用户名: 密码: 验证码:
导电聚合物/半导体纳米复合材料的制备及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境、能源、材料是二十一世纪的三大主题,光催化技术正是与其关联最紧密的领域之一。从1972年至今的30多年,人们对光催化技术的探索在不断进步。光催化剂是决定光催化过程能否实际应用的关键因素之一。如何提高光生载流子的分离效率,实现光催化剂对可见光的响应,开拓光催化剂更广泛的应用领域,是研究者主要思考的一些问题。1977年问世的导电聚合物由于具有新颖的物理、化学性能和广阔的应用前景而受到了物理学、化学和材料科学家的高度关注,尤其是为了增大其电导率,人们进行了不懈的研究。1984年出现的纳米技术,更是把人们带入了一个无限神秘的“小尺寸,大世界”之中,也很快被引入到了光催化领域。具有纳米尺寸的光催化剂是减小光生载流子复合几率,提高光催化活性的保证。但随之又出现了对可见光响应能力的减弱以及纳米粒子严重的团聚问题。如果将其与导电聚合物进行复合,聚合物可以起到载体的作用,不仅可以防止团聚,而且可以控制粒子的尺寸大小和分布以及提高其稳定性。更重要的是,导电聚合物除了具有聚合物的稳定性外,还具有半导体的能带结构和对可见光及红外光的良好的吸收性能。所以,导电聚合物/半导体纳米复合材料就成了近几年材料科学的研究热点。
     本论文以最典型的三种光催化剂——TiO_2、ZnO、SnO_2和最典型的三种导电聚合物——聚苯胺(PANI)、聚噻吩(PTh)、聚吡咯(PPy)为研究对象,采用Sol-gel法、固相法、微波辐射法先分别获得三种光催化剂的纳米粉体或膜材料,然后通过原位聚合、固相聚合、乳液聚合分别得到了三种典型的导电聚合物/半导体纳米复合材料。利用TG-DTA、XRD、XPS、TEM、SEM、AFM、FT-IR、UV-Vis、DRS、GPC等技术对复合材料进行了全面的研究。既掌握了半导体对导电聚合物性质的影响,也得到了聚合物对半导体光吸收行为的改变效果。总体来看,所得到的三类复合物均对可见光表现出很强的吸收能力,属于可见光响应型纳米光催化剂。选择典型的染料废水和造成“白色污染”的聚乙烯塑料为目标,试验了光催化剂在消除污染中的作用,也以甲基丙烯酸甲酯(MMA)的聚合反应为对象,从另一个角度试验了光催化剂在有机聚合反应中的催化活性。以能带理论为基础,探讨了导电聚合物对纳米半导体的光敏化机理。主要研究结果如下:
     1.利用Sol-gel法和原位聚合法得到了PANI/TiO_2-Fe~(3+)复合纳米粉,试验了其光催化活性。
     (1)TG-DTA分析表明,Ti(OC_4H_9)_4水解制备纳米TiO_2的最佳焙烧温度为500℃,所得TiO_2为纯锐钛矿结构,粒径18nm,形貌为球形。Fe~(3+)可以改普TiO_2的团聚,也可以阻止颗粒的长大,粒径约为10nm。PANI/TiO_2-Fe~(3+)复合微粒为具有核-壳结构的单分散球形颗粒,平均粒径25nm。
     (2)与纯PANI相比,PANI/TiO_2-Fe~(3+)纳米复合材料的红外光谱略向低波数方向红移。复合材料的热分解温度升高了180℃。
     (3)日光照射下,复合材料对20mg/L甲基橙30 min的光催化降解率为70.3%,表观速率常数为5.64×10~(-2),光催化性能优于商品Degussa P25 TiO_2。
     (4)PANI具有更高的导带是提高TiO_2光催化活性的主要原因。
     2.利用浸渍-提拉法得到了PANI/TiO_2纳米复合膜,试验了其光催化活性。
     (1)浸渍-提拉法可以在载玻片表面沉积均匀、致密的、立方体形貌的TiO_2纳米微粒,包敷PANI后膜表面粗糙度提高,将更有利于光吸收。
     (2)PANI/TiO_2复合膜的吸收带边约为390nm,与TiO_2薄膜相比红移了20nm,对可见光的吸收显著增强,在630nm处有最大吸收。XPS分析结果表明,PANI/TiO_2复合膜中N~+/N之比高达0.63,高于块体PANI的0.57和理想的本征态盐中的0.5,表明掺杂程度高。
     (3)太阳光照射120 min,PANI/TiO_2复合膜对20mg/L罗丹明-B溶液的光催化降解率为67.1%。与无催化剂的降解反应相比,活化能降低3.415 kJ/mol。
     3.通过室温固相反应得到了PTh/ZnO复合纳米粉,试验了其光催化活性。
     (1)固相法分别在30min内得到了ZnO、PTh和PTh/ZnO纳米粉,分别为球形、针状和棒状形貌。
     (2)与纯PTh相比,PTh/ZnO复合纳米粉的热分解温度升高153℃,在200~600nm范围内表现有比ZnO和纯PTh都强的光吸收。DRS分析得聚合物中噻吩的聚合度为9。
     (3)用λ=253.7 nm的紫外线照射240 h,PTh/ZnO复合纳米粉使PE塑料失重31.2%,并碎裂为粉末。
     4.通过微波辐射技术、乳液聚合法以醋酸纤维素为成膜剂得到了PPy/SnO_2/CA纳米复合膜。
     (1)微波辐射技术在很短时间内得到了粒径13nm的SnO_2,乳液法所得PPy/SnO_2为核-壳结构,壳层厚度17nm。
     (2)与纯PPy相比,PPy/SnO_2复合纳米粉的热分解温度升高100℃,紫外吸收发生红移。
     (3)利用PPy具有更高的导带电位、SO_3~(2-)体现给电子性、H~+离子体现得电子性的特点,荧光灯下PPy/SnO_2/CA复合物存在时,MMA聚合所得PMMA的数均分子量1.3×10~5,分布指数1.06,接近单分散性。
Environmental, energy sources and materials sciences are the three key projects of 21th century. One of them is the photocatalysis using oxide semiconductor, which associated tightly with those topics. Since 1972, numerous research groups have paid much attention to the photocatalytic technique and many achievements have been obtained. However, enhancing the photoconversion efficiency, maximizing the rate of photoinduced charge separation, and extending the photoresponse of the semiconductor catalyst into the visible range continue to be still pose a major challenge to the scientific community. Though there are many advantages for the enhanced photocatalytic activity, the semiconductor nano-material cannot be widely used because of its high surface energy and easy aggregation.
     Since 1977, conducting polymers (CPs) have drawn considerable interest because of their unusual electrical, optical and photoelectrical properties and their numerous applications in various fields. Recently, the preparation for the nanocomposites of CPs with inorganic nanoparticles has attracted many researchers' attention, aiming to obtain the materials with synergetic or complementary behaviors between the CPs and the inorganic nanoparticles. Because of their semiconductor energy level structure, broad absorption spectra and very high stability under irradiation of solar light, CPs can be used to photosensitize semiconductor oxides and to obtain the novel photocatalysts response to the visible light.
     In this paper, several conducting polymer/semiconductor nanocomposies were prepared. TiO_2, ZnO and SnO_2 were chose as the representative of semiconductor oxides. PANI, PTh and PPy were chose as the representative of conducting polymers. The crystal structure, surface morphology, absorption spectra and the thermic stability of the products were investigated by TG-DTA, XRD, XPS, TEM, SEM, AFM, FT-IR, UV-Vis, DRS, and GPC techniques. The photocatalytic activities of the nanocomposites were evaluated by different process. The photosensitive mechanism was also studied. The synthesis approaches used in this work include sol-gel method, solid-state technique, microwave irradiation means, in-suit polymerization and emulsion polymerization. The main results from those studies are summarized as following:
     1. PANI/TiO_2-Fe~(3+) nanocomposite was synthesized by sol-gel and in-suit polymerization methods. The photocatalytic activity of products was evaluated by the degradation of methyl orange.
     (1) The TG-DTA and XRD analysis indicated that pure and well crystalline anatase TiO_2 can be obtained at 500℃. Doping Fe~(3+) can improve the aggregation and inhibit the growth of TiO_2 nanoparticles. The average grain sizes were 18 nm and 10 nm for TiO_2 and TiO_2-Fe~(3+) nanopowders, respectively. The TEM and AFM shown that PANI/TiO_2-Fe~(3+) nanocomposite had a core-shell structure with TiO_2 as core and PANI as shell. The average grain size was 25 nm.
     (2) Compare with pure PANI, the IR absorbability of PANI/TiO_2-Fe~(3+) shifted slightly to the lower wavenumber, and the heat decomposition temperature of PANI/TiO_2-Fe~(3+) raised 180℃.
     (3) In the presence of PANI/TiO_2-Fe~(3+) nanocomposite as photocatalyst, the degradation rate of methyl orange was 70.3% under sunlight irradiation within 30 min, and the apparent rate constant was 5.64×10~(-2) which was better than that of the P25.
     (4) Higher conduction band potential of PANI than TiO_2 was the main reason for the enhanced photocatalytic activity.
     2. A PANI/TiO_2 composite film deposited on the glass surface was prepared by sol-gel dip-coating technique and in-suit polymerization method. The photocatalytic activity of the products was evaluated by the degradation of rhodamine-B.
     (1) The AFM images show that the TiO_2 film consisted of cuboid shape and anatase phase TiO_2 nanoparticles. The average grain size of TiO_2 in the film is about 20 nm. After coating with PANI, the shape of the particle changed into irregular sphericity and the size is increased up to about 35 nm in diameter.
     (2) UV-vis spectroscopy analysis indicated that the absorption edges of the thin films were 370 nm for TiO_2, and 390 nm for PANI/TiO_2, respectively. A movement of approximately 20 nm towards the longer wavelength region was obtained from the coating of PANI on the surface of TiO_2. The band gap of PANI/TiO_2 film was 3.18 eV. XPS analysis showed that the ration of N~+/N in PANI/TiO_2 was 0.63, which was higher than that of 0.5 in bulk PANI.
     (3) In the presence of PANI/TiO_2 nanocomposite film as photocatalyst, the degradation rate of rhodamine-B was 67.1 % under sunlight irradiation within 120 min and the activation energy of the reaction reduced 3.415 kJ·mol~(-1).
     3. PTh/ZnO nanocomposite was synthesized by solid-state reaction method. The photocatalytic activity of the products was evaluated by the degradation of polyethylene film.
     (1) ZnO, PTh and PTh/ZnO nanopowders were prepared by solid-state reaction method withing 30 min, respectively. The shapes of the products were sphericity, whiskers and rodlike particles for ZnO, PTh and PTh/ZnO nanopowders, respectively.
     (2) Compare with the pure PTh, the heat decomposition temperature of PTh/ZnO raised 153℃. PTh/ZnO had stronger light absorbability than ZnO and PTh between 200 nm and 600 nm. The DRS analysis shown that the polymerization degree of PTh in nanocomposite was 9.
     (3) In the presence of PTh/ZnO nanocomposite as photocatalyst, the mass loss of PE films was 31.2% under UV irradiation (λ=253.7 nm) for 240 h. The AFM micrograph of the PE film after photodegradation showed a large number of pits on the film surface and finally disintegrated into powders.
     4. PPy/SnO_2/CA nanocomposite film was synthesized by microwave irradiation and emulsion polymerization methods and using cellulose acetate as film former.
     (1) The SnO_2 nanoparticles was prepared rapidly by microwave irradiation method and the average grain size was 13 nm. The TEM observation showed that PPy/SnO_2 nanocomposite had a core-shell structure with SnO_2 as core and PPy as shell. The thickness of the shell was 17 nm.
     (2) Compare with pure PPy, the heat decomposition temperature of PPy/SnO_2 raised 100℃. The UV absorbability of PPy/SnO_2 shifted slightly to the lower wavenumber.
     (3) In the presence of PPy/SnO_2/CA nanocomposite film as photocatalyst, the polymerization of MMA was happened under fluorescence light irradiation. The number-average molecular weight of the PMMA was 1.3×10~5 and the distribution index was 1.06. Higher conduction band potential of PPy than SnO_2, donor strength of SO_3~(2-) and acceptor strength of H~+ induced the polymerization of MMA.
