提出了火灾爆炸作用下轻钢柱损伤程度评估方法。确定了轻钢柱在火灾爆炸作用下的损伤等级,即轻度损伤、中度损伤、重度损伤和倒塌。
     (3)针对典型的火灾爆炸作用下轻钢框架结构倒塌过程及机理进行有效的数值模拟分析。本文采用“比例距离”,更有效地描述轻钢框架结构的破坏及倒塌现象。通过分析得出:相同“比例距离”条件下,温度越高时发生爆炸,轻钢框架结构破坏越严重,甚至造成连续性倒塌:在温度相同的条件下,“比例距离”越小,火灾爆炸作用下轻钢框架结构破坏越严重;火灾爆炸作用发生区域在边跨时,“比例距离”z≤1.28发生局部连续性倒塌,火灾爆炸作用发生区域在中跨时,“比例距离”z<0.8发生整体连续性倒塌;提出了火灾爆炸作用下轻钢框架结构评估等级,即无损伤、轻度损伤、中度损伤、重度损伤、濒临倒塌和连续性倒塌。
     (4)提出了有效的防护火灾爆炸作用下轻钢框架结构连续倒塌的措施,包括以下几方面:轻钢梁的钢索连接措施、楼板增加混凝土强度等级措施、底层轻钢柱采用钢骨混凝土柱并在表面包裹碳纤维及“钢夹克”和减少发生火灾爆炸事件的其它措施等。
In recent ten years, accidents induced by fire and explosion occur frequently. On the one hand, flammable and explosive materials which led to the potential fire and explosion accidents often occur with the rapid increase of industrial development. On the other hand, terrorist attacks occur frequently all over the world, resulting in large public buildings collapsed under explosion and fire, causing heavy casualties and huge property losses. It can be seen that fire and explosion often occur in combination. Therefore, it is of significance to research the progressive collapse of building structures under the combined effects of fire and explosion. In recent years, light steel structures are widely used in construction of public building, residential buildings and industrial warehouse. However, it is still very little at present to research the collapse mechanism of light steel frame structures and provide the protective measures under the combined effects of fire and explosion. In this dissertation, through the establishment of the new steel constitutive relationship considering the high temperature softening effect and high strain rate effect, a method for evaluating the damage degree of light steel columns under the combined effects of fire and explosion is introduced. The systematic study of the process and mechanism of the light steel frame structure collapsed under the combined effects of fire and explosion is carried on, and then some preliminary protective measures are made. More detailed introduction and some conclusions are presented as the following.
     (1) Establishing a new steel constitutive model considering fire (high temperature softening effect) and explosion (strain rate effect). On the basis of the traditional Johnson-Cook model and the Perzyna model, the introduction of the relationship between strain and scaled distance as well as the EOUROCODE3standard heating curve taking into account the temperature effect parameters, a modified Johnson-Cook constitutive model is established. In this paper, based on the proposed model of steel material, a numerical simulation of typical steel columns under the combined effects of fire and explosion using finite element method (FEM) is performed, considering the high temperature softening effect and high strain rate effect, column height, the scaled distance of the explosion, axial compression ratio, bearing constraints, and focusing on influencing parameters and failure modes. The numerical simulation results show that the steel column with relatively small slenderness ratio is beneficial when the scaled distance and bearing constraints are in certain of range; it has a powerful protection for the column with two fixed ends or a pin end and a fixed one; it can effectively improve the resistance capacity of light steel columns to fire and explosion by increasing the scaled distance; the failure modes under the combined effects of fire and explosion are divided into the shear failure mode, the combination mode of the shear and flexure failures, and the flexural failure mode, and the failure modes are mainly influenced by the bearing constraints.
