用户名: 密码: 验证码:
廊固凹陷大兴砾岩体天然气藏评价预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着勘探程度的提高和勘探技术的发展,具有隐蔽油气藏特征的陆相断陷湖盆边缘陡坡带砾岩体正成为华北油区重点勘探评价对象。因其地质情况复杂,针对这类砾岩体的勘探一直是个世界性技术难题。廊固凹陷大兴砾岩体为深层天然气的主要储集场所,这类储层明显受水下扇体规模和相带分布控制,但由于扇体埋藏深、相变快,导致其地震反射不易识别,长期以来对储层的刻画是个难题,导致油气勘探评价进展缓慢。近年来本区开展了三维地震二次采集,资料品质有所改善,另一方面由于纵向上砾岩体与泥岩存在明显的速度和波阻抗差异,这为综合应用多种方法降低本区评价钻探风险提供了地球物理依据。因此,在地震资料品质得到改善的前题下,开展砾岩体油气藏预测识别研究,对整个冀中坳陷北部深层天然气勘探开发具既十分必要,又非常及时。
     本文应用地质、地球物理理论和地震、测井等先进技术,针对大兴砾岩体开展储层展布特征及气藏发育规律研究。主要取得了如下成果:(1)通过砾岩体目标叠前时间保幅偏移处理和高分辨率拓频处理,明显提高了三维地震资料品质,砾岩体轮廓更加清晰;(2)运用地震沉积学方法开展砾岩体识别,恢复古物源区大兴凸起的古地质演化和大兴砾岩沉积时期的古地貌模式,建立了旧州-固安地区两种主要的砾岩体沉积模式;(3)对大兴断裂下降盘不同期次砾岩体进行了精细层序划分,建立了砾岩体精细地层格架;(4)综合应用常规测井和多极阵列声波测井资料开展砾岩体测井识别,建立了大兴砾岩体裂缝划分标准及气层识别方法和图版;(5)引入裂缝成因机制,通过各项异性分析和地应力模拟方法,预测裂缝发育情况。通过吸收衰减、AVO属性处理分析,综合预测研究储层含气及裂缝情况,对有利目标潜力评价提供了依据。多种资料相互印证,提高了预测结果的可靠性。
     经现场实际应用成功指导了兴9砾岩体气藏的评价,提高了钻探成效,发现了整装规模天然气储量。勘探实践表明,充分利用现有地质、地震数据信息,发展砾岩体地震储层预测技术体系,可以有效解决大兴砾岩体气藏评价中储层预测难以预测的问题。
With the improvement in the exploration and development of exploration technology, the submarine fan conglomerates in the steep slope of Langgu faulted lake basin,which is of subtle reservoir characteristics, has becomes key of the point for exploration and evaluation in Huabei Oilfield. Such conglomerate has been a worldwide technical problem because of its complex geological conditions. As the main reservoir of deep natural gas, Daxing conglomerate in Langgu depression is difficult to identify because of its deep bury, fast phase transformation. The progress of exploration and evaluation is slow because the reservoir body is controlled by submarine fan and phase distribution. As the second three-dimensional seismic acquisition has been carried out in this area in recent years, data quality has improved. Thurthermore, the significant differentiation of vertical wave speed and wave impedance between conglomerate and mudstone becomes the geophysical basis for the integrated application of a variety of evaluation methods to reduce the risk of exploration. It is significant carry out recognition of the whole northern part of the deep Jizhong gas exploration and development of great significance using the means of synthesis of existing geological, logging and seismic data, reservoir specific prediction of conglomerate. Therefore, the research on natural gas exploration and development is both necessary and very timely.
     In this paper, the study on reservoir characteristics and distribution of gas development law are carried out using the existing geological, geophysical and seismic theory, logging and other advanced technology. The main achievements in this paper are as below:
     1. Objectives through the conglomerate preserved amplitude prestack timemigration processing and high-resolution frequency extension processing, significantly improving the quality of three-dimensional seismic data, a clearer outline of conglomerate;
     2. Methods used to carry out seismic sedimentary conglomerate identification, restoration Antiquities raised source Daxing conglomerate ancient geological evolution and the ancient landscape pattern during the deposition, the establishment of Jiuzhou - Gu'an two main areas of conglomerate sedimentary model;
     3. Daxing fault downthrown on different sub-conglomerate of fine stratigraphic sequence was established stratigraphic framework of conglomerate fine;
     4. Integrated application of conventional logging and multi-array acoustic logging data logging conglomerate to carry out identification, Daxing conglomerate established criteria for the classification and the gas crack identification method and illustrated;
     5. Crack formation mechanism introduced by the stress singularity analysis and simulation method to predict fracture situation. By attenuation, AVO attribute processing and analysis, integrated reservoir prediction of gas and crack situation, the favorable evaluation of the basis for potential targets. A variety of information, reflection, and improve the reliability of prediction.