引文
[1] A. Fujishima and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode [J], Nature, 1972, 238(5358): 37-38
    [2] C. He, Y. Xiong, D. Shu, X. H. Zhu and X. Z. Li. Preparation and photoelectrocatalytic activity of Pt(TiO_2)-TiO_2 hybrid films [J], Thin Solid Films, 2006, 503(1): 1-7
    [3] Y. Nakanishi and T. Imae. Preparation of siloxy focal dendron-protected TiO_2 nanoparticles and their photocatalysis [J], J. Coll. Interf. Sci., 2006, 297(1): 122-129
    [4] G. Colon, J. M. S. Espana, M. C. Hidalgo and J. A. Navio. Effect of TiO_2 acidic pre-treatment on the photoeatalytie properties for phenol degradation [J], J.Photochem. Photobiol. A.,, 2006, 179(1): 20-27
    [5] S.N. Frank, A. J. Bard. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder [J], J. Am. Chem. Soc.; 1977, 99(1): 303-304
    [6] G. N. Schrauzer, T. D. Guth. Photocatalytic reactions. 1. Photolysis of water and photoreduction of nitrogen on titanium dioxide [J], J.. Am. Chem. Soc.; 1977, 99(22): 7189-7193
    [7] B. Kraeutler, A. J. Bard. Heterogeneous photocatalytic preparation of supported catalysts. Photodeposition of platinum on titanium dioxide powder and other substrates [J], J. Am. Chem. Soc.; 1978, 100(13): 4317-4318
    [8] A.L. Pruden and D. F. Ollis. Photoassisted heterogeneous catalysis: The degradation of trichloroethylene in water [J], J. Catal., 1983, 82(2): 404-417
    [9] T. Matsunaga, R. Tomoda, T. Nakajima, H. Wake. Photoelectrochemical sterilization of microbial cells by semiconductor powder [J], FEMS Microbiol. Lett., 1985, 29(2): 211-214
    [10] A. Fujishima, J. Ootsuki, T. Yamashita, S. Hayakawa. Behavior of Tumor Cells on Photoexcited Semiconductor Surface [J], Photomed Photobiol., 1986, 8(1): 45-46
    [11] B. O'Regan, M. Gratzel. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO_2 films [J], Nature, 1991, 353(6346): 737-740
    [12] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe. Light-induced amphiphilic surfaces [J], Nature, 1997, 388(6641): 431-432
    [13] O. Carp, C. L. Huisman, A. Reller. Photoinduced reactivity of titanium dioxide [J], Prog. Solid State Chem., 2004, 32(1): 33-177
    [14] K. Kabra, R. Chaudhary, and R. L. Sawhney. Treatment of Hazardous Organic and Inorganic Compounds through Aqueous-Phase Photocatalysis: A Review [J], Ind. Eng. Chem. Res., 2004, 43(24): 7683-7696
    [15] A.R. Sousa, K. L. E. Amorim, E. S. Medeiros, T. J. A. Melo and M. S. Rabello. The combined effect of photodegradation and stress cracking in polystyrene [J], Polym. Degrad. Stab., 2006, 91(7): 1504-1512
    [16] D. Chatterjee, S. Dasgupta and N. N. Rao. Visible light assisted photodegradation of halocarbons on the dye modified TiO_2 surface using visible light [J], Sol. Energy Mater. Sol. Cells, 2006, 90(7-8): 1013-1020
    [17] D. Chen, A. K. Ray. Removal of toxic metal ions from wastewater by semiconductor photocatalysis [J], Chem. Eng. Sci., 2001, 56(4): 1561-1570
    [18] A. Karthikeyan and R. M. Almeida. Crystallization of SiO_2-TiO_2 glassy films studied by atomic force microscopy [J], J. Non-Cryst Solids, 2000, 274(1-3): 169-174
    [19] T. Corrales, C. Peinado, N. S. Allen, M. Edge, G. Sandoval and F. Catalina. A chemiluminescence study of micron and nanoparticle titanium dioxide: effect on the thermal stability of metallocene polyethylene [J], J. Photochem, Photobiol. A., 2003, 156(1-3): 151-160
    [20] 姚超,杨光,林西平,杨绪杰,陆路德,汪信.水热条件对板钛矿相二氧化钛微结构的影响[J],无机化学学报,2005,21(12):1821-1826
    [21] J. F. Zhu, W. Zheng, B. He, J. L. Zhang, M. Anpo. Characterization of Fe-TiO_2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water [J], J. Mol. Catal. A., 2004, 216(1): 35-43
    [22] K. Okamoto, Y. Yamamoto, H. Tanaka, M. Tanaka, A. Itaya. Heterogeneous photoeatalytic decomposition of phenol over anatase powder [J], Bull. Chem. Soc. Jpn. 1985, 58(7): 2015-2022
    [23] Q.H. Zhang, L. Gao and J. K. Guo. Effects of calcination on the photocatalytie properties of nanosized TiO_2 powders prepared by TiCl_4 hydrolysis [J], J. Appl. Catal., B., 2000, 26(3): 207-215
    [24] A. Sclafani, L. Palmisano, M. Schiavello. Influence of the preparation methods of titanium dioxide on the photocatalytic degradation of phenol in aqueous dispersion [J], J. Phys. Chem., 1990, 94(2): 829-832
    [25] T. Ohno, K. Tokieda, S. Higashida, M. Matsumura. Synergism between rutile and anatase TiO_2 particles in photocatalytie oxidation of naphthalene [J], Appl. Catal., A., 2003, 244(2): 383-391
    [26] D.C. Hurum, A. G. Agrios, K. A. Gray, T. Rajh, M. C. Thunauer. Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO_2 Using EPR [J], J. Phys. Chem. B., 2003, 107(19): 4545-4549
    [27] W. Liu, A. P. Chen, J. P. Lin, Z. M. Dai, W. Qiu, M. Q. Zhu, U. Shouji. Preparation of controllable crystalline nano-TiO_2 by homogeneous hydrolysis [J], Chem. Lett., 2004, 33(4): 390-391
    [28] H. M. Luo, C. Wang, Y. S. Yan. Synthesis of Mesostmctured Titania with Controlled Crystalline Framework [J], Chem. Mater., 2003, 15 (20): 3841-3846
    [29] M.C. Yan, F. Chen, J. L. Zhang, and M. Anpo. Preparation of Controllable Crystalline Titania and Study on the Photoeatalytie Properties [J], J. Phys. Chem. B, 2005, 109(18): 8673-8678
    [30] A. Pottier, C. Chaneac, E. Tronc, L. Mazerolles and J. P. Jolivet. Synthesis of brookite TiO_2 nanoparticles by thermolysis of TiCl_4 in strongly acidic aqueous media [J], J. Mater. Chem., 2001, 11(4): 1116-1121
    [31] 杨少凤,罗薇,朱燕超.单一板钛矿相TiO_2微晶的制备[J],高等学校化学学报,2003,24(11):1933-1936
    [32] R. J. Xie, N. Hirosaki, M. Mitomo. Photoluminescence of cerium-doped alpha-SiAlON materials [J], J. Am. Ceram. Soc., 2004, 87(7): 1358-1361
    [33] W. J. Albery, P. N. Bartlett. The transport and kinetics of photogenerated carders in colloidal semiconductor electrode particles [J]. J. Electrochem. Soc., 1984, 131(3): 315-325
    [34] Y. Teraoka, T. Harada, T. lwasald, T. Ikeda and S. Kagawa. Selective Reduction of Nitrogen Monoxide with Hydrocarbons over SnO_2 Catalyst [J], Chem. Lett., 1993, 22(5): 773-776
    [35] M. I. Litter. Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems [J], Appl. Catal. B., 1999, 23(2-3): 89-114
    [36] H. Zhang, R. L. Penn, R. J. Hamers, J. F. Banfield. Enhanced Adsorption of Molecules on Surfaces of Nanocrystalline Particles [J], J. Phys. Chem. B., 1999, 103(22): 4656-4662
    [37] 张青红,高濂,郭景坤.四氯化钛水解法制备纳米氧化钛超细粉体[J],无机材料学报,2000,15(1):21-25
    [38] M. Gratzel. Heterogeneous Photochemical Electron Transfer [M], CRC Press, Baton Rouge, FL, 1998
    [39] A. Hagfelda, M. G-ratzel. Light-Induced Redox Reactions in Nanocrystalline Systems [J], Chem. Rev., 1995, 95(1): 49-68
    [40] B. A. Korgel, Monbouquette, H. G. Quantum. Confinement Effects Enable Photocatalyzed Nitrate Reduction at Neutral pH Using CdS Nanocrystals [J], J. Phys. Chem. B., 1997, 101(25): 5010-5017
    [41] J. M. Herrmann, P. Pichat, P. Heterogeneous Photocatalysis, Oxidation of Halide Ions by Oxygen in Ultraviolet Irradiated Aqueous Suspension of Titanium Dioxide [J], J. Chem. Soc., Faraday Trans., 1980, 76(5): 1138-1140
    [42] W. Choi, S. J. Hong, Y. Chang, Y. Cho. Photocatalytic Degradation of Polychlorinated Dibenzo-p-dioxins on TiO_2 Film under UV or Solar Light Irradiation [J], Environ. Sci. Technol., 2000, 34(22): 4810-4815
    [43] G. C. Glatzmaier, T. A. Milne, C. Tyner, J. Sprung. Innovative Solar Technologies for Treatment of Concentrated Organic Wastes [J], Sol. Energy Mater., 1991, 24(1-4): 672-673
    [44] 袭著革,李君文,王福玉.环境卫生纳米应用技术[M],北京:化学工业出 版社,2004,89
    [45] H. Shirayama, Y. Tohezo, S. Taguchi. Photodegradation of chlorinated hydrocarbons in the presence and absence of dissolved oxygen in water [J], Water Res., 2001, 35(8): 1941-1950
    [46] Y.B. Wang, C. S. Hong. TiO_2 Mediated Photomineralization of 2-Chlorobiphenyl: The Role of Oxygen [J], Water Res., 2000, 34(10): 2791-2797
    [47] S. Preis, M. Krichevskaya, A. Kharachenko. Photocatalytic oxidation of Aromatic Amino compounds in aqueous solutions and ground water from abandoned military bases [J], Water Sci. Technol. 1997, 35(4): 265-272
    [48] K. Okamoto, Y. Yamamoto, H. Tanaka, M. Tanaka, A. Itaya. Heterogeneous photocatalytic decomposition of phenol over TiO_2 powder [J], Bull. Chem. Soc. Jpn. 1985, 58(7): 2015-2022
    [49] J. Chen, W. H. Rulkens, H. Bruning. Photochemical Elimination of Phenols & COD in Industrial Wastewaters [J], Water Sci. Technol., 1997, 35(4): 231-238
    [50] S. Kumar, A. P. Davis. Heterogeneous Photocatalytic Oxidation of Nitrotoluenes [J], Water Environ. Res., 1997, 69(7): 1238-1245
    [51] W. Choi, M. R. Hoffmann. Photoreductive Mechanism of CCl_4 Degradation on TiO_2 Particles and Effects of Electron Donors [J], Environ. Sci. Technol., 1995, 29(6): 1646-1654
    [52] J. Chang, Y. Chan, M. Lu. Photocatalytic oxidation of chlorophenols in the presence of manganese ions [J], Water Sci. Technol., 1999, 30(10-11): 223-2288
    [53] C. Minero, G. Mariella, V. Maurino, et al. Photocatalytic Transformation of Organic Compounds in the Presence of Inorganic Ions. 2. Competitive Reactions of Phenol and Alcohols on a Titanium Dioxide-Fluoride System [J], Langmuir, 2000, 16(23): 8964-8972
    [54] 吴兴惠,赵景畅,柳清菊.光催化剂可见光化研究进展[J],云南大学学报(自然科学版),2003,25(3):232-239
    [55] 程萍,顾明元,金燕苹.TiO_2光催化剂可见光化研究进展[J],化学进展,2005,17(1):8-14
    [56] W. Choi, A. Termin, M. R. Hoffmann. The Role of Metal Ion Dopants in Quantum-Sized TiO_2: Correlation between Photoreactivity and Charge Carder Recombination Dynamics [J], J. Phys. Chem., 1994, 98(51): 13669-13679
    [57] 刘畅,暴宁钟,杨祝红,陆小华.过渡金属离子掺杂改性TiO_2的光催化性能研究进展[J],催化学报,2001,22(2):215-218
    [58] H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, K. Ikeue and M. Anpo. Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts [J], J. Photochem. Photobiol. A., 2002, 148(1-3): 257-261
    [59] Y. Yang, X. J. Li, J. T. Chen and L.Y. Wang. Effect of doping mode on the photocatalytic activities of Mo/TiO_2 [J], J. Photochem. Photobiol. A., 2004, 163(3): 517-522
    [60] Y.B. Xie, C. W. Yua. Visible-light responsive cerium ion modified titania sol and nanocrystallites for X-3B dye photodegradation [J], Appl. Catal. B., 2003, 46(2): 251-259
    [61] S. Yoshiaki, K. Hiroharu, U. Tsuyoshi, et al. Preparation of high quality nitrogen doped TiO_2 thin film as a photocatalyst using a pulsed laser deposition method [J], Thin Solid Films, 2004, 453-454:162-166
    [62] D. Li, H. Haneda, S. Hishita, et al. Visible-light-driven nitrogen-doped TiO_2 photocatalysts: effect of nitrogen precursors on their photocatalysis for decomposition of gas-phase organic pollutants [J], Mater. Sci. Eng. B., 2005, 117(1): 67-75
    [63] D. Li, H. Haneda, S. Hishita, N. Ohashi and N. K. Labhsetwar. Fluorine-doped TiO_2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde [J], J.. Fluorine. Chem., 2005, 126(1): 69-77
    [64] 王传义,刘春艳,沈涛.半导体光催化剂的表面修饰[J],高等学校化学学报,1998,19(12):2013-2019
    [65] H. Osora, W. J. Li, L. Otero and M. A. Fox. Photosensitization of nanocrystalline TiO_2 thin films by a polyimide bearing pendent substituted Ru(bpy)_3~(+2) groups [J], J. Photochem. Photobiol. B., 1998, 43(3): 232-238
    [66] K. Tennakone, J. Bandara. Photocatalytic activity of dye-sensitized tin(Ⅳ) oxide nanocrystalline particles attached to zinc oxide particles: long distance electron transfer via ballistic transport of electrons across nanocrystallites [J], Appl. Catal. A., 2001, 208(1-2): 335-341