     (2) Dividing, the failure process for the light steel column under the combination effects of fire and explosion into three cases of the blast loading, combination of fire and explosion, and the blast loading first with a continue heating up. During the simulation, the light steel column with a fixed end and a pin one is used as the researched object. Some conclusions can be made that the failure modes of the light steel column in each case are mostly the bending-shear failure under the combining effect of fire and blast; the deflection at the mid-span of the column goes large as temperature increasing; according to the relationship between the rotation at the end of the column and temperature, the loading cases can be divided into three:the relatively safe extent, the affected extent, the heavily affected extent; the damage index of D is proposed in the paper for the evaluation of the damage level of the light-weight steel column under the combination effect of fire and explosion; according to the basic principle of pressure-impulse curve, a method for evaluating the damage degree of the light steel columns under the combined effects under fire and explosion is introduced; based on the proposed damage index, four damage levels of minor injury, moderate injury, severe injury, collapse under the combined effects of light steel columns of fire and explosion are determined.
     (3) Performing numerical simulation analysis for the collapse process and mechanism of the light steel frame structure under the combined effects of fire and explosion. In this paper, the scaled distance is introduced in order to more effectively describe the destruction and collapse phenomena of light steel frame structures. Some conclusions are obtained based on the numerical analysis that the destruction will be serious and even progressively collapse with decreasing of the temperature of the light steel column for the same scaled distance under the combined effects of fire and explosion; the damage will be serious with decreasing of the scaled distance of the light steel column under the same temperature under the combined effects of fire an explosion; in the case of the combined effects of fire and explosion happening in the side-spans, the partial progressive collapse occurs as the scaled distance is greater than or equal to1.28; in the case of the combined effects of fire and explosion happening in the mid-span, the collapse of the overall continuity ocurrs as the scaled distance is less than0.8; six kinds of damages which are no damage, minor damage, moderate damage, severe damage, critical collapse, and progressive collapse.
     (4) Introducing the effective protective measures under the combined effects of fire and explosion. Some measures for preventing the light steel frame structure from progressively collapse under combined effects of fire and explosion are developed, which includes the following aspects:the light beam is used as a connection cable, and the strength grades of concrete are improved in the area of the floors; the combined steel and concrete columns or the steel reinforced concrete column in the surface wrapped carbon fiber and "steel jacket" are applied at the bottom floor in stead of light steel columns; some other methods for reducing the risk of fire and explosion events are slao suggested.
引文
[1]惠中玉.工业企业防火工程[M].北京, 警官教育出版社,1998.
    [2]北川撤三(日).爆炸事故的分析[M].北京,化学工业出版社,1984.
    [3]Mohammed E, Robert S, Tod R. Blast resistant design of commercial buildings[J]. Practice Periodical on Structural Design and Construction,1996,1(1):31-39.
    [4]Dusen B D. Review of existing guidelines and provisions related to progressive collapse[R]. Washington:National Workshop on Prevention of Progressive Collapse in Rosemont, Ⅱ 1,2002.
    [5]贾金刚,徐迎,石磊等.关于续性倒塌定义的探讨[J].爆破,2008,25(1):22-24.
    [6]Breen J E, Siess C P. Progressive collapse symposium summary[J]. Journal Proceedings,1979,76(9): 997-1004.
    [7]Neil H, Denis M. Progressive collapse of flat plate structures[J]. Journal Proceedings,1979,76(7): 775-808.
    [8]Denis M, William C. Preventing progressive collapse of slab structures[J]. Journal of Structural Engineering,1984,110(7):1513-1532.
    [9]John L, Gross M. ASCE. Progressive Collapse Resistant Design[J]. Journal of Structural Engineering, 1983,109(1):1-15.
    [10]Haluk S, Ergin C, Sinan A. Resistance mechanisms in RC building frames subjected to column failure[J]. Journal of Structural Engineering,1994,120(3):733-765.
    [11]Sato K, Kokusho T, Matsumoto M, et al. Nonlinear seismic responses and soil property during strong motion[J]. Soils and Foundations,1996,1:41-52.