     Successfully guide the practical application of field Xing 9 assessment of gas to improve the drilling results, the scale of natural gas reserves found in pack conglomerate aged, practice. It has shown that make full use of existing geological and seismic data, the development of technology conglomerate reservoir prediction system, which can effectively solve the problem of evaluation of Daxing conglomerate prediction.
引文
[1]蔡希源,李思田,郑和荣.碳酸盐岩储层和沉积体系的地震成像.北京:地质出版社,2007
    [2]毕义泉.东营凹陷滨县凸起南坡砂砾岩体成因模式与成藏规律.石油大学学报(自然科学版),2002,26(4):12-16
    [3]曹辉兰,华仁民,纪友亮,胡文,张善文.扇三角洲砂砾岩储层沉积特征及与储层物性的关系—以罗家油田沙四段砂砾岩体为例.高校地质学报,2001,7(2):222-229
    [4]曹树春,陈建渝.滨县凸起南坡砂砾岩体勘探技术与实践.2000,12(4):15-19
    [5]陈文学,姜在兴等.层序地层学与隐蔽圈闭预测—以河南泌阳凹陷为例.北京:石油工业出版社,2001
    [6]崔周旗,吴健平等.束鹿凹陷斜坡带沙三段扇三角洲特征及含油性.西北大学学报(自然科学版),2003,33(3):320-324
    [7]邓宏文,王洪亮,祝永军.高分辨率层序地层学-原理及应用.北京:地质出版社,2002
    [8]董春梅,林承焰.储集砂砾岩体成因、分布规律及形成条件探讨.石油实验地质,1996,18(3):289-297
    [9]董冬.断陷湖盆陡坡带碎屑流沉积单元的沉积序列和储集特征—以东营凹陷永安地区为例.沉积学报,1999,17(4):565-560
    [10]杜世通.地震波动力学.山东东营:石油大学出版社,1996
    [11]费宝生.隐蔽油气藏的勘探.油气地质与采收率,2002,9(6):29-33
    [12]蔡希源,宋国奇等,陆相盆地高精度层序地层学,北京,地质出版社,2004.
    [13]韩宏伟,崔红庄等.东营凹陷北部陡坡带砂砾岩体扇体地震地质特征.特种油气藏,2003,10(4):28-31
    [14]董国臣,孙景民,张守鹏等.廊固凹陷古近系层序地层特征及油气储集规律探讨.中国地质,2002, 29(4): 397-400.
    [15]金凤鸣,傅恒,李仲东等.冀中坳陷廊固凹陷古近系层序地层与隐蔽油气藏勘探.矿物岩石,2006, 26(4): 75-82.
    [16]宋荣彩,张哨楠,董树义等.非补偿陆相断陷盆地层序地层学研究—以廊固凹陷古近系为例[J].地层学杂志,2007,31(3):255-260.
    [17]鲜强,李仲东,傅恒等.廊固凹陷下第三系层序地层及构造演化[J].物探化探计算技术,2007,29(3):244-248.
    [18]姜素华,林红梅,王永诗.陡坡带砂砾岩扇体油气成藏特征—以济阳坳陷为例.石油物探,2003,42(3):313-317
    [19]姜在兴,李丕龙,张善文,地质转换系统在隐蔽圈闭中的应用.第三届隐蔽油气藏国际研讨会论文集,北京:石油工业出版社,2003.
    [20]姜在兴,杨伟利,操应长,于文泉,可容空间转换系统.中国沉积学发展方向暨沉积学报创刊20周年研讨会论文集,北京,2003.
    [21]姜在兴.沉积学[M].北京:石油工业出版社,2003
    [22]文慧俭,舒萍,范传闻等.兴城气田深层砾岩储层储集空间类型及控制因素.大庆石油学院学报,2008, 32(3): 101-104
    [23]李晶,陈裕明,王振国,用改进的遗传算法进行地震波阻抗反演.新疆石油地质,1998,25(2):150-152
    [24]李丕龙.陆相断陷盆地油气地质与勘探.北京:石油工业出版社,地质出版社,2003
    [25]刘家铎,田景春等.近岸水下扇沉积微相及储层的控制因素研究—以沾化凹陷罗家鼻状构造沙四段为例.1999,26(4):365-369
    [26]刘书会,宋国奇,赵铭海.复杂砂岩储集体地震地质综合解释技术.石油物探,2003,42(3):302-305
    [27]刘晖,操应长,袁静等.胜坨地区沙四上亚段砂砾岩类型及储层特征[J].西南石油大学学报(自然科学版),2010,32(5):9-15
    [28]陆基孟.地震勘探原理.山东东营:石油大学出版社,1993,261-270.