    [67] L. Zang, C. Lange, I. Abraham, S. Storck, W. F. Maier, H. Kisch. Amorphous Microporous Titania Modified with Platinum(Ⅳ) Chloride-A New Type of Hybrid Photocatalyst for Visible Light Detoxification [J], J. Phys. Chem. B., 1998, 102(52): 10765-10771
    [68] 李卫华,郝彦忠,王艳芹,乔学斌,高恩勤,余赤贞,杨迈之,蔡生民.PbS/Ru(Ⅱ)配合物敏化Cd(Ⅱ)掺杂TiO_2纳米晶电极的光电化学[J],应用化学,1999,16(1):6-10
    [69] 李卫华,郝彦忠,王艳芹,乔学斌,杨迈之,蔡生民.硫化镉/Ru(Ⅱ)配合物复合敏化ZnO纳米晶多孔膜电极的光电化学[J],北京大学学报(自然科学版),1999,35(4):446-452
    [70] R. Abe, K. Sayama, H. Arakawa. Efficient hydrogen evolution from aqueous mixture of I~- and acetonitrile using a merocyanine dye-sensitized Pt/TiO_2 photocatalyst under visible light irradiation [J], Chem. Phys. Lett., 2002, 362(5-6): 441-444
    [71] Y. Bessekhouad, D. Robert and J. V. Web. Bi_2S_3/TiO_2 and CdS/TiO_2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant [J], J. Photochem. Photobiol. A., 2004, 163(3): 569-580
    [72] S.C. Lo, C. F. Lin, C. H. Wu and P. H. Hsieh. Capability of coupled CdSe/TiO_2 for photocatalytic degradation of 4-chlorophenol [J]. J. Hazard Mater, 2004, 114(1-3): 183-190
    [73] X. Li, F. Li, C. Yang, W. Ge. Photocatalytic activity of WO_x-TiO_2 under visible light irradiation [J], J. Photochem. Photobiol. A., 2001, 141(2): 209-217
    [74] S. Klosel, D. Raftery. Visible light driven V-doped TiO_2 photocatalyst and its photooxidation of ethanol [J], J. Phys. Chem. B., 2001, 105(14): 2815-2819
    [75] 藤嶋昭.光触媒开发最新动向[J].工业材料,2002,50(7):19-21
    [76] 王剑波,卢寿慈.TiO_2光催化剂离子掺杂改性研究现状与展望[J],化工新 型材料,2005,33(5):49-51
    [77] 杉原慎一,井原辰彦.酸素欠陷型可视光应答型酸化光触媒[J],工业材料,2002,50(7):33-35
    [78] W.J. Chun, A. Ishikawa, H. Fujisawa, T. Takata, J. N. Kondo, M. Hara, M. Kawai, Y. Matsumoto, K. Domen. Conduction and Valence Band Positions of Ta_2O_5, TaON, and Ta_3N_5 by UPS and Electrochemical Methods [J], J. Phys. Chem. B., 2003, 107(8): 1798-1803
    [79] A. Kasahara, K. Nukumizu, G. Hitoki, T. Takata, J. N Kondo, M. Ham, H. Kobayashi, K. Domen. Photoreactions on LaTiO_2N under Visible Light Irradiation [J], J. Phys. Chem. A., 2002, 106(29): 6750-6753
    [80] M. Yanagisawa, S. Uchida and T. Sato. Synthesis and photochemical properties of Cu~(2+) doped layered hydrogen titanate [J], Int. J. Inorg. Mater., 2000, 2(4): 339-346
    [81] J. Yin, Z. Zou, J. Ye. Photophysical and Photocatalytic Properties of MIn_(0.5)Nb_(0.5)O_3 (M=Ca, Sr, and Ba) [J], J. Phys. Chem. B., 2003, 107(1): 61-65
    [82] J. Yin, Z. Zou, J. Ye. A Novel Series of the New Visible-Light-Driven Photocatalysts MCo_(1/3)Nb_(2/3)O_3 (M=Ca, Sr, and Ba) with Special Electronic Structures [J], J. Phys. Chem. B., 2003, 107(21): 4936-4941
    [83] T. Takata, A. Tanaka, K. Domen, et al. Recent progress of photocatalysts for overall water splitting [J], Catal. Today, 1998, 44(1-4): 17-26
    [84] Z. G. Zou, J. H. Ye, K. Sayama, H. Arakawa. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst [J], Nature, 2001, 414(6864): 625-627
    [85] J.H. Ye, Z. G. Zou, M. Oshikid. A novel hydrogen-evolving photocatalyst InVO_4 active under visible light irradiation [J], Chem. Phys. Lett., 2002, 356(3-4): 221-226
    [86] D. F. Wang, Z. G. Zou, J. H. Ye. A new spinel-type photocatalyst BaCr_2O_4 for H_2 evolution under UV and visible light irradiation [J], Chem. Phys. Lett., 2003, 373(1-2): 191-196
    [87] C. M. Wang, T. E. Mallouk. New photochemical method for selective fluorination of organic molecules [J], J. Am. Chem. Soc., 1990, 112(5): 2016-2018
    [88] D. Worsley, A. Mills, K. Smith, M. G. Hutchings. Acid Enhancement Effect in the Clean Oxidation of Toluenes Photocatalyzed by TiO_2 [J], J. Chem. Soc. Chem. Commun., 1995, 1119-1120
    [89] R. Bauer, G. Waldner, H. Fallmann, S. Hager, M. Klare, T. Krulzler, et al. The photo-fenton reaction and the TiO_/UV process for waste water treatment-novel developments [J], Catal. Today, 1999, 53(1): 131-144
    [90] R. Andreozzi, V. Caprio, A. Insola, R. Marotta. Advanced oxidation processes (AOP) for water purification and recovery [J], Catal. Today, 1999, 53(1): 51-59
    [91] Y. Ku, I. L. Jung. Photocatalytic Reduction of Cr(Ⅵ) in Aqueous Solutions by UV Irradiation with the Presence of Titanium Dioxide [J], Water Res., 2001, 35(1): 135-142
    [92] G. Colon, M. C. Hidalgo, J. A. Navio. Photocatalytic deactivation of comercial TiO_2 samples during simultaneous photoreduction of Cr(Ⅵ) and photooxidation of salicylic acid [J], J. Photochem. Photobiol. A., 2001, 138(1): 79-85
    [93] S. G. Schrank, H. J. Jose, R. F. P. M. Moreira. Simultaneous photocatalytic Cr(Ⅵ) reduction and dye oxidation in a TiO_2 slurry reactor [J], J. Photochem. Photobiol. A., 2002, 147(1): 71-76
    [94] X.L. Wang, S. O. Pehkonen, A. K. Ray. Photocatalytic reduction of Hg(Ⅱ) on two commercial TiO_2 catalysts [J], Electrochim. Acta., 2004, 49(9-10): 1435-1444
    [95] J. Bussi, M. Ohanian, M. Vazquez, E. A. Dalchiele. Photocatalytic Removal of Hg from Solid Wastes of Chlor-Alkali Plant [J], J. Environ. Eng., 2002, 128(8): 733-739
    [96] S. Yamazaki, S. Iwai, J. Yano, H. K. Taniguchi. Studies of Reductive Deposition of Copper(Ⅱ) Ions Photoassisted by Titanium Dioxide [J], J. Phys. Chem.A., 2001, 105(50): 11285-11290
    [97] S. Devahasdin, C. Fan, Jr. , K. Li and D. H. Chen. TiO_2 photocatalytic oxidation of nitric oxide: transient behavior and reaction kinetics [J], J. Photochem. Photobiol. A., 2003, 156(1-3): 161-170
    [98] T. Ibusuki and K. Takeuchi. Removal of low concentration nitrogen oxides through photoassisted heterogeneous catalysis [J], J. Mol. Catal., 1994, 88(1): 93-102
    [99] J. A. Ibanez, M. I. Litter and R. A. Pizarro. Photocatalytic bactericidal effect of TiO_2 on Enterobacter cloacae: Comparative study with other Gram (-) bacteria [J], J. Photochem. Photobiol. A., 2003, 157(1): 81-85
    [100] A. G. Rincon, C. Pulgarin. Photocatalytical inactivation of E. coli: effect of (continuous-intermittent) light intensity and of (suspended-fixed) TiO_2 concentration [J], Appl. Catal. B., 2003, 44(3): 263-284
    [101] 何天白,胡汉杰.海外高分子科学的新进展[M],北京:化学工业出版社,1997,140
    [102] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang and A. J. Heeger. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)_x [J], J. Chem. Soc., Chem. Commun., 1977, 16(5): 578-580
    [103] 黄汉生.国外导电聚合物的开发动向[J],化工新型材料,2003,31(10):37-40
    [104] H. Naarmann and N. Theophilou. New process for the production of metal-like, stable polyacetylene [J], Synth. Met., 1987, 22(1): 1-8
    [105] 李永舫.导电聚合物[J],化学进展,2002,14(3):207-211
    [106] 钱人元,曹镛.有机晶体中的电子过程[M],上海:上海科学技术出版社,1987.255-258
    [107] 万梅香,李永舫.有机固体[M],上海:上海科学技术出版社,1999,89-136
    [108] K. Lee, A. J. Heeger, Y. Cao. Reflectance of polyaniline protonated with camphor sulfonic acid: Disordered metal on the metal-insulator boundary [J], Phys. Rev. B., 1993, 48(20): 14884-14891
    [109] 赵文元,王亦军.功能高分子材料化学[M],化学工业出版社,北京:1996,98
    [110] J. C. Scott, P. Pfluger, M. T. Krounbi, and G. B. Street. Electron-spin-resonance studies of pyrrole polymers: Evidence for bipolarons [J], Phys. Rev. B., 1983, 28(4): 2140-2145
    [111] W. R. Salaneck, I. Lundstrom. W. S. Huang and A. G. Macdiarmid. A twodimensional-surface 'state diagram' for polyaniline [J], Synth. Met., 1986, 13(4): 291-297
    [112] 杨水金,童文龙,孙聚堂.硅钨酸掺杂聚苯胺催化剂催化合成丁酮乙二醇缩酮[J],化学试剂,2005,27(2):121-123
    [113] 苏育志.聚有机二硫化物储能材料的电化学性能研究[J],化学通报,2001,(2):95-101
    [114] K. Naoi, M. Menda, H. Ooike and N. Oyama. An enhanced redox process of disulfide compounds at polyaniline film electrode [J], J. Electroanal. Chem., 1991, 318(1-2): 395-398
    [115] E. M. Geniees and S. Picart. Is the use of polyaniline associated with sulfur compounds of interest for battery electrodes? [J], Synth. Met., 1995, 69(1): 165-166
    [116] K. Naoi, Y. Iwamizu, M. Mori, Y. Naruoka. Enhancement of Electrochemical Performance of Disulfide Using Polyvinylpyridine Film [J], J. Electrochem. Soc., 1997, 144(4): 1185-1188
    [117] T. Tatsuma, H. Matsui, E. Shouji, N. Oyama. Reversible Electron Transfer Reaction between Polyaniline and Thiol/Disulfide Couples [J], J. Phys. Chem., 1996, 100(33): 14016-14021
    [118] S. Ye, D. Belanger. A New Polypyrrole/Disulfide Electrode Studied by Electrochemistry and the Electrochemical Quartz Crystal Microbalance [J], J. Phys. Chem., 1996, 100(39): 15848-15855
    [119] G. Tourillon and F. Gamier. Inclusion of metallic aggregates in organic conducting polymers. A new catalytic system, [poly(3-methylthiophene)-Ag-Pt], for proton electrochemical reduction [J], J. Phys. Chem., 1984, 88(22): 5281-5285
    [120] H. Laborde, J. M. Leger, C. Lamy. Electrocatalytic oxidation of methanol and C1 molecules on highly dispersed electrodes Part 1: Platinum in polyaniline [J], J. Appl. Electrochem., 1994, 24(3): 219-226
    [121] T. F Sinead, B. B. Cannel. Oxidation and photo-induced oxidation of glucose at a polyaniline film modified by copper particles [J], Electrochim. Acta, 2004, 49(25): 4497-4503
    [122] A. Drebnldewicz, M. Hasik, M. Kloc, Pd-PANI: preparation and catalytic properties [J], Synth. Met., 1999, 102(3): 1307-1308
    [123] 吴婉群,王月丰,范例,王光荣,李坤兰,刘芹.铂微粒修饰的聚苯胺薄膜电极对甲醛氧化的电催化作用[J].应用化学,1995,12(1):68-72
    [124] 李五湖,陈琳琳,钟起玲.钯微粒修饰聚苯胺电极对甲酸氧化的电催化研究[J],应用化学,1993,10(4):55-57
    [125] R. C. M. Jakobs, L. J. J. Janssen and E. Barendrecht. Hydroquinone oxidation and p-benzoquinone reduction at polypyrrole and poly-N-methylpyrrole electrodes [J],. Electrochem Acta, 1985, 30(10): 1313-1321
    [126] 王戈戈,刘兴芝,赵瑾,刘尚长,臧树良.新型铼系聚砒咯络合物(PPREC)结构与吸附小分子行为的研究[J],分子科学学报,2000,16(2):70-76
    [127] 曹中秋,吴林友,刘尚长,闫丽静.H_2、O_2和CO在PPRUC络合物上吸附的DV-Xα研究[J],分子科学学报,1999,15(1):53-58
    [128] H. Hammache, L. Makhloufi, B. Saidani, Electrocatalytic oxidation of methanol on PPy electrode modified by gold using the cementation process [J], Synth. Met., 2001, 123(3): 515-512
    [129] B. Z. Tang, Y. H. Geng, J. W. Y. Lain, B. S. Li, X. B. Jing, X. H. Wang, F. S. Wang, A. B. Pakhomov, and X. X. Zhang. Processible Nanostructured Materials with Electrical Conductivity and Magnetic Susceptibility: Preparation and Properties of Maghemite/Polyaniline Nanocomposite Films [J], Chem. Mater., 1999, 11(6): 1581-1589
    [130] A. Sellinger, P. M. Weiss, A. Ngnyen, Y. F. Lu, R. A. Assink, W. L. Gong, C. J. Brinker. Continuous self-assembly of organic-inorganic nanocomposite coatings that mimic nacre [J], Nature, 1998, 394(6690): 256-260
    [131] 耿丽娜,王淑荣,李鹏,赵英强,张守民,吴世华.聚吡咯/二氧化锡杂化材料的制备及气敏性研究[J],无机化学学报,2005,21(7):977-981
    [132] X. M. Sui, Y. Chu., S. X. Xing, M. Yu, C. Z. Liu, Self-organization of spherical PANI/TiO_2 nanocomposites in reverse micelles [J], Colloids and Surf. A., 2004, 251(1): 103-107
    [133] 周慧,陶杰.聚苯胺/纳米TiO_2复合粒子的制备[J],云南大学学报(自然科学版),2005,27(3):181-183
    [134] M. D. Lu, S. M. Yang. Syntheses of polythiophene and titania nanotube composites [J], Synth. Met., 2005, 154(1): 73-76
    [135] P. R. Somani, R. Marimuthu, U. P. Mulik, S. R. Sainkar, D. P. Amalnerkar. High piezoresistivity and its origin in conducting polyanilinerTiO_2 composites [J], Synth. Met., 1999, 106(1): 45-52
    [136] 魏亦军,褚道葆,姚文俐.纳米TiO_2/聚苯胺复合膜电极的制备及其电化学性能[J],合成化学,2004,12(1):69-72
    [137] N. Ballav, M. Biswas. Conductive composites of polyaniline and polypyrrole with MoO_3 [J], Mater. Lett., 2006, 60(4): 514-517
    [138] 包蕾,姜继森.磁性微粒-导电高分子纳米复合材料的研究进展[J],材料科学与工程学报,2005,23(6):924-928
    [139] K. Suri, S. Annapoorni, R. P. Tandon, N. C. Mehra. Nanocomposite of polypyrrole-iron oxide by simultaneous gelation and polymerization [J], Synth. Met., 2002, 126(2): 137-142.