    [12]Gilmour J R, Virdi K S. Numerical modeling of the progressive collapse of framed structures as a result of impact or explosion[C]. The 2nd Int. PhD Symposium in Civil Engineering, Budapest, Hungary,1998,229-237
    [13]Sidney A, Guralnick, Abbes Y. Plastic collapse, incremental collapse and shakedown of reinforced concrete structures[J]. Structural Journal,1998,95(2):163-174.
    [14]Williams M S, Lock T S, Mays G C, et al. Structural assessment of blast damaged buildingsfCj. Structural Under Shock and Impact VI, Proceedings of International Conference on Structures Under Shock and Impact, Cambridge, England,2000,399-409.
    [15]Yarimer E. Compact analysis tool for checking the collapse dynamics of internaional conference on structures under shock impact VI[C]. Proceedings of International Conference on Structures under Shock and Impact, Cambridge, England,2000,269-275.
    [16]Mehanny S S F, Deierlein G G. Seismic damage and collapse assessment of composite moment frames[J]. Journal of Structural Engineering,2001,127(9):1045-1053.
    [17]陆新征,江见鲸.世界贸易中心飞机撞击后倒塌过程的仿真分析[J].土木工程学报,2001,34(6):8-10.
    [18]Low H Y, Hao H. Reliability analysis of direct shear and flexural failure modes of RC slab under explosive loading[J]. Engineering Structures,2002,24:189-198.
    [19]Steven B, Franks H. Preventing progressive collapse in concrete building[J]. Concrete International, 2003,15(3):323-335.
    [20]Abbas H, Gupta N K, Alam M. Nonlinear response of concrete beams and plates under impact loading[J]. International Journal of Impact Engineering,2004,30:1039-1053.
    [21]GSA, General Services Administration. Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects[R]. The USA: Army Corps of Engineers, 2003.
    [22]DoD, Department of Defense. Design of buildings to resist progressive collapse[S]. The USA:Unified facilities criteria,2005.
    [23]Japanese Society of Steel Construction Council on Tall Buildings and Urban Habitat. Guidelines for collapse control design, I Design[S]. Japan: Van Nostrand Reinhold Company,2005.
    [24]王铁成,刘传卿.连续倒塌现象中结构动态响应特性的分析[J].振动与冲击,2010,29(5):70-73.
    [25]蒋首超,李国强.高温下结构钢材料特性[J].钢结构,1996,11(32):49-57.
    [26]BS 5950-8:2003. Code of practice for fire resistance design [S]. London: British Standards Institution, 2003.
    [27]AS4100. Steel structures [S]. Sydney:Standards Australia,1990.
    [28]Standards ASCE/SEI/SFPE 29-99. Standard calculation methods for structural fire protection [S]. New York:Society of Fire Protection Engineers,2003.
    [29]ECCS-T3. European recommendations for the fire safety of steel structures [S]. Amsterdam:Elsevier, 1983.
    [30]The European Standard EN 1993-1-2. Eurocode 3:Design of steel structures-part 1-2:general rules structural fire design [S]. Brussels:European Committee for Standardization,2005.
    [31]Makelainen P, Outinen J, Kesti J. Fire design model for structural steel S420M based upon transient state tensile test results[J]. Journal of Constructional Steel Research,1998,48(1):47-57.
    [32]Chen J, Young B, Uy B. Behavior of high strength structural steel at elevated temperatures [J]. Journal of Structural Engineering,2006,132(12):1948-1954.
    [33]时旭东.高温下钢筋混凝土杆系结构试验研究和非线性有限元分析[D].清华大学:清华大学博士论文,1992.
    [34]胡克旭.室内火灾模化与结构受火灾作用的全过程分析[D].同济大学:同济大学博士学位论文,1992.
    [35]吕彤光.高温下钢筋的强度和变形试验研究[D].清华大学:清华大学硕士学位论文,1996,
    [36]赵金城、沈祖炎,钢结构抗火分析中的材性模型,工业建筑,1996,26(9):3-7.
