用户名: 密码: 验证码:
气体开关击穿特性及其对FLTD输出影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
快脉冲直线变压器驱动源(Fast Linear Transformer Driver, FLTD)是一种新型的初级储能装置,采用多支路并联以获得大电流,通过多级串联感应电压叠加以获得高电压。其结构紧凑,采用模块化设计,串并联方便,不需要脉冲压缩和脉冲形成网络,直接驱动负载。在闪光照相、高功率微波、惯性约束聚变和惯性聚变能源中具有广阔的应用前景。作为FLTD的关键部件,气体开关的数目众多,其击穿特性直接影响FLTD的输出参数、稳定性和可靠性,目前,FLTD气体开关及其击穿特性研究已经成为脉冲功率技术领域的研究前沿和热点问题。因此,气体开关击穿特性及其对单模块FLTD、多模块串联FLTD影响的研究对FLTD技术的发展具有重要的科研研究意义和实际应用价值。
     本文首先搭建了开关击穿特性研究的实验平台,它基本上与FLTD模块单支路结构相同,包括开关、电容器、负载电阻、连接板等器件。研制了Rogowski线圈和电阻分压器,可用于开关击穿特性实验脉冲电流和电压的测量。研制了一种用于FLTD的六间隙气体开关,设计了小球支撑固定环状中间电极的结构,该开关在工作电压160kV、0.3MPa氮气下重复触发运行2000次无故障,平均击穿延迟时间为50.96ns,抖动为2.27ns。
     实验研究了六间隙气体开关的击穿特性。通过该六间隙气体开关自击穿电压的研究,得到了开关自击穿电压曲线,推导了不同工作电压和工作气压下六间隙气体开关的工作系数。提出了电感隔离的触发引入方法。电感隔离和电阻隔离方法的对比研究表明,电感隔离方式不仅有利于减小开关抖动,还能在开关出现自放电时,更有效地保护相邻开关和触发器。不同工作电压、气压、工作系数等条件下开关触发击穿特性的研究显示,用于FLTD时,六间隙气体开关工作系数应选择60%~65%以减小开关抖动和自放电概率,而修正常数项的马丁公式可用于估算六间隙开关击穿延迟时间。
     基于六间隙气体开关自击穿电压数据,根据三参数Weibull概率分布模型,分析计算了开关自放电概率。实验研究了六间隙气体开关2000次重复运行特性,提出并验证了六间隙气体开关击穿延迟时间近似呈正态分布。实验研究了FLTD模块的16只气体开关的自击穿电压、触发击穿延迟时间和抖动,掌握了开关平均击穿延迟时间的差异。通过分析40支路和14支路FLTD模块的触发引入结构和开关位置,提出了模拟FLTD模块中开关触发脉冲参数差异的方法。
     建立了14支路单模块FLTD,计算推导了模块的元件参数,建立了单模块FLTD的PSPICE电路仿真模型和MATLAB模拟计算模型,并利用短路负载下14支路FLTD模块的实验结果验证了两种模型仿真计算结果的正确性,研究结果表明,单模块FLTD中开关抖动较小时对输出脉冲前沿影响较为明显;开关抖动较大时,多次重复运行输出脉冲呈窄带状分布;开关自放电故障将引起模块电压波动,其趋势先减小后增大,振荡周期约580ns,幅值约10kV。
     分析了60级FLTD模块串联的工作原理,推导了其等效电路的元件参数,60级FLTD模块串联的模拟计算结果表明,随着开关数目增加,开关抖动对输出参数的影响减小。首端模块故障对串联系统影响较大,首端模块整体自放电或模块中单只开关自放电均可能导致后级模块陆续自放电,造成串联模块误动作。中间模块和末端模块若不能有效触发导通,在感应电压的作用下,可能稍迟于正常时序导通。
Fast linear transformer driver (FLTD) is a developing technology for constructing high current high voltage pulse generator. The main feature of FLTD is inductively adding the relatively low voltage straight out of the capacitors. Its output pulse can be directly applied to the load without any pulse compressing and forming unit. Also, FLTD can be connected conveniently in series or parallel with different output parameters. Therefore, FLTD technology makes pulsed power devices more compact and less expensive to produce one hundred nanosecond pulse with high efficiency of energy transformation. It has wide application prospect in the fields of flash photography, high power microwave, excimer laser, Z-pinch and future inertial fusion energy, etc. As one of the critical elements, huge amounts of gas switches directly influence the output parameters, the stability and reliability of FLTD. In recent few years, gas switch and its breakdown characteristics are becoming focus and hot issues. As a result, the studies on the breakdown characteristics of multi gap gas switch and its influence on the single module FLTD and multi modules FLTD in series are important and urgent for the development of FLTD technology both in theory and application.