    [140] J. H. Fendler, F. C. Meldrum. The Colloid Chemical Approach to Nanostructured Materials [J], Adv. Mater., 1995, 7(7): 607-632
    [141] T. Yamaki, R. Shinohara and K. Asai. Formation of hybrid monolayers and Langmuir-Blodgett-type multilayers from ammonium cations and TiO_2 crystalline nanosheets [J], Thin Solid Films, 2001, 393(1-2): 154-160
    [142] E. Uggerud and P. J. Derrick. Theory of collisional activation of macromolecules. Impulsive collisions of organic ions [J], Phys. Chem., 1991, 95(3): 1430-1436
    [143] 杨柏,黄金满,郝恩才,沈家骢.半导体纳米微粒在聚合物基体中的复合与组装[J],高等学校化学学报,1997,18(7):1219-1226
    [144] Y. Wang and N. Herron. Optical properties of cadmium sulfide and lead(Ⅱ) sulfide clusters encapsulated in zeolites [J], J. Phys. Chem., 1987, 91(2): 257-260
    [145] A. I. Ekimov, A. I. L. Efros and A. A. Onushchenko. Quantum size effect in semiconductor microcrystals [J], Solid State Commun., 1985, 56(11): 921-924
    [146] 刘少琼,于黄中,黄河,熊予莹.TiO_2纳米微粒对聚苯胺性能的影响[J],高等学校化学学报,2002,23(1):161-163
    [147] N. I. Kovtyukhova, A. D. Gorchinskiy, C. Warksa. Self-assembly of nanostructured composite ZnO/Polyaniline films [J], Mater. Sci. Eng. B., 2000, 69-70:424-430
    [148] 郑志新,席燕燕,董平,黄怀国,周剑章,吴玲玲,林仲华.ZnO-聚苯胺同轴纳米线及其列阵的制备和表征[J],电化学,2002,8(2):154-159
    [149] 郝彦忠,武文俊.纳米结构TiO_2/聚3-甲基噻吩多孔膜电极光电化学研究[J],化学学报,2005,63(3):215-218
    [150] F. Huguenin, R. M. Torresi, D. A. Buttry. Lithium Electroinsertion into an Inorganic-Organic Hybrid Material Composed from V_2O_5 and Polyaniline [J], J. Electrochem. Soc., 2002, 149(5): A546-A553
    [151] 王庚超,闾兴圣,苏静.绝缘聚合物对聚苯胺复合物导电性能的影响[J],功能高分子学报,2004,17(1):21-24
    [152] J. Harreld, H. P. Wong, B. C. Dave, B. Dunn and L. F. Nazar. Synthesis and properties of polypyrrole-vanadium oxide hybrid aerogels [J], J. Non-Cryst. Solids, 1998, 225(1): 319-324
    [153] G. R. Goward, F. Leroux and L. F. Nazar. Poly(pyrrole) and poly(thiophene)/vanadium oxide interleaved naaocomposites: positive electrodes for lithium batteries [J], Electrochem. Acta, 1998, 43(10-11): 1307-1313
    [154] W. Chen, Q. Xu, Y. S. Hu, L. Q. Mai and Q. Y. Zhu, Effect of modification by poly(ethylene oxide) on the reversibility of insertion/extraction of Li~+ ion in V_2O_5 xerogel films [J], J. Mater. Chem., 2002, 12(6), 1926-1929
    [155] X. W. Li, W. Chen, C. Q. Bian, J. B. He, N. Xu, G. Xue. Surface modification of TiO_2 nanopartiCles by polyaniline [J], Appl. Surf. Sci., 2003, 217(1): 16-22
    [156] Y. J. He. Preparation of polyaniline/nano-ZnO composites via a novel Pickering emulsion route [J], Powder Technol., 2004, 147(1): 59-63
    [1] A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode [J], Nature, 1972, 238(5358): 37-38
    [2] X.J. Guo, L. Yuan, Y. L. Qi, X. E. Li, W. Yang, and J. Z. Gao. Degradation of crystal violet using nanometer TiO_2 under the synergistic action of H_2O_2 and ultrasonic wave [J], Rare Metals, 2004, 23(4): 352-357
    [3] O. Carp, C. L. Huisman, and A. Relier. Photoinduced reactivity of titanium dioxide [J], Prog. SolidState Chem., 2004, 32(1-2): 33-177
    [4] J. G. Yu. TiO_2 thin film photocatalyst [J], Rare Metals, 2004, 23(4): 289-295
    [5] K. Demeestere, A. D. Visscher, J. Dewulf, M. V. Leeuwen, H. V. Langenhove. A new kinetic model for titanium dioxide mediated heterogeneous photocatalytic degradation of trichloroethylene in gas-phase [J]. Appl. Catal. B., 2004, 54(4): 261-274
    [6] 周仁贤,沈学优,徐敏,郑小明.Pt/TiO_2的光催化氧化性能[J],浙江大学学报(理学版),1999,26(3):73-76
    [7] E. Borgarello, J. Kiwi, M. Gratzel, E. Pelizzetti, M.Visca. Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles [J], J. Am. Chem. Soc., 1982, 104(11): 2996-3002
    [8] X. L. Yah, J. He, D. G. Evans, X. Duan, and Y. X. Zhu. Preparation, characterization and photocatalytic activity of Si-doped and rare earth-doped TiO_2 from mesoporous precursors [J], Appl. Catal. B: Environ., 2005, 55(4): 243-252
    [9] K.R. Gopidas, M. Bohorquez, P. V. Kamat. Photophysical and photochemical aspects of coupled semiconductors: charge-transfer processes in colloidal CdS-TiO_2 and CdS-AgI systems [J], J. Phys. Chem, 1990, 94(16): 6435-6440
    [10] B. O'Regan, M. Gratzel. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO_2 films [J], Nature, 1991, 353(6346): 737-740
    [11] B. T. Su, X. H. Liu, X. X. Peng, T. Xiao, Z. X. Su. Preparation and characterization of the TiO_2/polymer complex nanomaterial [J], Mater. Sci. Eng. A., 2003, 349(1): 59-62
    [12] E. T. Kang, K. G. Neoh and K. L. Tan. Polyaniline: a polymer with many interesting intrinsic redox states [J], Prog. Polym. Sci., 1998, 23(2): 211-324
    [13] H. Xia, Q. Wang. Ultrasonic Irradiation: A Novel Approach To Prepare Conductive Polyaniline/Nanocrystalline Titanium Oxide Composites [J], Chem. Mater., 2002, 14(5): 2158-2165
    [14] D. C. Schnitzler, M. S. Meruvia, I. A. Hummelgen, A. J. G. Zarbin. Preparation and Characterization of Novel Hybrid Materials Formed from (Ti,Sn)O_2 Nanoparticles and Polyaniline [J], Chem. Mater., 2003, 15(24): 4658-4665
    [15] B. H. Kim, J. H. Jung, S. H. Hong, J. Joo, A. J. Epstein, K. Mizoguchi, J. W. Kim, H. J. Choi. Nanocomposite of Polyaniline and Na~+-Montmorillonite Clay [J], Macromolecules, 2002, 35(4): 1419-1423
    [16] E. M. Genies, C. Tsinatavis. Electrochemical behaviour, chronoculmertric and kinetic study of the redox mechanism of polyaniline deposits [J], Electronal. Chem., 1996, 200(1):127-130
    [17] G. M. Alan, and J. E. Arthur. Secondary doping in polyaniline [J], Synth. Met., 1995, 69(1-3): 85-92
    [18] S. G. Oh, S. S. Im. Electroconductive polymer nanoparticles preparation and characterization of PANI and PEDOT nanoparticles [J], Curr. Appl. Phys., 2002, 2(4): 273-277
    [19] P. K. Khanna, S. P. Lonkar, V. V. V. S. Subbarao, K. W. Jun. Polyaniline-CdS nanocomposite from organometallic cadmium precursor [J], Mater. Chem. Phys., 2004, 87(1): 49-52
    [20] P. R. Somani, R. Marimuthu, U. P. Mulik, S. R. Sainkar, D. P. Amalnerkar. High piezoresistivity and its origin in conducting polyaniline/TiO_2 composites [J], Synth. Met., 1999, 106(1): 45-52
    [21] Y. J. He. Preparation of polyaniline/nano-ZnO composites via a novel Pickering emulsion route [J], Powder Technol., 2004, 147(1): 59-63
    [22] J. E. Park, S. G. Park, A. Koukitu, O. Hatozaki and N. Oyama. Electrochemical and chemical interactions between polyaniline and palladium nanoparticles [J], Synth. Met., 2004, 141 (2): 265-269
    [23] R. L. N. Chandrakanthi and M. A. Careem. Preparation and characterization of CdS and Cu_2S nanoparticle/polyaniline composite films [J], Thin Solid Films, 2002, 417(1): 51-56
    [24] S. Pethkar, R. C. Patil, J. A. Kher and K. Vijayamohanan. Deposition and characterization of CdS nanoparticle/polyaniline composite films [J], Thin Solid Films, 1999, 349(1): 105-109
    [25] N. Uekawa, J. Kajiwara, K. Miyatake, K. Kakegawa and Y. Sasaki. Low temperature synthesis of titania gel containing anatase and rutile [J], Chem. Lett., 2000, 29(4): 382-383
    [26] J. Y. Chen, L. Gao, J. H. Huang, D. S. Yan. Preparation of nanosized titania powder via the controlled hydrolysis of titanium alkoxide [J], J. Mater Sci., 1996, 31(13): 3497-3500
    [27] 张谢群.玻璃表面TiO_2薄膜的制备及其光催化活性的增强方法[D],武汉:武汉理工大学,2003,5:20-23
    [28] P. E. Haro, T. Rodigue, Crystallization of nanosized titania particles prepared by the Sol-Gel process [J], J. Mater. Res., 1994, 9(8): 2102-2108
    [29] P. Judeinstein. Dynamics of the Sol-Gel transition in organic-inorganic nanocomposites [J], Chem. Phys. Lett., 1994, 220(1-2): 35-39
    [30] X. Z. Ding. Effect of hydrolysis water on the preparation of nano-crystalline titania powders visa Sol-Gel process [J], J. Mater Sci. Lett., 1995, 14(1): 21-22
    [31] 黄云龙,赵光明.溶剂、催化剂对TiO_2溶胶-凝胶过程的影响[J],功能材料,1997,28(1):37-41
    [32] 许素娟,门守强,王彪,陆坤权.TiO_2包覆石 墨颗粒的制备及表征[J],高技术通讯,2001,01:91-93
    [33] H. Letheby. On the production of a blue substance by the electrolysis of sulphate of. aniline. Journal of the Chemical Society [J], J. Chem. Soc., 1862, 15(2): 161-163
    [34] A. G. Green, A. E. Woodhead, Aniline-black and allied compounds. Part Ⅰ. [J], J. Chem. Soc., 1910, 97:2388-2403
    [35] R. D. Surville, M. Jozefowicz, L. T. Yu, J. Pepichon, R. Buvet. Electrochemical chains using protolytic organic semiconductors [J], Electrochem. Acta., 1968, 13(6): 1451-1458
    [36] J. C. Chiang, A. G. MacDiarmid, 'Polyaniline': Protonic acid doping of the emeraldine form to the metallic regim [J], Synth. Met., 1986, 13(2): 193-205
    [37] Zipperling Kessler & Co Ko rnkamp 50 D2070 Ahreniburg Versicon Tech Data Sheet
    [38] Versicon. Monstown Allied-signal Inc, NJ07962
    [39] 任斌,余成.导电聚苯胺的合成及其性能研究[J],光谱实验室,2005,22(1):148-151
    [40] A. Wolter, P. Rannou, and J. P. Travers, B. Gilles and D. Djurado. Model for aging in HCl-protonated polyaniline: Structure, conductivity, and composition studies [J], Phys. Rev. B., 1998, 58(12-15): 7637-7647
    [41] J. P. Travers, A. Wolter, P. Rannou, M. Nechtschein, B. Oilles and D. Djurado, Ageing in PANI-HCI: a grain size story [J], Synth. Met., 1999, 101(3): 838
    [42] F. Wudl, R. O. Angus, Jr. F. L. Lu, P. M. Allemand, D. Vachon, M. Nowak, Z. X. Liu, H. Schaffer, A. J. Heeger. Poly-p-phenyleneamineimine: synthesis and comparison to polyaniline [J], J. Am. Chem. Soc., 1987, 109(12): 3677-3684
    [43] R. V. Gregory, W. C. Kimbrell and H. H. Kuhn. Conductive textiles [J], Synth. Met., 1989, 28(1-2): 823-835
    [44] L. D. D. Pra, S. D. Champagne. A comparative study of the electronic structure and spectroelectrochemical properties of electrosynthesized polyaniline films and nanotubes [J], Thin Solid Films, 2005, 479(1-2): 321-328
    [45] M. Trchova, I. Sedenkova, J. Stejskal. In-situ polymerized polyaniline films 6. FTIR spectroscopic study of aniline polymerization [J], Synth. Met., 2005, 154(1): 1-4
    [46] Y. Wang, H. Cheng, Y. Hao, J. Ma, W. Li, S. Cal. Photoelectrochemical properties of metal-ion-doped TiO_2 nanocrystalline electrodes [J], Thin Solid Films, 1999, 349(1): 120-125
    [47] R. Arroyo, G. Cordoba, J. Padilla, and V. H. Lara. Influence of manganese ions on the anatase-rutile phase transition of TiO_2 prepared by the sol-gel process [J], Mater. Lett., 2002, 54(5): 397-402
    [48] J. A. Langford, and A. J. C. Wilson. Seherrer after sixty years: a survey and some new results in the determination of crystallite size [J], J. Appl. Crystallogr., 1978, 11(1): 102-105
    [49] H. P. Klong, and L. E. Alexander. X-ray Diffraction Procedures for Crystalline and Amorphous Solids [M], Wiley, New York, 1954, 491
    [50] R. A. Spurr, and H. Myers. Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer [J], Anal. Chem., 1957, 29(5): 760-762