    [37]曹文衔.损伤累积条件下钢框架结构火灾反应的分析研究[D].同济大学:同济大学博士学位论文,1998.
    [38]徐彦.不同应力—温度路径下钢结构材料性能及钢框架火灾反应的分析研究[D].上海交通大学:上海交通大学硕士学位论文,2003.
    [39]Li G Q, Jiang S C, Yin Y Z, et al. Experimental studies on the properties of constructional steel at elevated temperatures [J]. Journal of Structural Engineering,2003,129(12):1717-1721.
    [40]欧蔓丽,曹伟军.建筑用Q235钢在高温(火灾)条件下的力学性能研究[J].株洲工学院学报,2006,20(4):99-101.
    [41]Stark J W B, Bijleard F S K. Structural properties of connections in steel frames [J]. London & New York:Elsevier Applied Science Publishers,1987.
    [42]自凤领,葛保国.英国钢结构建筑火灾试验研究[J].中国安全科学学报,2001,11(4):40-44.
    [43]Spyros S, Buick D, Burgess R P. Experimental and analytical studies of steel joint components at elevated temperatures[J]. Fire and Materials,2004,28 (8):83-94.
    [44]Bradford M A, Luu T K, Heidarpour A. Generic nonlinear modelling of a steel beam in a frame sub-assembly at elevated temperatures[J]. Journal of Constructional Steel Research,2008,64(7-8): 732-736.
    [45]李翔,顾祥林,张伟平,欧阳煜.火灾后钢结构厂房的安全性评估[J].工业建筑,2005,35(增):376-379.
    [46]李耀庄,李昀晖.中国建筑火灾引起坍塌事故的统计与分析[J].安全与环境学报,2006,6(5):133-135.
    [47]李耀庄,李昀晖.我国火灾坍塌事故调查[J].火灾调查与分析,2005,25(5):694-697.
    [48]李昀晖,李耀庄,邓芸芸,冯凯.火灾引起建筑坍塌的原因分析及预防措施[J].中国公共安全(学术版),2006,7(4):76-83.
    [49]王广勇,傅传国,薛素铎.局部火火作用下钢筋混凝土框架结构性能分析[J].山尔建筑大学学报,2008,23(2):105-111.
    [50]刘开国.火作用下钢框架结构分析[J].钢结构防护,2002(4),17(60):46-47.
    [51]陈树华,韩玉来,王振清,王永军.火灾高温下钢框架承载力及等效荷载分析[J].兰州理工大学学报,2008(4):127-132.
    [52]蒋首超,李国强.局部火灾下钢框架温度内力的实用计算方法[J].工业建筑,2000,30(9):56-61.
    [53]王广勇,薛素铎,邱林波.基于ABAQUS的钢筋混凝土框架火灾分析方法[J].北京工业大学学报,2010,36(3):316-320.
    [54]陈建锋,曹平周,周天华,董先铎.钢结构火灾温度推定方法研究[J].建筑科学,2010,26(9):67-70
    [55]李易,陆新征,叶列平,任爱珠.混凝土框架结构火灾连续倒塌数值模拟分析模型[J].工程力学,2012,29(4):96-103.
    [56]Nonaka T. Shear failure of a steel member due to a blast [J]. International Journal of Impact Engineering,2000,24:231-238.
    [57]Sabuwala T, Linzell D, Krauthammer T. Finite element analysis of steel beam to column connections subjected to blast loads [J]. International Journal of Impact Engineering,2005,31:861-876.
    [58]Luccioni B M, Ambrosini R D, Danesi R F. Analysis of building collapseunder blast loads[J]. Engineering Structures,2004,26(1):63-71.
    [59]Ambrosini D, Luccioni B, Jacinto A, et al. Location and mass of explosive from structural damage[J].Engineering Structures,2005,27(2):167-176.