     In this dissertation, a gas switch with six gaps in series has been designed and improved for FLTD. A research platform was established for the breakdown characteristics of gas switch, which mainly included the basic discharging loop similar to a single brick of FLTD that consisted of six-gap gas switch, capacitors, load resistor and strip lines. Rogowski coil and resistance voltage divider were also developed for monitoring the pulse current and load voltage, respectively.
     The working ratio with different charge voltage and gas pressure were calculated according to the self breakdown voltage curve derived from the self break experiment data of six-gap gas switch. A new trigger access method with inductance isolation was proposed in this dissertation. The comparative experiment with both inductance isolation and resistance isolation indicates that the former method not only has benefit in reducing the switch jitter, but also effectively protects the adjacent switches and trigger generator if one of the switches in FLTD module prefires. The experimental results with different charge voltages, gas pressures and working ratios show that when it was used in FLTD, the working ratio of the six-gap gas switch should limited between 60%~65% to reduce the switch jitter and the prefire probability. The breakdown delay time can be calculated by using T.H. Martin formula with the constant term revised.
     By using three parameters Weibull probability distribution model, the prefire probability of six-gap gas switch was calculated according to the self breakdown data of three hundreds shots. A rule was proposed and proved based on the repetitive operation of six-gap gas switch with two thousands triggered breakdown shots, which indicates that the delay time distribution of the switch approximately obeys the normal probability distribution. The self breakdown voltages, triggered breakdown delay times and switch jitters of sixteen switches for FLTD module were studied. The difference of the average delay times of sixteen switches was also derived from the experiment results. The trigger access structure will cause trigger pulse of each switch different in the FLTD module. Therefore, equivalent switch jitter was put forward to simulate the difference of the trigger pulse parameters of each switch.
     A FLTD experimental system with fourteen bricks was established. Two models built by using PSPICE and MATLAB were proved by the experimental result of the FLTD system with short circuit load. The models were used to simulate the influence of switch jitter and faults on the output of FLTD module, respectively. The simulation indicates that switch jitter affects the pulse front more obviously than the pulse amplitude. The switch faults, however, has little effect in the single FLTD module.
     The principle of FLTD with sixty stages in series was analyzed. The parameters of equivalent circuit were derived and the model of sixty stages in series has been established. The simulated results indicate that the influence of switch jitter on the output pulse decreases when the FLTD system in series includes a large amount switches. Stage prefire as well as switch prefire in the first stage more likely cause prefires in the following stages. However, switch faults in the middle stages and end stage has little effect in the FLTD system. Even if the middle stages and end stage can not be triggered, they will breakdown slightly later than the normal trigger sequence because of the induced voltage.
引文
[1]曾正中.实用脉冲功率技术引论[M].西安:陕西科学技术出版社, 2003.
    [2]刘锡三.高功率脉冲功率技术[M].北京:国防工业出版社, 2005:15-24.
    [3]邱爱慈.脉冲X射线模拟源技术的发展[J].中国工程科学, 2000, 2(9):24-28.
    [4]王淦昌.高功率粒子束及其应用[J].强激光与粒子束, 1989, 1(1):1-21.
    [5]王莹,肖峰.电炮原理[M].北京:国防工业出版社, 1995:3-7.
    [6]王莹,马富学.新概念武器原理[M].北京:兵器工业出版社, 1997:2-5.
    [7] Mesyats GA, Pulsed Power[M]. New York: Kluwer Academic,2004:13-30.
    [8] Neau EL. Environmental and industrial applications of pulsed power systems[J]. IEEE Transaction on Plasma Science, 1994, 22 (1): 2-10.
    [9]赵渭江,颜莎,乐小云,等.强脉冲离子束与新材料工艺[J].原子核物理评论,1998, 15(2):97-102.
    [10]孙凤举.模块化高功率亚微秒脉冲直线型变压器驱动源[D].西安:西安交通大学, 2002:1-10.
    [11] Bloomquist DD, Stinnett WR, et al. Saturn, A large area X-ray simulation accelerator[C]. 6th IEEE International Pulsed Power Conference,Virginia,USA, 1987: 310-317.
    [12] Deeney C, Haines MG. Radiate properties of high wire number tungsten array with implosion times up to 250ns[J]. Physics of Plasma, 1999, 6 (9): 3576-3586.