    [29]马劲风.地震勘探中广义弹性阻抗的正反演.地球物理学报,2003,46(1):118-124
    [30]马丽娟,高平,金学新,朱应科.东营南坡东部沙河街组四段储层成因及预测方法.地质科技情报,2002,21(3):55-60
    [31]马丽娟,何新贞,孙明江,王琳.东营凹陷北部砂砾岩储层描述方法.石油物探,2002,41(3):354-358
    [32]马丽娟,解习农,任建业.东营凹陷古构造对下第三系储集体的控制作用指导油气勘探与开发.2002,29(2):64-67
    [33]凌云.地震数据采集·处理·解释·一体化实践与探索[M].北京:石油工业出版社,2007
    [34]马在田等编著.计算地球物理学概论.上海:同济大学出版社,1997
    [35]彭传圣,王永诗,常国贞,林红梅.罗家地区砂砾岩储集层地球物理预测技术.油气地质与采收率,2001,8(2):36-39
    [36]史文东,赵卫卫.沾化凹陷孤北洼陷下第三系沙三段扇三角洲沉积体系及其与油气聚集的关系.石油大学学报(自然科学版).2003,27(2):15-20
    [37]王连山,朱庆忠.廊固凹陷大兴砾岩体隐蔽油气藏储层预测研究[J].物探化探计算技术,2003,25(4):308~311.
    [38]隋风贵.断陷湖盆陡坡带砂砾岩扇体成藏动力学特征——以东营凹陷为例.石油与天然气地质,2003,24(4):335-340
    [39]田景春,付东钧.近岸水下扇砂砾岩体的储集性研究以胜利油区沾化凹陷埕913-埕916井区沙三段为例.成都理工学院学报,2001,28(4):366-370
    [40]王宝言,隋风贵.济阳拗陷断陷湖盆陡坡带砂砾岩体分类及展布.特种油气藏,2003,10(3):
    [41]杨克明,徐进.川西坳陷致密碎屑岩领域天然气成藏理论与勘探开发方法技术.北京地质出版社2004
    [42]王保丽,印兴耀,张繁昌.基于Fatti近似的弹性阻抗方程及反演[J].地球物理学进展,2008,23(1):192-197.
    [43]王保丽,印兴耀,张繁昌.基于Gray近似的弹性阻抗方程及反演[J].石油地球物理勘探,2007,42(4):435-439.
    [44]王连山,赵红静,陈军.廊固断陷湖盆陡坡带砾岩体气藏识别[J].石油天然气学报,2010,32(06):244-247.
    [45]王平贵,李彦强,赵连素.东营凹陷王庄地区古近纪沙河街组三段扇三角洲砂砾岩体沉积特征分析.山东地质,2003,增刊,78-80
    [46]王永刚,杨国权.砂砾岩油藏的地球物理特征.石油大学学报,2001,25(5):16-21
    [47]杨明慧,刘池阳,孙冬胜等.陆相伸展盆地强伸展期沉积格架与断块翘倾分析—以冀中坳陷廊固凹陷沙河街组三段中亚段为例.地质科学, 2004, 39(2): 178-190
    [48]武恒志.断陷盆地砂砾岩体的发育特征—以沾化凹陷埕南断裂带下第三系沙三段为例.石油与天然气地质,2001,22(1):52-56
    [49]徐茂斌,许建华,胡光明等.利津地区砂砾岩体储层微观特征.大庆石油地质与开发,2003,22(2):13-16
    [50]徐晓晖,许建华,谢远军等.东营凹陷北部陡坡带西段水下扇体储集层特征.沉积与特提斯地质,2003,23(1):64-69
    [51]薛良清.湖相盆地中的层序、体系域与隐蔽油气藏.石油与天然气地质,2002,23(2):115-120
    [52]杨剑萍,赵卫卫,姜在兴.沾化凹陷孤北油田古近系沙三段扇三角洲沉积特征及油气储层意义.石油与天然气地质.2003,24(2):157-161
    [53]宋荣彩,张哨楠,董树义等.廊固凹陷陡坡带古近系砂砾岩体控制因素分析[J].成都理工大学学报(自然科学版),2006,33(6):587-592.
    [54]杨伟刚.基于地震波衰减属性的主参数分析研究.成都理工大学硕士论文,2007.