    [60]李国强,孙建运,王开强.爆炸冲击荷载作用下框架柱简化分析模型研究[J].振动与冲击,2007,26(1):8-11.
    [61]李忠献,刘志侠,丁阳.爆炸荷载作用下钢结构的动力响应与破坏模式[J].建筑结果学报,2008,29(4):106-111.
    [62]师燕超,李忠献.爆炸荷载作用下钢筋混凝土柱的动力响应与破坏模式[J].建筑结构学报,2008,29(4):112-117.
    [63]都浩,李忠献,郝洪.建筑物外部爆炸超压荷载的数值模拟[J].解放军理工大学学报(自然科学版),2007,8(5):413-418.
    [64]师燕超,李忠献,郝洪.爆炸荷载作用下钢筋混凝土框架结构的连续倒塌分析[J].解放军理工大学学报(自然科学版),2007,8(6):652-658.
    [65]Li Z X. A review of our recent research activities on blast resistance of building structures[C]. The first International Conference of Protective Structures, Manchester, UK,2010,150-158.
    [66]方秦,杜茂林,陈力.非线性弹性大变形材料梁的抗爆特性[J].爆炸与冲击,2009,29(1):7-12.
    [67]钱稼茹,胡晓斌.多层钢框架连续倒塌动力效应分析[J].地震工程与工程振动,2008,28(2):8-14.
    [68]Corley W G, Mlakar P F S, Sozen M A, et al. The Oklahoma city bombing: summary and recommendations for multihazard mitigation[J]. Journal of Performance of Constructed Facilities, 1998,12(3):100-112.
    [69]Sozen M A, Thornton C H, Corley W G, et al. The Oklahoma citybombing:structure and mechanisms of the Murrah Building[J]. Journal of Performance of Constructed Facilities,1998,12(3):120-136.
    [70]Mlakar P F S, Corley W G, Sozen M A, et al. The Oklahoma citybombing:analysis of blast damage to the Murrah Building[J]. Journal of Performance of Constructed Facilities,1998,12(3):113-119.
    [71]曹晓中.组合网架在爆炸荷载作用下的设计[J].建筑结构,2000,30(4):55-57.
    [72]高伟建,熊建国,赵振东.爆炸冲击作用下高层建筑基础与地基间的滑移与翘离[J].爆炸与冲击,1991,11(4):321-330.
    [73]李国强,孙建运,王开强.爆炸冲击荷载作用下框架柱简化分析模型研究[J].振动与冲击,2007,26(1):8-11.
    [74]Hao H, Andrew J D, Wu C Q. Numbercial simulation of the performance of steel guardrails under vehicle impact[J]. Transactions of Tianjin University,2008,14(5):318-323.
    [75]Wu C Q, Hao H, Lu Y. Dynamic response and damage analysis of masonry structure and masonry infilled RC frames to blast ground motion[J]. International Journal of Engineering Structures,2005, 27(3):323-333.
    [76]Wu C Q, Hao H. Numerical study of relative importance of surface explosion generated airblast force and ground shock on dynamic structural response[C]. Developments in Mechanics of Structures and Materials, London, UK,2004,981-987.
    [77]Hao H. A simple numerical approach to predict structure responses to blast loading[C]. The first International Conference of Protective Structures, Manchester, UK,2010,41-50.
    [78]Mutalib A A, Hao H. Derivation of empirical formulae to predict pressure and impulsive asymptotes for P-I diagrams of RC columns strengthened with FRP[C]. The first International Conference of Protective Structures, Manchester, UK,2010,83-91.
    [79]李海旺,薛飞,秦冬祺.爆炸荷载作用下平面钢框架变形形态研究[J].工程抗震与加固改造,2005,27(A):155-161.
    [80]李海旺,李彦君.爆炸荷载作用下空间钢框架破坏过程分析[J].太原理工大学学报,2007,38(3):259-263.