    [13] Mazarakis MG, Spielman RB, Struve KW, et al. Ultrafast LTD's for bremsstrahlung diodes and Z-pinches[C].13th IEEE International Pulsed Power Conference, Las Vegas, USA, 2001: 587-590.
    [14] Spielman RB, Stygar WA, Seamen JF, et al. Pulsed power performance of PBFA Z[C]. 11th IEEE International Pulsed Power Conference, Baltimore, USA, 1997: 709-714.
    [15] Corcoran PA, Douglas JW, Smith ID, et al. PBFA-Z vacuum section design using TLCODE simulations[C]. 11th IEEE International Pulsed Power Conference, Baltimore, USA, 1997: 466-473.
    [16] Spielman RB, Stygar WA, Struve KW, et al. PBFA Z: A 55 TW/4.5 MJ electrical generator[C].11th IEEE International Pulsed Power Conference, Baltimore, USA 1997: 1235-1239.
    [17] Spielman RB, Long F, Martin TH, et al. PBFA II-Z: A 20-MA driver for Z-pinch experiments[C]. 10th IEEE International Pulsed Power Conference, Albuquerque, USA, 1995: 396-404.
    [18] Goyer JR, Kortbawi D, Childers FK, et al. Plasma opening switch research for DECADE[J]. IEEE Transactions on Plasma Science, 1997, 25 (2): 176-188.
    [19] Sincerny P, Ashby S, Childers K, et al. Performance of DECADE module 1 (DM1) and the status of the DECADE machine[C]. 10th IEEE International Pulsed Power Conference, Albuquerque, USA,1995:405-416.
    [20] Kortbawi D, Thompson J, Commisso B, et al. Improved output on DECADE Module 1[C]. 11th IEEE International Pulsed Power Conference, Baltimore, USA,1997: 281-285.
    [21]郝世荣,谢卫平,丁伯南,等. Marx发生器驱动的电感储能型脉冲功率源[J].高电压技术, 2009, 35(3):657-660.
    [22]曾正中.等离子体断路开关的断路机理与特性研究[D],西安:西安交通大学,1999:1-10.
    [23]赵莹,王晓明,刘璐,等.等离子体断路开关工作仿真及特性分析[J].电机与控制学报, 2008, 12(3):266-270.
    [24]曾正中,邱毓昌,邱爱慈,等.等离子体断路开关的发展[J].电工电能新技术,1998, 17(1):25-29.
    [25] Volkov SN, Kim AA, Kovalchuk BM, et al. MV multi channel closing switch for water storages[C].12th IEEE International Pulsed Power Conference, Monterey, USA, 1999: 1179-1182.
    [26]孙凤举,邱爱慈,邱毓昌.电子束控制反射断路开关[J].高压电器, 2000, 36(1):46-48.
    [27]钟建忠,刘列,李立民,等.电爆炸丝断路开关的电磁辐射研究[J].高电压技术, 2007, 33(12):59-62.
    [28]龚兴根.电爆炸断路开关[J].强激光与粒子束, 2002, 14(4):577-582.
    [29]蒯斌,邱爱慈,曾正中,等.基于直线型脉冲变压器型的电物理装置[C].第二届全国加速器技术学术交流会,宁波, 1998: 171-174.
    [30] Avrillaud G, Bayol F, Huet D, et al. SYRINX technological program, developments and recent results[C].11th IEEE International Pulsed Power Conference, Baltimore, USA ,1997: 47-58.
    [31] Kim AA, Kovalchuk BM, Kremnev VV, et al. Multi gap, multi channel spark switches[C]. 11th IEEE International Pulsed Power Conference, Baltimore, USA, 1997: 862-867.
    [32] Lassalle F, Loyen A, Georges A, et al. Status on the Sphinx Machine Based on the on the 1-μs LTD Technology[J]. IEEE Transactions on Plasma Science, 2008, 36 (2): 370-377.
    [33] Lassalle F, Loyen A, Georges A, et al. Status on the SPHINX machine based on the 1 microsecond LTD technology[C]. 16th IEEE International Pulsed Power Conference, Albuquerque,USA, 2007: 217-221.
    [34] Mangeant C, Bayol F, Lassalle F, et al. Status on the sphinx generator based on microsecond current risetime LTD[C]. 26th International Conference on Power Modulator Symposium, San Francisco, USA, 2004:115-118.