    [51] A. Sclafani, J. M. Herrman. Comparison of the photelectronic and photocatalytic activities of various anantase and rutile forms of titania in pure liquid organic phase and in aqueous solution [J], J. Phys. Chem., 1996, 100(32): 13655-13661
    [52] J. C. Aphesteguy, S. E. Jacobo. Composite of polyaniline containing iron oxides [J], Physica. B., 2004, 354(1-4): 224-227
    [53] L. M. Gan, L. H. Zhang, H. S. O. Chan, C. H. Chew. Preparation of conducting polyaniline-coated barium sulfate nanoparticles in inverse microemulsions [J], Mater. Chem. Phys., 1995, 40(2): 94-98
    [54] X. M. Sui, Y. Chu, S. X. Xing, C. Z. Liu. Synthesis of PANI/AgCl, PANI/BaSO_4 and PANI/TiO_2 nanocomposites in CTAB/hexanol/water reverse micelle [J], Mater. Lett., 2004, 58(11): 1255-1259
    [55] F. Gracia, J. P. Holgado, F. Yubero, A. R. Gonzalez-Elipe. Phase mixing in Fe/TiO_2 thin films prepared by ion beam-induced chemical vapour deposition: optical and structural properties [J], Surf. Coat. Technol., 2002, 158-159(4): 552-557
    [56] S. H. Jang, M. G. Han, S. S. Im. Preparation and characterization of conductive polyanilinersilica hybrid composites prepared by sol-gel process [J], Synth. Met., 2000, 110(1): 17-23
    [57] Z. Ping, In situ FTIR-attenuated total reaction spectroscopic investigations on the baseeacid transitions of polyaniline. Basee acid transition in the emeraldine form of polyaniline [J], J. Chem. Soc. Faraday Trans, 1996, 92(10): 3063-3065
    [58] S. H. Jang, M. G. Han and S. S. Im. Preparation and characterization of conductive polyaniline/siliea hybrid composites prepared by sol-gel process [J], Synth. Met., 2000, 110(1): 17-23
    [59] K. Tanaka, K. Padermpole, T. Hisanaga. Photocatalytic degradation of commercial azo dyes [J], Water Res., 2000, 34(1): 327-333
    [60] 余家国,赵修建.多孔TiO_2薄膜的表面微结构对甲基橙光催化脱色的影响[J],2000,21(3):213-216
    [61] R. S. Sonawane, B. B. Kale, M. K. Dongare. Preparation and photo-catalytic activity of Fe/TiO_2 thin films prepared by sol-gel dip coating [J], Mater. Chem. Phys., 2004, 85(1): 52-57
    [62] A. Piscopo, D. Robert, and J.V. Weber. Comparison between the reactivity of commercial and synthetic TiO_2 photoeatalysts [J]. J. Photochem. Photobiol. A: Chem., 2001, 139(2-3): 253-256
    [63] 张俊卿,冯德荣,季祥,李玉生.Sn~(4+)-TiO_2的制备及其光催化降解苯酚的研究[J],中国粉体技术,2005,(4):14-19
    [64] A. L. Linsebigler, G. Q. Lu, and J. T. Yates. Photoeatalysis on TiO_2 Surfaces: Principles, Mechanisms, and Selected Results [J], Chem. Rev., 1995, 95(3): 735-758
    [65] A. Fujishima, T. N. Rao, D. A. Tryk. Titanium dioxide photocatalysis [J], J. Photochem. Photobiol. C., 2000, 1(1): 1-21
    [66] 沈星灿,郭为民,郭艳芳,梁宏.掺铁纳米TiO_2的制备及其光催化性能[J],应用化学,2005,22(10):1070-1074
    [67] H. Mest'ankova, G. Mailhot, J. Jirkovsky, J. Krysa, M. Bolte. Mechanistic approach of the combined (iron-TiO_2) photocatalytic system for the degradation of pollutants in aqueous solution: an attempt of rationalization [J], Appl. Catal. B., 2005, 57(2): 257-260
    [68] P. R. Somani, R. Marimuthu, U. P. Mulik, S. R. Sainkar, D. P. Amalnerkar. High piezoresistivity and its origin in conducting polyaniliner/TiO_2 composites [J], Synth. Met., 1999, 106(1): 45-52
    [1] A. Fujishima, T. N. Rao, D. A. Tryk. Titanium dioxide photocatalysis [J], J. Photochem. Photobiol. C, 2000, 1(1): 1-21
    [2] I.K. Konstantinou, T. A. Albanis. TiO_2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review [J], Appl. Catal. B., 2004, 49(1): 1-14
    [3] J.C. Yu, J. G. Yu, W. K. Ho, Z. T. Jiang, and L. Z. Zhang. Effects of F~- doping on the photocatalytic activity and microstructures of nanocrystalline TiO_2 powders [J], Chem. Mater., 2002, 14(9): 3808-3816
    [4] Y. B. Xie, C. W. Yuan. Rare earth ion modified TiO_2 sols for photocatalysis application under visible light excitation [J], Rare Met., 2004, 23(1): 20-26
    [5] M.C. Lu, G. D. Roam, J. N. Chen, C. P. Huang. Factors affecting the photocatalytic degradation of dichlorvos over titanium dioxide supported on glass [J], J. Photochem. Photobiol. A., 1993, 76(1-2): 103-110
    [6] I. Sopyan, M. Watanabe, S. Murasawa, K. Hashimoto, A. Fujishima. Efficient TiO_2 Powder and Film Photocatalysts with Rutile Crystal Structure [J], Chem. Lett., 1996, 25(1): 69-70
    [7] M. A. Aguado, M. A. Anderson, C. G. Hill. Influence of light intensity and membrane properties on the photocatalytic degradation of formic acid over TiO_2 ceramic membranes [J], J. Mol. Catal., 1994, 89(2): 165-178
    [8] A. Fernandez, G. Lassaletta, V. M. Jimenez, A. Justo, A. R. G. Elipe, J. M. Herrmenn, H. Tahiri, Y. A. Ichou. Preparation and characterization of TiO_2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification [J], Appl. Catal. B., 1995, 7(1): 49-63
    [9] Y. Paz, Z. Luo, L. Rabenberg, A. Heller. Photooxidative self-cleaning transparent titanium dioxide films on glass [J], J. Mater. Res., 1995, 10(11): 2842-2849
    [10] Y. Takahashi, H. Suzuki, M. Nasu, Rutile growth at the surface of TiO_2 films deposited by vapour-phase decomposition of isopropyl titanate [J], J. Chem. Soc. Faraday Trans. I., 1985, 81:3117-3125
    [11] M. Noorjahan, V. D. Kumari, M. Subrahmanyam, P. Boule. A novel and efficient photocatalyst: TiO_2-HZSM-5 combinate thin film [J], Appl. Catal. B., 2004, 47(3): 209-213
    [12] A. K. Ghosh, H. P. Maruska. Photoelectrolysis of water in sunlight with sensitized semiconductor electrodes [J], J. Electrochem. Soc., 1977, 124:1516-1522
    [13] D. C. Cronemeyer. Infrared Absorption of Reduced Ruffle TiO_2 Single Crystals [J], Phys. Rev., 1959, 113(5): 1222-1226
    [14] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga. Visible-light photocatalysis in nitrogen-doped titanium oxides [J], Science, 2001, 293(5528): 269-271
    [15] J. Premkumar. Development of Super-Hydrophilicity on Nitrogen-Doped TiO_2 Thin Film Surface by Photoelectrochemical Method under Visible Light [J], Chem. Mater., 2004, 16(21): 3980-3981
    [16] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe. Light-induced amphiphilie surfaces [J], Nature, 1997, 388(6641): 431-432
    [17] J. G. Yu, X. J. Zhao, Q. N. Zhao. Effect of surface structure on photocatalytic activity of TiO_2 thin films prepared by sol-gel method [J], Thin Solid Films, 2000, 379(1): 7-14
    [18] D. S. Ren, X. L. Cui, J. Shen, Q. Zhang, X. L. Yang, Z. J. Zhang, L. Ming. Study on the Superhydrophilicity of the SiO_2-TiO_2 Thin Films Prepared by Sol-Gel Method at Room Temperature [J], J. Sol-Gel Sci. Tech., 2004, 29(3): 131-136
    [19] 张金龙,陈峰,何斌.光催化[M],上海:华东理工大学出版社,2004,165
    [20] 高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M],北京,化学工业出版社,2002,144
    [21] T. Sumita, T. Yamaki, S. Yamamoto, A. Miyashita. Photo-induced surface charge separation of highly oriented TiO_2 anatase and rutile thin films [J], Appl. Surf. Sci., 2002, 200(1): 21-26
    [22] Y. Takata, S. Hidaka, M. Masuda, T. Ito. Pool boiling on a superhydrophilic surface [J], Int. J. Energy Res., 2003, 27(2): 111-119
    [23] M. Miyanchi, A. Nakajishima, A. Fujishima. Photoinduced Surface Reactions on TiO_2 and SrTiO_3 Films: Photocatalytic Oxidation and Photoinduced Hydrophilicity [J], Chem. Mater., 2000, 12(11): 3-5
    [24] I. Rosenberg, J. R. Brock, A. Heller. Collection Optics of TiO_2 Photocatalyst on Hollow Glass Microbe, ads Floating on Oil Slicks [J], J. Phys. Chem., 1992, 96(8): 3423-3428
    [25] 蔡乃才,王亚平,曹锡良.负载型Pt/TiO_2光催化剂的研究[J],催化学报,1999,20(2):177-180
    [26] C. John. Decontamination of Water Using Adsorption of Photoeatalysis [J], Water Res., 1997, 31(1): 411-418
    [27] 陈国平,李启甲,陈平.TiO_2光催化膜的成膜技术[J],陶瓷学报,2002,23(1):67-71
    [28] 张强.纳米TiO_2固定化技术[J],环境科学与技术,2003,26(3):54-59
    [29] J. G. YU. TiO_2 thin film photocatalyst [J], Rare Metals, 2004, 23(4): 289-295
    [30] A. Mills, N. Elliott, I. P. Parkin, S. A. O'Neill, R. J. Clark. Novel TiO_2 CVD films for semiconductor photocatalysis [J], J. Photoch. Photobi. A., 2002, 151(2): 171-179
    [31] 王晓萍,于云,胡行方,高濂.液相沉积法制备氧化物薄膜[J],功能材料,2000,31(4):341-343
    [32] N. Negishi, K. Takeuchi. Preparation of photocatalytic TiO_2 transparent thin film by thermal decomposition of Ti-alkoxide with α-terpineol as a solvent [J], Thin Solid Film, 2001, 392(2): 249-253
    [33] C. Natarajan, G. Nogami, Cathodic electrodepostion, of nanocrystalline titanium dioxide thin films [J], J. Electrochem. Soc. 1996, 143(5): 1547-1550
    [34] A. Yasumori, H. Shinoda, Y. Kameshima, S. Hayashi, K. Okada. Photocatalytic and photoelectrochemical properties of TiO_2-based multiple layer thin film prepared by sol-gel and reactive-sputtering methods [J], J. Mater. Chem., 2001, 11:1253-1257
    [35] R.S. Sonawane, S.G. Hegde, M.K. Dongare. Preparation of titanium(Ⅳ) oxide thin film photocatalyst by sol-gel dip coating [J], Mater. Chem. Phys., 2003, 77(3): 744-750
    [36] L. Sirghi, Y. Hatanaka. Hydrophilicity of amorphous TiO_2 ultra-thin films [J], J. Surf. Sci., 2003, 530(3): 323-327
    [37] J. A. Byrne, B. R. Eggins, N. M. D. Brown, B. McKinney, M. Rome. Immobilisation of TiO_2 powder for the treatment of polluted water [J], Appl Catal B., 1998, 17(1): 25-36
    [38] H. Kominami, H. Kumamoto, Y. Kera and B. Ohtani. Immobilization of highly active titanium(Ⅳ) oxide particles: A novel strategy of preparation of transparent photocatalytic coatings [J], Appl. Catal. B., 2001, 30(3): 329-335
    [39] J. C. Yu, J. G. Yu, W. K. Ho, J. C. Zhao. Light=induced super=hydrophilicity and photocatalytic activity of mesoporous TiO_2 thin films [J], J. Photochem. Photobiol. A., 2002, 148(3): 331-339
    [40] F. M. Tiller, C. D. Tsai. Theory of Filtration of Ceramics: I, Slip Casting [J], J. Am. Ceram Soc., 1986. 69(12): 882-887
    [41] Y. Kotani, A. Matsuda, T. Kogure, M. Tatsumisago, T. Minami. Effects of Addition of Poly(ethylene glycol) on the Formation of Anatase Nanocrystals in SiO_2-TiO_2 Gel Films with Hot Water Treatment [J], Chem. Mater., 2001, 13(6): 2144-2149
    [42] A. Matsuda, Y. Kotani, T. Kogure, M. Tatsumisago, T. Minami. Fhotocatalytic Decomposition of Acetaldehyde with Anatase Nanocrystals-Dispersed Silica Films Prepared by the Sol-Gel Process with Hot Water Treatment [J], J. Sol-Gel Sci. Tech., 2001, 22(1): 41-46
    [43] A. Matsuda, T. Matoda, Y. Kotani, T. Kogure, M. Tatsumisago, T. Minami. Evaluation of Photocatalytic Activity of Transparent Anatase Nanocrystals-Dispersed Silica Films Prepared by the Sol-Gel Process with Hot Water Treatment [J], J. Sol-Gel Sci. Tech., 2003, 26(2): 517-521
    [44] C. He, X. Z. Li, Y. Xiong, X. H. Zhu, S. R. Liu. The enhanced PC and PEC oxidation of formic acid in aqueous solution using a Cu- TiO_2/ITO film [J], Chemosphere, 2005, 58(4): 381-389
    [45] H.B. Jiang and L. Gao. Enhancing the UV inducing hydrophilicity of TiO_2 thin film by doping Fe ions [J], Mater. Chem. Phys., 2003, 77(3): 878-881