    [81]丁琳,刘洪波,王艳丽.一种新型钢-混凝土组合结构的抗爆性能[J].解放军理工大学学报(自然科学版),2007,8(6):664-668.
    [82]阎石,辛志强,齐宝欣,刘蕾,李鹏.轻钢结构柱爆炸荷载应变率效应影响因素分析[J].土木建筑与环境工程,2011,33(增):49-52.
    [83]丁阳,汪明,李忠献.爆炸荷载作用下钢框架结构连续倒塌分析[J].建筑结构学报,2012,33(2):78-84.
    [84]Izzuddin B A, Song L, Elnashai A S. Integrated adaptive environment for fire and explosion analysis of steel frames. Part II:verification and application [J]. Journal of Constructional Steel Research,2000, 53(1):87-111.
    [85]Song L, Izzuddin B A, Elnashai A S. Integrated adaptive environment for fire and explosion analysis of steel frames. Part I:analytical models [J]. Journal of Constructional Steel Research,2000,53(1): 63-85.
    [86]Liew J Y R, Chen H. Explosion and fire analysis of steel frames using fiber element approach[J]. J. Struct. Engrg., ASCE,2004,130(7):991-1000.
    [87]Liew J Y R, Chen H. Direct analysis for performance-based design of steel and composite structures[J]. Progr. Struct. Engrg. Mater.,2004,6(4):213-28.
    [88]Chen H, Liew J Y R. Explosion and fire analysis of steel frames using mixed element approach[J]. Journal of Engineering Mechanics, ASCE,2005,131(6):606-616.
    [89]Liew J Y R. Survivability of steel frame structures subject to blast and fire[J]. J. Constr. Steel Res., 2008,64:854-866.
    [90]Abolhassan A A, Brant J, Zhao Y K, et al. Progressive collapse resistance of steel building floors[R]. American Institute of Steel Construction,2001
    [91]Samuel T, Abolhassan A A. Use of steel cables to prevent progressive collapse of existing buildings[C]. Proceedings of sixth conference on tall buildings in seismic regions, California,2003, 961-981.
    [92]王振清,韩玉来,陈树华,吕红庆.火灾爆炸荷载作用下四边固支刚塑性薄板的动力响应[J]第九届全国振动理论及应用学术会议论文集,2007,134-140.
    [93]马臣杰.冲击荷载作用后钢框架结构抗火性能研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2006.
    [94]汪明.爆炸荷载作用下钢结构损伤机理及砌体墙破碎过程研究[D].天津:天津大学博士学位论文,2010.
    [95]Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics,1985,21(1):31-48.
    [96]Campbell J D, Ferguson W G. The temperature and strain-rate dependence of the shear strength of mild steel[J]. Phil Mag,1970,21:63-82.
    [97]宁建国,王成,马天宝.爆炸与冲击动力学[M].北京:国防工业出版社,2010.
    [98]Perzyna P. The constitutive equations for rate sensitive plastic materials[J]. Quarterly of Applied Mathematics,1963,20:321-332.
    [99]李国强.钢结构抗火计算与设汁[M].北京:中国建筑工业出版社,1999.
    [100]杨柳.优质碳素结构钢温度和速度相依型本构模型研究[D].湘潭:湘潭大学硕士学位论文,2004.
    [101]Crozier D A, Wong M B. Elastoplastic analysis of steel frames at elevated temperatures[C].13th Australian conference on the mechanics of structures and materials, University of Wollongong,1993
    [102]Yngve A. Modelling steel behavior[J]. Journal of Fire Safety,1988,13:17-26.
    [103]Rubert A, Schaumann P. Structural steel and plane frame assemblies under fire action[J]. Journal of Fire Safety,1986,10:67-72.
    [104]CEN. Eurocode3. Design of steel structures[S]. draft part 1.4, fire resistance,1992.