    [55]易宗富,邵雨,严泽泉等.三维叠后去噪应注意断层保护[ J ].新疆石油地质,2003,24(2) :136-137.
    [56]印兴耀等.地震技术新进展.山东东营:中国石油大学出版社,2006.3
    [57]于国庆,王铭宝,杨彬.埕东油田埕913断块沙三段砂砾岩油藏储层特征研究.特种油气藏,2003,10(3):6-10
    [58]于建国.砂砾岩体的内部结构研究与含油性预测.石油地球物理勘探,1997,32(增1):15-20
    [59]于建群,姜东波.永北地区砂砾岩油藏油气富集规律及勘探开发实践.特种油气藏.2001,8(2):11-15
    [60]穆龙新.储层裂缝预测研究[M].北京:石油工业出版社,2009.
    [61]袁庆.利津油田沙四上段利853砂砾岩扇体内部研究.特种油气藏,2003,10(3):18-21
    [62]袁选俊,谯汉生.渤海湾盆地富油气凹陷隐蔽油气藏勘探.石油与天然气地质,2002,23(2):130-133
    [63]曾允孚,田景春,赵志超,孔凡仙,郑和荣.东营凹陷北带沙河街组砂砾岩体的成因类型及其储集性研究.岩相古地理,1994,14(1):1-10
    [64]张萌,田景春,吴志勇.用Bayes判别模型识别未取芯井段沉积微相以沾化凹陷罗家鼻状构造沙四上段近岸水下扇砂砾岩体为例.成都理工学院学报,2001,28(3):73-78
    [65]仝兆岐,储层地震技术新进展,石油大学出版社,2004.
    [66]张善文,隋风贵,王永诗.济阳坳陷下第三系陡岸沉积模式.沉积学报,2001,19(2):219-223
    [67]赵志超,罗运先,田景春.中国东部陆相盆地砂砾岩成因类型及地震地质特征.石油物探,1996,35(1):76-86
    [68]朱红涛等.分频吸收系数技术在储层横向预测中的方法原理.科技进步与对策,2003,(增刊):263~264
    [69]朱庆忠,李春华,杨合义.廊固凹陷大兴砾岩体成因与油气成藏.石油勘探与开发,2003,30(4):34-36
    [70] Alastair D.McAulay, Prestack inversion with plane-layer point source modeling,1985, 50:77-89
    [71] Arnott R.W.C. The role of fluid- and sediment-gravity flow processes during deposition of deltaic conglomerates (Cardium Formation, Upper Cretaceous), west-central Alberta. Bulletin of Canadian Petroleum Geology, 2003, 51(4): 426-436.
    [72] Esteban M., and Taberner C. Secondary porosity development during late burial in carbonate reservoirs as a result of mixing and/or cooling of brines. Journal of Geochemical Exploration, 2003, 78-79, 355-359.
    [73] Esteban M., and Taberner C. Secondary porosity development during late burial in carbonate reservoirs as a result of mixing and/or cooling of brines. Journal of Geochemical Exploration, 2003, 78-79, 355-359.
    [74] Handin, J., Hagar R. V., Friedman G. M., and Feather J. N. Experimental deformation of sedimentary rocks under confining pressure: pore pressure tests. AAPG Bulletin, 1963, 47: 717-755.
    [75] Connolly P.Elastic impedance[J].The Leading Edge,1999,18(4):438-452
    [76] Crase E,Pica A,Noble M,et al.Robust elastic nonlinear waveform inversion: Application to real data[J].Geophysics,1990,55:527-538
    [78] Moslow T. F. and Zonneveld J. P. Foreword - Marine Conglomerate Reservoirs: Cretaceous of Western Canada and Modern Analogues. Bulletin of Canadian Petroleum Geology, 2004, 52(1): 1-3.
    [79] Elapavuluri Pavan,Bancroft John.Estimation of Q using crosscorrelation.CSEG National Convention,2004,1-4.
    [80] Gawthorpe R.L,Leedert M.R.Tectono-sedimentary evolution of active extensional basins.Basin Research,2000,12:195~218.
    [81] Gladwin M T,Stacey F D.Anelastic degradation of acoustic pulses in rock.Phys.Earth Planet Int.,1974,8(2):332-336.
    [82] Jervey M T.Quantitative geological modeling of siliciclastic rock sequence and their seismic expression[A].In:Vail P R et al eds.Sea[25]Level Changes:An Integrated Approach,SEPM Special Publication.1988,42[C]:47~70.
    [83] Kan T K,Corrigan D,Huddleston P D.Attenuation measurement from VSP.Presented at 51th Ann.Internat.Mtg.Soc.Expl.Geophys.1981.