    [46] 林熙,李旦振,吴清萍,付贤智,王绪绪.异质结型光催化膜的活性及其机理研究[J],高等学校化学学报,2005,26(4):727-730
    [47] 余家国,赵修建.多孔TiO_2薄膜的表面微结构对甲基橙光催化脱色的影响[J],催化学报,2000,21(3):213-216
    [48] E. T. Kang, K. G. Neoh and K. L. Tan. Polyaniline: a polymer with many interesting intrinsic redox states [J], Prog. Polym. Sci., 1997, 23(2): 277-324
    [49] 金绪刚,黄承亚,龚克成.聚苯胺光学吸收及应用[J],半导体光电,1997,18(3):203-207
    [50] 林永耀,莫党,龚克诚,张贵萍.聚苯胺的吸收光谱和折射率[J],高分子材料科学与工程,1994,(2):57-61
    [51] E. M. Genies, C. Tsintavis. Electrochemical behaviour, chronoculmetric and kinetic study of the redox mechanism of polyamiline deposits [J]. J. Electroanal. Chem., 1996, 200(1): 127-131
    [52] R. Noufi, A. J. Nozik, J. White, L. F. Warren. Enhanced Stability of Photoelectrodes with Eleetrogenerated Polyaniline Films [J], J. Electrochem. Soc., 1982, 129(10): 2261-2265
    [53] A. Ray, G. E. Asturias, D. L. Kershner, A. F. Richter, A. G. MaeDiarmid, A. J. Epstein. Polyaniline: Doping, structure and derivatives [J], Synth. Met., 1989, 29(1): 141-150
    [54] J. G. Masters, Y. Sun, A. G. MacDiarmidA. J. Epstein. Polyaniline: Allowed oxidation states [J], Synth. Met., 1991, 41 (2): 715-718
    [55] 张柏宇,高治,苏小明.聚苯胺的掺杂及其导电性能研究[J],石化技术与应用,2005,23(1):11-13
    [56] T. Fukuda, H. Takezoe, K. Ishikawa, A. Fukuda, H. S. Wood, S. K. Jeong, E. J. Oh, J. S. Suh. IR and Raman studies in three polyanilines with different oxidation level [J], Synth. Met., 1995, 69(1-3): 175-176
    [57] J. S. Tang, X. B. Jing, B. C. Wang, F. S. Wang. Infrared spectra of soluble polyaniline [J], Synth. Met., 1988, 24(3): 231-238
    [58] A. G. MaeDiarmid, S. K. Manohar, J. G. Masters, Y. Sun, H. Weiss, and A. J. Epstein. Polyaniline: Synthesis and properties of pemigraniline base [J], Synth. Met., 1991, 41(2): 621-626
    [59] Y. Cao, S. Z. Li, Z. J. Xue, D. Guo. Spectroscopic and electrical characterization of some aniline oligomers and polyaniline [J], Synth. Met., 1986, 16(3): 305-315
    [60] E. T. Kang, K. G. Neoh, T. C Tan, S. H. Khor, K. L. Tan. Structural studies of poly(p-phenyleneamine) and its oxidation [J], Macromolecules, 1990, 23(1): 2918-2926
    [61] Y. Xia, A. G. MacDianmid. Camphorsulfonic acid fully doped polyaniline emeraldine salt: Conformation in different solvents [J], Chem. Mater., 1995, (7): 443-445
    [62] Y. Wei, F. H. Kesyin, W. Guang. A study of leucoemeraldine and effect of redox reactions on molecular weight of chemically prepared polyaniline [J], Macromolecules, 1994, 27(2): 518-525
    [63] 高军波,李科,孙辉,于有海,王策,吴忠文,张万金.单分散的还原态和中间氧化态聚苯胺齐聚物的合成与紫外光谱研究[J],高等学校化学学报,1999,20(12):1960-1964
    [64] L. W. Shacklette, J. F. Wolf, S. Gould, R. H. Baughman. Structure and properties of polyaniline as modeled by single-crystal oligomers [J], J. Chem. Phys., 1988, 88(6): 3955-3961
    [65] Z. Wei, Z. Zhang, M. Wan. Formation Mechanism of Self-Assembled Polyaniline Micro/Nanotubes [J], Langmuir, 2002, 18(3): 917-921
    [66] 薛志坚,漆宗能,王佛松.聚苯胺水基胶体分散液及其复合物的研究Ⅱ.紫外光谱及导电性能[J],高分子学报,1997,(4):445-450
    [67] Z. J. Xue, Z. N. Qi, F. S. Wang. First East-Asian Polymer Conference, Shanghai, 1995, 258-259
    [68] H. Meier, G. R. Strobl. Small-angle x-ray scattering study of spinodal decomposition in polystyrene/poly(styrene-co-bromostyrene) blends [J], Macromolecules; 1987, 20(3): 649-654
    [69] T. Hjertberg, W. R. Salaneck, I. Lundstrom, N. L. D. Somasid, A. G. Macdiarmid. A 13C CP-MAS NMR investigation of polyaniline [J], J. Polym. Sci., 1985, 23(10): 503-508
    [70] 余家国,赵修建,赵青南.TiO_2涂层 自洁净玻璃的制备及其特性研究[J],太阳能学报,1999,20(4):398-403
    [71] M. X. Wan, W. X. Zhou, J. C. Li. Composite of polyaniline containing iron oxides with nanometer size [J], Synth. Met., 1996, 78(1): 27-31
    [72] X. W. Li, W. Chen, C. Q. Bian, J. B. He, N. Xu, G. Xue. Surface modification of TiO_2 nanoparticles by polyaniline [J], Appl. Surf. Sci., 2003, 217 (1): 16-22
    [73] J. Geens, B. Van der Bruggen and C. Vandecasteele. Characterisation of the solvent stability of polymeric nanofiltration membranes by measurement of contact angles and swelling [J], Chem. Eng. Sci., 2004, 59(5): 1161-1164
    [74] Z. Zhang, Z. Wei, M. Wan, Nanostructures of Polyaniline Doped with Inorganic Acids [J], Macromolecules, 2002, 35(15): 5937-5942
    [75] L. Zhang, M. Wan. Polyaniline/TiO_2 Composite Nanotubes [J], J. Phys. Chem. B., 2003, 107(28): 6748-6753
    [76] T. Ozawa. Estimation of activation energy by isoconversion methods [J], Thermochim. Acta, 1992, 203(2): 159-165
    [77] W. J. Wang, M. Y. Gu, Y. P. Jin. Effect of PVP on the photocatalytic behavior of TiO_2 under sunlight [J], Mater. Lett., 2003, 57(21): 3276-3281
    [78] E. T. Kang, K. G. Neoh, K. L. Tan. X-ray photoelectron spectroscopic studies of electroactive polymers [J], Adv. Polym. Sci., 1993, 106:135-190
    [79] C. Malitesta, G. Morea, L. Sabbatini, P. G. Zambonin. In surface Characterization of Advanced Polymers, ed. L. Sabbatini and P. G. Zambonin. VCH, Weinheim, Germany, 1993, p. 181.
    [80] 井立强,李晓倩,李姝丹,王百齐,辛柏福,付宏刚,王德军,蔡伟民.纳米Au/TiO_2光催化剂的XPS和SPS研究[J],催化学报,2005,26(3):189-193
    [81] M. I. Litter. Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems [J], Appl. Catal. B., 1999, 23(2): 89-114
    [82] S. X. Xiong, Q. Wang, H. S. Xia. Preparation of polyaniline nanotubes array based on anodic aluminum oxide template [J], Mater. Res. Bull., 2004, 39(11): 1569-1580
    [83] 上海市纺织工业局《染料应用手册》编写组,染料应用手册[M],北京:中国纺织出版社,1994,127-129
    [84] 谢普会,陈景荣,张宝文,等.吨染料与反胶束体系中CdS光敏电子转移[J],感光科学与光化学,1999,17(1):51-60
    [85] S. Horikoshi, H. Hidaka, N. Serpone. Environmental remediation by an integrated microwave/UV-illumination method. 1. microwave-assisted degradation of Rhodamine-B dye in aqueous TiO_2 dispersions [J], Environ. Sci. Technol., 2002, 36(6): 1357-1366
    [86] 马颖,姚建年.罗丹明B在TiO_2薄膜和P-25涂层催化下光反应的比较[J].感光科学与光化学,1998,16(2):117-121
    [87] T. Watanabe, T. Takizawa, K. Honda. Photocatalysis through excitation of adsorbates. 1. Highly efficient N-deethylation of rhodamine B adsorbed to cadmium sulfide [J], J. Phys. Chem., 1977, 81(19): 1845-1851
    [88] T. X. Wu, G. M. Lu, J. C. Zhao. Photoassisted Degradation of Dye Pollutants. V. Self-Photosensitized Oxidative Transformation of Rhodamine B under Visible Light Irradiation in Aqueous TiO_2 Dispersions [J], J. Phys. Chem. B., 1998, 102(30): 5845-5851
    [89] 魏刚,张元晶,熊蓉春.纳米TiO_2膜对罗丹明B染料的光催化降解动力学[J],科学通报,2002,47(23):1792-1794
    [1] U. Koch, A. Fojtik, H. Weller, A. Henglein. Photochemistry of semiconductor colloids. Preparation of extremely small ZnO particles, fluorescence phenomena and size quantization effects [J], Chem. Phys. Lett., 1985, 122(5): 507-510
    [2] D. Gebeyehu, C. J. Brabec, N. S. Sariciftci, D. Vangeneugden, R. Kiebooms, D. Vanderzande, F. Kienberger and H. Schindler. Hybrid solar cells based on dye-sensitized nanoporous TiO_2 electrodes and conjugated polymers as hole transport materials [J], Synth. Met., 2002, 125(3): 279-287
    [3] S. Spiekermann, G. Smestad, J. Kowalik, L. M. Tolbert, M. Gratzel. Poly(4-undecyl-2,2'-bithiophene) as a hole conductor in solid state dye sensitized titanium dioxide solar cells [J], Synth. Met., 2001, 121 (3): 1603-1604
    [4] Z. P. Zhang, F. Wang, F. E. Chen, G. Q. Shi. Preparation of polythiophene coated gold nanoparticles [J], Mater. Lett., 2006, 60(11): 1039-1042
    [5] D. Gebeyehu, C. J. Brabec, F. Padinger, T. Fromherz, S. Spiekermann, N. Vlachopoulos, F. Kienberger, H. Schindler and N. S. Sariciftci. Solid state dye-sensitized TiO_2 solar cells with poly(3-octylthiophene) as hole transport layer [J], Synth. Met., 2001, 121(3): 1549-1550
    [6] M. Christiaans, M. Wienk, P. van Hal, J. Kroon, R. Janssen. Photoinduced electron transfer from conjugated polymers onto TiO_2 [J], Synth. Met., 1999, 101(1): 265-266
    [7] T.K. Daubler, I. Glowacki, U. Scherf, J. Ulanski, H. H. Horhold, D. Neher. Photogeneration and transport of charge carriers in hybrid materials of conjugated polymers and dye-sensitized TiO_2 [J], J. Apply. Phys., 1999, 86(12): 6915-6923
    [8] Y. G. Kim, J. Walker, L. A. Samuelson, J. Kumar. Efficient Light Harvesting Polymers for Nanocrystalline TiO_2 Photovoltaic Cells [J], Nano Lett., 2003, 3(4): 523-525
    [9] M. D. Lu, S. M. Yang. Syntheses of polythiophene and titania nanotube composites [J], Synth. Met., 2005, 154(1): 73-76
    [10] Y. C. Chen, C. Y. Shen, H. Z. Chen, Y. F. Wei, L. Wu. Grain-Growth and Electrical Properties in ZnO Varistors with Various Valence States of Additions [J], Jpn. J. Appl. Phys., 1991, 30(1): 84-90
    [11] R. G. Dosch, B. A. Tuttle, B. A. Brooks. Chemical Preparation and. Properties of High Field ZnO Varistors [J], J. Mater. Res., 1983, 1(1): 90-99
    [12] 刘超峰,胡行方,祖庸.以尿素为沉淀剂制备纳米氧化锌粉体[J],无机材料学报,1999,14(3):391-396
    [13] 赵振国,丁丁,程虎民,马季铭,齐利民.螯合物分解法制备ZnO微粉[J],北京大学学报(自然科学版),1996,32(6):693-698
    [14] P. Souletie, S. Bethke, B. W. Wessels, H. Pan. Growth and characterization of heteroepitaxial ZnO thin films by organometallic chemical vapor deposition [J], J. Cryst. Growth, 1990, 86(2): 248-251
    [15] 夏熙,李学琴.复合氧化物Ca_(1-x)Pb_xMnO_(3-)。的合成及其电化学性能研究[J],化学学报,2002,60(6):985-990
    [16] Q. W. Li, G. A. Luo, Y. Q. Shu. Response of nanosized cobalt oxide electrodes as pH sensors [J], Anal. Chim. Acta., 2000, 409(1): 137-142
    [17] 喻爱明,杨华铮.组合化学及其在药物开发中的应用[J],有机化学,1998, 18:186-191,275-281,386-391
    [18] C. Sylvani, A. Wagner, C. Mioskowski. Ozone: a veisatile reagent for solid phase synthesis [J], Tetrahedron Lett., 1997, 38(6): 1043-1044
    [19] D. P. Rotella. Solid phase synthesis of olefin and hydroxyethylene peptidomimetics [J], J. Am. Chem. Soc., 1996, 118(48): 12246-12247
    [20] M. Patek, B. Drake, M. Lebl. Solid-phase synthesis of "small" organic molecules based on thiarzolidine scaffold [J], Tetrahedron Lett., 1995, 36(13): 2227-2230
    [21] J. Morey, A. Fronter. Solid-state redox chemistry:preparation of 1,4-naphthoquinone, hydroquinone, and the corresponding mixedquin kydrone in the solid state [J], J. Chem. Educ., 1995, 72:63-64
    [22] F. Morvan, Y. S. Sanghvi, M. Perbost. Oligonucleotide minics for antisense therapentics: solution phase and automated solid-support synthesis of MMI linked oligomers [J], J. Am. Chem. Soc., 1996, 118(1): 255-256
    [23] 秦非,蒋挺大.低聚糖的固相合成与反应机理研究[J],高分子通报,1998,(1):84-88
    [24] M. T. Beck, E. Balass. Molecular complex formation between C_(60) and I_2 in solation and in solid state [J], Fullerem. Sci. Tech., 1993, 1(1): 119-121
    [25] 佳书科,黄次净.高分子化学[M],北京:中国纺织出版社,1995.110
    [26] B. J. Backes, J. A. Ellman. Carbon-carbon bond-forming methods on solid support. Utilization of kenner's "safcty-catch" linker [J], J. Am. Chem. Soc., 1994, 116(24): 11171-11172
    [27] 吐尔逊·阿不都热依木,张校刚.固相反应法制备樟脑磺酸掺杂聚苯胺[J],应用化学,2003,20(11):1099-1101