    [105]Lindholm. Techniques in Metals Research[M].New York:Ed. Bunshan,1971.
    [106]罗迎社,杨柳,余敏,许建民,季忠.20号钢热拉伸流变特性的研究(Ⅱ)[J].湘潭大学自然科学学报,2005,27(1):25-29.
    [107]包卫平,张毅,任学平.纯铁在高应变率下的流动应力特征及其动态塑性本构关系[J].塑性工程学报,2009,16(5):125-129.
    [108]李国强,蒋首超.非均匀高温钢结构粱单元线刚度方程[J].同济大学学报(自然科学版),1999,1:1-6.
    [109]宋玉泉,王习文,刘颖.用试验参数表达的应变率敏感性指数理论公式及其测量[J].自然科学进展,2002,12(2):176-181.
    [110]Yan S, Qi B X, Yan H, et al. Numerical simulation on fire modes of light steel columns under high temeerature and explosion[J]. Applied Mechanaic and Materials,2012,204-208:3351-3356.
    [111]尚晓江,苏建宇,王化锋.ANSYS/LS-DYNA动力分析方法与工程实例(第二版)[M].北京:中国水利水电出版社,2008.
    [112]何涛,杨竟,金鑫等.ANSYS10.0/LS-DYNA非线性有限元分析实例指导教程[M].北京:机械工业出版社,2007.
    [113]Jarrett D E. Derivation of British explosives saftty distances[J]. Annals of the New York Academy of Sciences,1986,152(1):18-25.
    [114]师燕超.爆炸荷载作用下钢筋混凝土结构的动态响应行为与损伤破坏机理[D].天津:天津大学博士学位论文,2009.
    [115]李忠献,师燕超,史祥生.爆炸荷载作用下钢筋混凝土板破坏评定方法[J].建筑结构学报,2009,30(6):60-66.
    [116]Humar J L. Dynamics of structures (2nd edition) [M]. Rotterdam:Balkema Publish Rotterdam,2002.
    [117]Li Q M, Meng H. Pulse loading effects on pressure-impulse diagram of elastic-plastic, single-dgree-of-freedom structural mode[J]. International Journal of Mechanical Sciences,2002,44:85-98.
    [118]Li Q M, Meng H. Pressure-impulse diagram for blast loads based on dimension analysis and single-degree-of freedom mode[J]. Journal of Mechanical Science (ASCE),2002,128(1):87-92.
    [119]Soleiman F A, Louca L A. Pressure-impulse diagamas for elastic plastic hardening and softening single-degree-of-freedom models subjected to blast loading[J]. Internaional Journal of Impact Engieeing,2007,34 (4):823-842.
    [120]Ma G W, Shi H J, Shu D W. P-I diagram method for conbined failure modes rigid-plastic beam[J]. International Journal of Impact Engineering,2007,34 (6):1081-1094.
    [121]Soh T B, Krauthammer T. Load-impulse diagrams of reinforced concrete beam subjected to concentrated transient loading[R]. Technical report:PTC-TR-006-200, University Park, Protective Technology Center, Pennsylvania State Univerisity,2004.
    [122]Ng P H, Krauthammer T. Pressure-impulse diagrams for reinforced concrete slabs[R]. Technical Report:PTC-TR-007, University Park, P A:Protective Technology Center, Pennsylvania State University,2004.
    [123]Blasko J R, Krauthammer T, Astarlioglu S. Pressure-impulse diagrams for structural elements subjected to dynamic loads[R]. Technical Report:PTC-TR-002, University Park, P A:Protective Technology Center, Pennsylvania State University,2007.
    [124]中华人民共和国建设部.钢结构设计规范(GB50017-2003)[S].北京:中国标准出版社,2003.
    [125]李承汉等.轻钢结构设计实用手册[M].北京:中国电力出版社,2007.
    [126]中华人民共和国建设部.建筑结构荷载规范(GB50009-2001)[S].北京:中国标准出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700