    [84] Kennett B.L.N.,Seismic wave propagation in stratified media,Cambridge Univ.Press, 1983
    [85] Kjartansson E.Constant Q wave propagation and attenuation.J.G. R.,1979,84(4):4737-4748
    [86] Ma Jinfeng,Generalized Elastic Impedance[J],SEG Expanded Abstracts 2003
    [87] Ma X,Simultaneous inversion of prestack seismic data for rock properties using simulated annealing,2002,67:1877–1885
    [88] Mallick S,Frazer L N,Practical aspects of reflectivity modeling,1987,52:1155-1363
    [89] Mallick S,Practical aspects of reflectivity modeling,Geophysics,1987,52:1355-1364
    [90] Zonneveld J. P. and Moslow T. F. Exploration potential of the Falher G shoreface conglomerate trend: evidence from outcrop. Bulletin of Canadian Petroleum Geology, 2004, 52(1): 23-38.
    [91] Mallick S.and Fraser L.N.,Practical aspects of reflectivity modeling,Geophysics, 1987,52:1355-1364
    [92] Mallick S.AVO and elastic impedance[J].The Leading Edge,2001,20(10):1094-1104
    [93] Mallick S.,Model based inversion of amplitude-variation-with-offset data using agenetic algorithm,Geophysics,1995,60:939-954
    [94] Mallick S.,Rapid computation of multi-offset vertical seismic profile synthetic seismograms for layered media,Geophysics,1988,53:479-491
    [95] Martin Sonderholm,Henrik Trisgaard.Proterozoic fluvial styles:response to changes in accommodation space(Rivieradal sandstones,eastern North Greenland)Sedimentary Geology,1998,120:257-274.
    [96] Quan Y L,Harrisy J M..Seismic attenuation tomography using the frequency shift method.Geophysics,1997,62(3):895-905.
    [97] Richards P.G..Quantitative seismology:Theory and methods.W.H.Freeman and Company,1980
    [98] Ricker,Norman.1952.The form and laws of propagation of seismic wavelets.Geophysics,v.18.p.10-40.
    [99]Sen M,Indrajit G.Roy,Computation of differential seismograms and iteration adaptiveregularizationin prestack waveform inversion,Geophysics,2003,68:2026-2039
    [100] Sen M.K.and Stoffa P.L.,Nonlinear one-dimensional seismic waveform inversion using simulated annealing,Geophysics,1991,56:1624-1638
    [101] Sen M.K.and Stoffa P.L.,Rapid sampling of model space using genetic algorithms:examplesfromseismicwaveforminversion,Geophys.J.Internat.,1992,108:281-292
    [102] Sun Sh J,Determination of seismic attenuation from surface and downhole measurements[a dissertation for Doctor of Philosophy].Oklahoma:University of Oklahoma,2000.
    [103] Vandeginste V., Swennen R., Gleeson S. A., Ellam R. M., Osadetz K., and Fran?ois R. Development of secondary porosity in the Fairholme carbonate complex (southwest Alberta, Canada). Journal of Geochemical Exploration, 2006, 89, 394–397.
    [104] Sun S.Q. Dolomite Reservoirs: Porosity Evolution and Reservoir Characteristics. AAPG Bulletin, 1995, 79(2): 186-204.
    [105] Stearns, D. W., and Friedman G. M. Reservoirs in fractured rock, in R. E. King, ed., Stratigraphic oil and gas fields--classification, exploration methods, and case histories, AAPG Memoir, 1972, 16: 82-106.
    [106] Schmoker J. W., Krystinik K. B. and Halley R. B. Selected characteristics of limestone and dolomite reservoirs in the United States. AAPG Bulletin, 1985, 69: 733-741.
    [107] Schmoker, J. W., and Halley R. B. Carbonate porosity versus depth: a predictable relation for south Florida. AAPG Bulletin, 1982, 66: 2561-2570.
    [108] Schmidt G.A. S. and Pemberton G. Stratigraphy and paleogeography of a conglomeratic shoreline: the Notikewin Member of the Spirit River Formation in the Wapiti area of west-central Alberta. Bulletin of Canadian Petroleum Geology, 2004, 52(1): 57-76.
    [109] Rogers J. P. New reservoir model from an old oil field: Garfield conglomerate pool, Pawnee County, Kansas. AAPG Bulletin, 2007, 91(10): 1349–1365.
    [110] Roehl P. O. and Choquette P. W. Introduction, in P. O. Roehl and P. W. Choquette, eds., Carbonate petroleum reservoirs: New York, Springer-Verlag, 1985, 1-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700