    [28] 张立德,牟季美.纳米材料和纳米结构[M],北京:科学出版社,2001,19
    [29] V. Srikant, D. R. Clarke. On the optical band gap of zinc oxide [J], J. Appl. Phys., 1998, 83(10): 5447-5451
    [30] B. J. Jin, S. H. Bae, S. Y. Lee, S. Im. Effects of native defats on optical and electrical properties of ZnO prepared by pulsed laser deposition [J], Mater. Sci. Eng., 2000, B71:301-305
    [31] B. Pal, M. Sharon. Enhanced Photocatalytic Activity of Highly Porous ZnO thin Films Prepared by Sol-gel Process [J]. Mater. Chem. Phys., 2002, 76(1): 82-87
    [32] S. Chakrabarti, B. K. Dutta, Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst [J], J. Hazard. Mater., 2004, 112(2): 269-278
    [33] D. Li, H. Haneda. Synthesis of nitrogen-containing ZnO powders by spray pyrolysis and their visible-light photocatalysis in gas-phase acetaldehyde decomposition [J], J. Photochem. Photobiol. A: Chem., 2003, 155(2): 171-178
    [34] T. Schili, P. Boule, J. Lemaire. Photocatalysed transformation of chloroaromatic derivatives on zinc oxide Ⅳ: 2,4-Dichlorophenol [J], Chemosphere. 1991, 22(11): 1053-1062
    [35] T. Schili, P. Boule, J. Lemaire. Photocatalysed transformation of chloroaromatic derivatives on zinc oxide Ⅱ: Dichlorobenzenes [J], J. Photochem. Photobiol. A., 1989, 50(1): 103-116
    [36] T. Schili, G. Bonhomme, J. Lemaire. Transformation des composes aromatiques chlores photocatalysee par de l'oxyde de zinc Ⅰ- Comportement du chloro-3 phenol [J], Chemosphere. 1988, 17(11): 2207-2218
    [37] C. Richard, J. Lemaire. Analytical and kinetic study of the phototransformation of furfuryl alcohol in aqueous ZnO suspensions [J], J. Photochem. Photobiol. A., 1990, 55(1): 127-134
    [38] L. B. Khalil, W. E. Mourad and M. W. Rophael. Photocatalytic reduction of environmental pollutant Cr(Ⅵ) over some semiconductors under UV/visible light illumination [J], Appl. Catal. B., 1998, 17(3): 267-273
    [39] J. Domenech, J. Munoz. Photocatalytical reduction of Cr(Ⅵ) over ZnO powder [J], Electrochim. Acta, 1987, 32(9): 1383-1386
    [40] J. Peral, J. Casado and J. Domenech. Light-induced oxidation of phenol over ZnO powder [J], J. Photochem. Photobiol. A., 1988, 44(2): 209-217
    [41] D. Li, H. Haneda. Enhancement of photocatalytic activity of sprayed nitrogen-containing ZnO powders by coupling with metal oxides during the acetaldehyde decomposition [J], Chemosphere, 2004, 54(8): 1099-1110
    [42] B. Pal, M. Sharon. Enhanced photocatalytic activity of highly porous ZnO thin films prepared by sol-gel process [J], Mater. Chem. Phys., 2002, 76(1): 82-87
    [43] 李莹,王英连.溶胶-凝胶法制备纳米ZnO薄膜及其光催化性能[J],人工晶 体学报,2005,34(4):760-763
    [44] 宋永梁,季振国,王泉香,向因,叶志镇.溶胶-凝胶提拉法制备ZnO薄膜及其性能研究[J],材料科学与工程学报,2004,22(1):9-11
    [45] M. C. Yeber, J. Rodriguez, J. Freer, J. Baeza, N. Duran, H. D. Mansilla. Advanced oxidation of a pulp mill bleaching wastewater [J], Chemosphere, 1999, 39(10): 1679-1688
    [46] A. A. Khodja, T. Sehili, J. F. Pilichowski, P. Boule. Photocatalytic degradation of 2-phenylphenol on TiO_2 and ZnO in aqueous suspensions [J], J. Photochem. Photobiol. A., 2001, 141(2-3): 231-239
    [47] G. Marci, A. Augugliaro, M. J. L. Munoz, C. Martin, L. Palmisano, V. Rives, M. Schiavello, R. D. J. Tilley, A. M. Venezia. Preparation Characterization and Photocatalytic Activity of Polyerystalline ZnO/TiO_2 Systems. 2. Surface, Bulk Characterization, and 4-Nitrophenol Photodegradation in Liquid-Solid Regime [J], J. Phys. Chem. B., 2001, 105(5): 1033-1040
    [48] V. Kandavelu, H. Kastien, K. Ravindranathan Thampi, Photoeatalytie degradation of isothiazolin-3-ones in water and emulsion paints containing nanocrystalline TiO_2 and ZnO catalysts [J], Appl. Catal. B: Environ., 2002, 48(1): 101-111
    [49] S. Sakthivel, B.Neppolian, Banumathi Arabindoo, M. Palanichamy, V. Murugesan. Photocatalytic degradation of leather dye, Acid Green 16 using ZnO in the slurry and thin film forms [J], Indian J. Chem. Tech., 1999, 6(2): 161-165
    [50] C. Richard, F. Bosquet, J. F. Pilichowski. Photocatalytie transformation of aromatic compounds in aqueous zinc oxide suspensions: effect of substrate concentration on the distribution of products [J], J. Photochem. Photobiol. A., 1997, 108(1): 45-49
    [51] B. Neppolian, S. Sakthivel, B. Arabindoo, M. Palaniehamy, V. Murugesan. Photoassisted degradation of textile dye using ZnO catalyst [J], Bull. Catal. Soc. India., 1999, 9(2): 164-171
    [52] A. Pandurangan, P. Kamala, S. Uma, M. Palanichamy, V. Murugesan. Degradation of basic yellow auramine O-A textile dye by semiconductor photocatalysis [J], Indian J. Chem. Technol., 2001, 8(6): 496-499
    [53] H. F. Lin, S. C. Liao, S. W. Hung. The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst [J], J. Photochem.Photobiol. A., 2005, 174(1): 82-87
    [54] I. Poulios, I. Tsachpinis. Photodegradation of the textile dye Reactive Black 5 in the presence of semiconducting oxides [J], d. Chem. Technol. Biotechnol. 1999, 74(4): 349-357
    [55] I. Poulios, A. Avranas, E. Rekliti, A. Zouboulis. Photocatalytic oxidation of Auramine O in the presence of semiconducting oxides [J], J. Chem. Technol. Biotechnol., 2000, 75(3): 205-212
    [56] M. J. Height, S. E. Pratsinis, O. Mekasuwandumrong, P. Praserthdam. Ag-ZnO catalysts for UV-photodegradation of methylene blue [J], Appl. Catal. B., 2006, 63(3): 305-312
    [57] X. Domenech, A. Prieto. Stability of ZnO particles in aqueous suspensions under UV illumination [J], J. Phys. Chem., 1986, 90(6): 1123-1126
    [58] N. I. Kovtyukhova, A. D. Gorchinskiy, C. Waraksa. Self-assembly of nanostructured composite ZnO/polyaniline films [J], Mater. Sci. Eng. B., 2000, 69-70:424-430
    [59] 郑志新,席燕燕,董平,黄怀国,周剑章,吴玲玲,林仲华.ZnO-聚苯胺同轴纳米线及其列阵的制备和表征[J],电化学,2002,8(2):154-159
    [60] J. Roncali. Conjugated poly(thiophenes): synthesis, functionalization, and applications [J], Chem. Rev., 1992, 92(4): 711-738
    [61] 石家华,杨春和,高青雨,李永舫.聚噻吩在离子液体中的电化学合成研究[J],化学物理学报,2004,17(4):503-507
    [62] 曹阳,陈良进.聚噻吩与取代聚噻吩的能带结构的计算[J],化学研究与应用,1996,8(2):227-231
    [63] M. H. Whangbo, R. Hoffmann. The band structure of the tetracyanoplatinate chain [J], d. Am. Chem. Soc., 1978, 100(19): 6093-6098
    [64] M. J. S. Dewar, M. L. McKee. Ground states of molecules. 56. MNDO calculations for molecules containing sulfur [J], J. Comput. Chem., 1983, 4(1): 84-103
    [65] J. Cornil, J. P. Calbert, D. Beljonne, R. Silbey, J. L. Bredas. Charge transport versus optical properties in semieonducting crystalline organic thin films [J]. Adv. Mater., 2000, 12(13): 978-983
    [66] G. L. Zhang, J. Ma, Y. S. Jiang. Effects of silole content and doping on the electronic structures and excitation energies of silole/thiophene cooligomers[J]. Macromolecules, 2003, 36(6): 2130-2140
    [67] 陈贻炽,王红山,吴锦屏,顾惕人.聚噻吩导电材料的合成[J],化工新型材料,1997,(8):15-18
    [68] C. J. Tonzola, M. M. Alam, S. A. Jenekhe. New soluble n-type conjugated copolymer for light-emitting diodes [J], Adv. Mater., 2002, 14(15): 1086-1090
    [69] H. F. Lu, H. S. O. Chan, S. C. Ng. Synthesis, characterization, and electronic and optical properties of donor-acceptor conjugated polymers based on alternating bis(3-alkylthiophene) and pyridine moieties [J], Macromolecules, 2003, 36(5): 1543-1552
    [70] B. Liu, Y. H. Niu, W. L. Yu, Y. Cao, W. Huang. Applications of alternating fluorene and thiophene copolymers in polymer light-emitting diodes [J], Synth. Met., 2002, 129(2): 129-134
    [71] 佟拉嘎,王锦艳,蹇锡高,张庆民.烷基取代聚噻吩的化学合成与光电性能研究进展[J],功能高分子学报,2004,17(3):535-541
    [72] T. K. Sarma, A. Chattopadhyay. Reversible Encapsulation of Nanometer-Size Polyaniline and Polyaniline-Au-Nanopartiele Composite in Starch [J], Langmuir, 2004, 20(11): 4733-4737
    [73] 贾殿赠,俞建群,夏熙.一步室温固相化学反应法合成CuO纳米粉体[J],科学通报,1998,43(2):172-174
    [74] 刘洪涛,夏熙,电极用纳米Ag_2O的电化学性能研究Ⅰ.纳米Ag_2O的制备及表征[J],化学学报,2000,58(8):992-995
    [75] J. Gong, X. J. Cui, The solid-state synthesis of polyaniline/H_4SiW_(12)O_(40) materials [J], Synth. Met., 2002, 129(2): 187-192
    [76] J. Roncali, Conjugated poly(thiophenes): synthesis, functionalization, and applications [J], Chem. Rev., 1992, 92(4): 711-738
    [77] M. G. Han, S. H. Foulger. Crystalline Colloidal Arrays Composed of Poly(3, 4-ethylenedioxythiophene)-Coated Polystyrene Particles with a Stop Band in the Visible Regime [J], Adv. Mater., 2004, 16(3): 231-234
    [78] Y. Cao, R. Y. Qian. IR and Raman studies of polythiophene prepared by electrochemical polymerization [J], Solid State Commun., 1985, 54(3): 211-213
    [79] H. Hidaka, K. Ihara, Y. Fujita, S. Yamada, E. Pelizzetti, N. Serpone, Photodegradation of surfaetants Ⅳ: Photodegradation of non-ionic surfactants in aqueous titanium dioxide suspensions [J], J. Photochem. Photobiol. A., 1988, 42(2): 173-403
    [80] E. Pelizzetti, C. Minero, V. Maurino, A. Sclafani, H. Hidaka, N. Serpone. Photocatalytic degradation of nonylphenol ethoxylated surfactants [J], Environ. Sci. Technol., 1989, 23(11): 1380-1385
    [81] Y. X. Chen, Z. S. Sun, Y. Yang, Q. Ke. Heterogeneous photocatalytic oxidation of polyvinyl alcohol in water [J], J. Photochem. Photobiol. A., 2001, 142(1): 85-89
    [82] 孙振世,陈英旭,杨晔,Pt/TiO_2膜光催化氧化降解高聚物的研究[J],太阳能学报,2001,22(1):87-90
    [83] 孙振世,杨晔,陈英旭,UV-TiO_2-H_2O悬浮体系光催化降解聚乙烯醇[J],太阳能学报,2004,25(6):760-763
    [84] 陈颖,王宝辉,张海燕,董佐强.纳米级TiO_2光催化氧化聚丙烯酰胺[J],催化学报,1999,20(3):309-312
    [85] 陈颖,崔军明,王宝辉,等.光催化氧化降解水中聚丙烯酰胺的可行性研究[J],大庆石油学院学报,2001,25(2):82-83
    [86] J. Shang, M. Chal, Y. F. Zhu. Solid-Phase Photocatalytic Degradation of Polystyrene Plastic with TiO2 as Photocatalyst [J], J. Soid State Chem., 2003, 174 (1): 104-110
    [87] J. Shang, M. Chai, and Y. F. Zhu, Photocatalytic Degradation of Polystyrene Plastic under Fluorescent Light [J], Environ. Sci. Technol., 2003, 37(19): 4494-4499
    [88] 法文君,昝菱,胡严鹤,陈俊桥.改性纳米TiO_2固相光催化降解废弃聚氯乙烯[J],武汉大学学报(理学版),2005,51(4):402-406
    [89] S. Cho, W. Choi. Solid-Phase Photocatalytie Degradation of PVC/TiO_2 Polymer Composites [J], J. Photochem. Photobiol. A., 2001, 143(2-3): 221-228
    [90] 熊裕华,李凤仪.TiO_2光催化降解聚乙烯薄膜[J],应用化学,2005,22(5):534-537
    [91] 熊裕华,李凤仪.Fe~(3+)掺杂TiO_2光催化降解聚乙烯薄膜的研究[J],物理化学学报,2005,21(6):607-611
    [92] Z. B. Zhang, S. Nishio, Y. Morioka, A. Ueno, H. Ohkita, Y. Techihara, T. Mizushima, N. Kakuta. Thermal and chemical recycle of waste polymers [J], Catal. Today, 1996, 29(3): 303-308
    [93] J. V. Gulimine, P. R. Janissek, H. M. Heise, L. Akcelrud, Degradation profile of polyethylene after artificial accelerated weathering [J], Polym. Degrad Stab., 2003, 79(3): 385-397
    [94] F. Gugumus, Re-examination of the thermal oxidation reactions of polymers 2. Thermal oxidation of polyethylene [J], Polym. Degrad. Stab., 2002, 76(2): 329-340
    [95] F. Gugumus. Thermooxidative degradation of polyolefins in the solid state: Part 1. Experimental kinetics of functional group formation [J], Polym. Degrad Stab., 1996, 52(2): 131-144
    [1] A. C. Bose, D. Kalpana, P. Thangadurai and S. Ramasamy. Synthesis and characterization of nanocrystalline SnO_2 and fabrication of lithium cell using nano-SnO_2 [J], J. Power Sources, 2002, 107(1): 138-141
    [2] C. Nayral, E. Viala, V. Colliere, P. Fau, F. Senocq, A. Maisonnat, and B. Chaudret, Synthesis and use of a novel SnO_2 nanomaterial for gas sensing [J], Appl. Surf. Sci., 2000, 164(2): 219-226
    [3] T. Kawabe, K. Tabata, E. Suzuki, Y. Ichikawa, Y. Nagasawa, Morphological effects of SnO_2 thin film on the selective oxidation of methane [J], Catal. Today, 2001, 71(1): 21-29
    [4] T. Mori, S. Hoshino, A. Neramittagapong, J. Kubo, Y. Morikawa, Novel Activity of SnO_2 for Methanol Conversion: Formation of Methane, Carbon Dioxide, and Hydrogen [J], Chem. Lett., 2002, 31(3): 390-392
    [5] Y. Teraoka, T. Harada, T. Iwasaki, T. Ikeda, S. Kagawa. Selective Reduction of Nitrogen Monoxide with Hydrocarbons over SnO_2 Catalyst [J], Chem. Lett., 1993, 22(5): 773-776
    [6] J. Yang, D. Li, X. Wang, X. J. Yang and L. D. Lu, Rapid synthesis of nanocrystalline TiO_2/SnO_2 binary oxides and their photoinduced decomposition of methyl orange [J], J. Solid State Chem., 2002, 165(1): 193-198
    [7] L.X. Cao, F. J. Spiess, A. Huang, S. L. Suib. Heterogeneous Photocatalytic Oxidation of 1-Butene on SnO_2 and TiO_2 Films [J], J. Phys. Chem. B., 1999, 103(15): 2912-2917
    [8] K. Gurunathan, P. Maruthamuthu, M. V. C. Sastri, Photocatalytic hydrogen production by dye-sensitized Pt/SnO_2, and Pt/SnO_2/RuO_2 in aqueous methyl viologen solution [J], Int. J. Hydrogen Energy, 1997, 22(1): 57-62
    [9] C. Wang, J. C. Zhao, X. M. Wang, B. X. Mai, G. Y. Sheng, P. A. Peng and J. M. Fu. Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO_2 coupled photocatalysts [J], Appl. Catal. B., 2002, 39(6): 269-279
    [10] M. L. Zhang, T. C. An, X. H. Hu, C. Wang, G. Y. Sheng, J. M. Fu. Preparation and photocatalytic properties of a nanometer ZnO-SnO_2 coupled oxide [J], Appl. Catal. A., 2004, 260(2): 215-222
    [11] J. Shang, W. Q. Yao, Y. F. Zhu, N. Z. Wu. Structure and photocatalytic performances of glass/SnO_/TiO_2 interface composite film [J], Appl. Catal. A., 2004, 257(1): 25-32
    [12] Y. Cao, X. T. Zhang, W. S. Yang, H. Du, Y. B. Bai, T. J. Li, J. N. Yao. A Bicomponent TiO_2/SnO_2 Particulate Film for Photocatalysis [J], Chem. Mater., 2000, 12(11): 3445-3448
    [13] W. J. Bae, K. H. Kim, W. H. Jo, Y. H. Park. A Water-Soluble and Self-Doped Conducting Polypyrrole Graft Copolymer [J], Macromolecules, 2005, 38(4): 1044-1047
    [14] J. C. Vidal, E. Garcia, J. R. Castillo. In situ Preparation of a Cholesterol Biosensor [J], Anal. Chim. Acta., 1999, 385(1-3): 213-222
    [15] L. X. Wang, X. G. Li, Y. L. Yang. Preparation Properties and Applications of Pyrroles [J]. React. Funct. Polym., 2001, 47(2): 125-139
    [16] E. M. Genies, M. Lapkowski, C. Santier, E. Vieil. Polyaniline Spectroelectrochemistry Display and Battery [J], Synth. Met., 1987, 18(1-3): 631-636
    [17] S. Roth, W. Graupner. Industrial Applications of Conducting Polymers [J], Synth. Met., 1993, 122(1): 229-236
    [18] R. Partch, S. G. Gangolli, E. Matijevic, W. Cal, S. Arajs. Conducting polymer composites: Ⅰ. Surface-induced polymerization of pyrrole on iron(Ⅲ) and cerium(Ⅳ) oxide particles [J], J. Colloid Interface Sci., 1991, 144(1): 27-35
    [19] K. Suri, S. Annapoorni, R. P. Tandon, N. C. Mehra. Nanocomposite of polypyrrole-iron oxide by simultaneous gelation and polymerization [J], Synth. Met., 2002, 126(2): 137-142
    [20] 柳闽生,杨迈之,郝彦忠,余赪,蔡生民,李永舫.纳米尺度TiO_2/聚砒咯多孔膜电极光电化学研究[J],高等学校化学学报,1997,18(6):938-942
    [21] J. Liu, M. X. Wan. Composites of polypyrrole with conducting and ferromagnetic behaviors [J], J. Polym. Sci., Part A: Polym. Chem., 2000, 38(15): 2734-2739
    [22] H. S. La, K. S. Park, K. S. Nahm, K. K. Jeong, Y. S. Le. Preparation of polypyrrole-coated silicon nanoparticles [J], Colloids Surf. A., 2006, 272(1): 22-26
    [23] F. Leroux, L. F. Nazar, G. R. Goward. Poly(pyrrole) and Poly(thiophene)/Vanadium Oxide Interleaved Nanocomposites: Positive Electrodes for Lithium Batteries [J], Electrochim. Acta., 1998, 43(10): 1307-1313
    [24] N. Ballav, M. Biswas. Conductive composites of polyaniline and polypyrrole with MoO_3 [J], Mater. Lett., 2006, 60(4): 514-517
    [25] G. Robila, M. Ivanoiu, T. Buruiana, E. C. Buruiana. Sulfonated polyurethane anionomer-polypyrrole molecular composite [J], J. Appl. Polym. Sci., 1997, 66(3): 591-595
    [26] P. J. Benjamin, E. Phillip, J. E. Richard, L. C. Honeybourne, M. R. Norman. Novel composite organic-inorganic semiconductor sensors for the quantitative detection of target organic vapours [J], J. Mater. Chem., 1996, 6(3): 289-294
    [27] 耿丽娜,王淑荣,李鹏,赵英强,张守民,吴世华.聚吡咯/二氧化锡杂化材料的制备及气敏性研究[J],无机化学学报,2005,21(7):977-981
    [28] A. A. Samra, J. S. Morris, S. R. Koirtyohann, Wet ashing of same biological samples in a microwave oven [J], Anal. Chem., 1975, 47(8): 1475-1481
    [29] G. J. Wilson, G. D. Will, R. L. Frost, and S. A. Montgomery, Efficient microwave hydrothermal preparation of nanocrystalline anatase TiO_2 colloids [J], J. Mater. Chem., 2002, 12(6): 1787-1791
    [30] O. Palchik, R. Kerner, A. Gedanken, A. M. Weiss, M. A. Slifkin and V. Palchik, Microwave-assisted polyol method for the preparation of CdSe "nanoballs" [J], J. Mater. Chem., 2001, 11(3): 874-878
    [31] H. Grisaru, O. Palchik, A. Gedanken,V. Palchik, M. A. Slifkin and A. M. weiss, Preparation of the Cd_(1-x)Zn_xSe alloys in the nanophase using microwave irradiation [J], J. Mater. Chem., 2002, 12(2): 339-344
    [32] M. A. Gubbins, V. Casey, S. B. Newcomb, Nanostructural characterisation of SnO_2 thin films prepared by reactive r.f. magnetron sputtering of tin [J], Thin Solid Films, 2002, 405(1-2): 270-275
    [33] 孙明,余林,郝志峰,孙建.SnO_2纳米粒子的制备与表征,[J],无机化学学报,2005,21(6):925-928
    [34] H. P. Klug, L. E. Alexander. X-ray Diffraction Procedure for polycrystalline and Amorphous Materials [M], New York: Wiley, 1974, 618
    [35] R. Gangopadhyay, D. Amitabha. Polypyrrole-ferric oxide conducting nanocomposites: Ⅰ. Synthesis and characterization [J], Eur. Polym. J., 1999, 35(11): 1985-1992
    [36] Y. Tachibana, K. Hara, S. Takano, K. Sayama and H. Arakawa, Investigations on anodic photocurrent loss processes in dye sensitized solar cells: comparison between nanoerystalline SnO_2 and TiO_2 films [J], Chem. Phys. Lett., 2002, 364(2): 297-302
    [37] I. T. Weber, A. P. Maciel, P. N. L. Filho, E. Longo, E. R. Leite, C. O. P. Santos, Y. Maniette, W. H. Schreiner. Effects of synthesis and processing on supersaturated rare earth-doped nanometrie SnO_2 powders, Nano Lett., 2002, 2(9): 969-973
    [38] N. L. Wu, L. F. Wn, Y. Ch. Yang, S. J. Huang, Spontaneous solution-sol-gel process for preparing tin oxide monolith [J], J. Mater. Res., 1996, 11 (4): 813-820
    [39] D. J. Yoo, J. Tamaki, S. J. Park, N. Mium, N. yamazoe, Suppression of grain growth in sol-gel-derived tin dioxide ultrathin films [J], J. Am. Ceram. Soc., 1996, 79(8): 2201-2204
    [40] 邓建国,贺传兰,龙新平,彭宇行,李蓓,陈新滋.磁性Fe_3O_4/聚吡咯纳米微球的合成与表征[J],高分子学报,2003,(3):393-397
    [41] 任丽,王立新,张富强,刘盘阁.PPy/APS-SiO_2纳米导电复合材料的合成与表征[J],高发子材料科学与工程,2004,20(6):60-63
    [42] D. A. Popeseu, F. B. Verduraz. Infrared studies on SnO_2 and Pd/SnO_2 [J], Catalysis Today, 2001, 70(2): 139-154
    [43] G. B. Street, T. A. Skotheim. Handbook of Conducting Polymers: Polypyrrole from Powders to Plastics [M], New York: Marcel Dekker Inc, 1986, 265-292
    [44] 许均,曾幸荣,李鹏,邓惠萍,苏海霞.聚吡咯/二氧化硅复合材料的制备及导电性的研究[J],化学与黏合,2005,27(1):1-4
    [45] H. Munstedt. Properties of polypyrroles treated with base and acid [J], Polymer, 1986, 27(6): 899-904
    [46] R. Kostic, D. Rakovic, S. A. Stepanyan, I. E. Davidova, and L. A. Gribov. Vibrational spectroscopy of polypyrrole, theoretical study [J], J. Chem. Phys., 1995, 102(8): 3104-3109
    [47] Y.V.Pleskov.张天高,蔡生民.光电化学太阳能转换[M],北京:科学出版社,1994,196
    [48] 高濂,郑珊,张青红.纳术氧化钛光催化材料及应用[M],北京:化学工业出版社,2002,5-6
    [49] M. E. Vaschetto, A. P. Monkman, M. Springborg. First-principles studies of some conducting polymers: PPP, PPy, PPV, PPyV, and PANI [J], J. Mol. Struct., 1999, 468(3): 181-191
    [50] K. Huang, M. X. Wan, Y. Z. Long, Z. J. Chen, Y. Wei. Multi-functional polypyrrole nanofibers via a functional dopant-introduced process [J], Synth. Met., 2005, 155(3): 495-500
    [51] J. Joo, J. K. Lee, S. Y. Lee, K. S. Jang, E. J. Oh, A. J. Epstein. Physical Characterization of Electrochemically and Chemically Synthesized Polypyrroles [J], Macromolecules, 2000, 33(14): 5131-5136
    [52] L. Y. Huang, W. B. Hou, Z. P. Liu, Q. Y. Zhang. Polypyrrole-coated styrene-butyl acrylate copolymer composite particles with tunable conductivity [J], Chin. Sci. Bull., 2005, 50(10): 971-975
    [53] K. L. Tan, B. T. G. Tan, E. T. Kang, K. G. Neoh. The chemical nature of the nitrogens in polypyrrole and polyaniline: A comparative study by x-ray photoelectron spectroscopy [J], J. Chem. Phys., 1991, 94(8): 5382-5388
    [54] 曲济方,张生万,宋晋虎,黄巍.TiO_2/Na_2SO_3体系中日光催化聚合甲基丙烯酸甲酯的研究[J],高分子学报,2001,(5):656-659
    [55] 杨东洁,张利英,光降解塑料及其品种的技术剖析[J],成都纺织高等专科学校学报,2000,17(4):12-19
    [56] K. Vinodgopal, Idriss Bedja, and Prashant V. Karnat, Nanostructured Semiconductor Films for Photocatalysis. Photoelectrochemical Behavior of SnO_2/TiO_2 Composite Systems and Its Role in Photoeatalytic Degradation of a Textile Azo Dye [J], Chem. Mater., 1996, 8(8): 2180-2187
    [57] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. H. Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Graetzel. Conversion of light to electricity by cis-X_2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(Ⅱ) charge-transfer sensitizers (X=Cl~-, Br~-, I~-, CN~-, and SCN~-) on nanoerystalline TiO_2 electrodes [J], J. Am. Chem. Soc., 1993, 115(14): 6382-6390
    [58] Y. F. Li, R. Y. Qian. On the nature of redox processes in the cyclic voltammetry of polypyrrole nitrate in aqueous solutions [J], J. Electroanal. Chem., 1993, 362(2): 267-272
    [59] J. H. Kaufman, N. Colaneri, J. C. Scott, and G. B. Street. Evolution of Polaron States into Bipolarons in Polypyrrole [J], Phys. Rev. Lett., 1984, 53(10): 1005-1008
    [60] J. Wang, L. D. Hutchins. Thin-layer electrochemical detector with a glassy carbon electrode coated with a base-hydrolyzed cellulosic film [J], Anal. Chem., 1985, 57(8): 1536-1541
    [61] K. Murakoshi, R. Kogure, Y. Wada, S. Yanagida. Solid State Dye-Sensitized TiO_2 Solar Cell with Polypyrrole as Hole Transport Layer [J], Chem Lett., 1997, 26(5): 471-472

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700