    [35] Kovalchuk BM, Kim AA, Kumpjak EV, et al. Air insulated LTD stage with stored energy of 5.5 kJ and output power of 14 GW[C]. 14th IEEE International Pulsed Power Conference, Dallas,Texas, USA, 2003:1455-1457.
    [36]周良骥,邓建军,陈林,等.国际快脉冲直线变压器驱动源技术研究进展[J].强激光与粒子束, 2008, 20 (12): 1947-1953.
    [37] Kim AA, Kovalchuk BM, Kumpyak EV, et al. Linear transformer driver with a 750-kA current and a 400-ns current risetime[J]. Russian Physics Journal, 1999, 42 (12):3-8.
    [38] Kim AA, Kovalchuk BM, Kumpjak EV, et al. 0.75MA, 400ns rise time LTD stage[C]. 12th IEEE International Pulsed Power Conference, Monterey, USA, 1999: 955-958.
    [39] Bailly-Salins R, Lemaire JL, JoIy S. A ceramic Blumlein transformer driver (CBTD) for a linear inductive voltage adder (LIVA)[C]. 14th IEEE International Pulsed Power Conference, Dallas,Texas, USA ,2003: 964-967.
    [40] Kim AA, Bastrikov AN, Volkov SN, et al. 1MV ultra-fast LTD generator[C]. 14th IEEE International Pulsed Power Conference, Dallas, Texas, USA, 2003: 853-854.
    [41] Rogowski ST, Fowler WE, Mazarakis M, et al. Operation and performance of the first high current LTD at sandia national Llaboratories[C]. 15th IEEE International Pulsed Power Conference, Monterey, USA, 2005:155-157.
    [42] Kim AA, Bastrikov AN, kovalchuk BM. 100GW fast LTD stages[C]. 13th International Symposium on High Current Electronics, Tomsk, Russia, 2004: 141-144.
    [43] Gilgenbach RM, Gomez MR, Zier J, et al. Designs, tests and plans for MAIZE: a 1 MA LTD-driven z-pinch[C]. 35th IEEE International Conference on Plasma Science, Karlsruhe, Germany, 2008: 115-160.
    [44] Gilgenbach RM, Gomez MR, Zier JC, et al. Experiments on the UM 1-MA linear transformer driver facility[C]. 36th IEEE International Conference on Plasma Science, San Diego, USA, 2009: 281-284.
    [45] Gomez MR, Gilgenbach RM, French DM, et al. Experimental study of plasma evolution in a single post-hole convolute on a 1 MA linear transformer driver[C]. 36th IEEE International Conference on Plasma Science, San Diego, USA, 2009:1153-1158.
    [46] Gomez MR, Gilgenbach RM, Lau YY, et al. Design of a MITL for a 1 MA LTD driving a wire array z-pinch load[C]. 16th IEEE International Pulsed Power Conference, Albuquerque,USA , 2007: 152-155.
    [47] Kim AA, Sinebryukhov VA, Kovalchuk BM, et al. Design and first tests of five 100 GW Fast LTD cavities driving an e-beam diode load[C], 16th IEEE International Pulsed Power Conference, Albuquerque,USA , 2007: 144-147.
    [48] Kim AA, Mazarakis MG, Sinebryukhov VA, et al. Development and tests of fast 1-MA linear transformer driver stages[J]. Physical Review Special Topics: Accelerators and Beams, 2009, 12 (5):050402.
    [49] LeChien K, Mazarakis M, Fowler W, et al. A 1-MV, 1-MA, 0.1-Hz linear transformer driver utilizing an internal water transmission line[C]. 17th IEEE International Pulsed Power Conference, Washington, USA, 2009: 1186-1191.
    [50] Mazarakis MG, Fowler WE, McDaniel DH, et al. A 1-MA LTD cavities building blocks for next generation ICF/IFE[C]. International Conference on Megagauss Magnetic Field Generation and Related Topics, Santa Fa, USA, 2006: 523-528.
    [51] Kovalchuk BM, Kim AA, Kumpjak EV, et al. 10 stage LTD for e-beam diode[C]. 13th IEEE International Pulsed Power Conference, Las Vegas, USA, 2001: 1448-1490.
    [52] Leckbee J, Maenchen J, Portillo S, et al. Reliability assessment of a 1 MV LTD[C]. 15th IEEE International Pulsed Power Conference, Monterey, USA, 2005: 132-134.
    [53] Leckbee J, Maenchen J, Portillo S, et al. Circuit simulations of a 1 MV LTD for radiography[C]. 15th IEEE International Pulsed Power Conference, Monterey, USA, 2005: 386-389.
    [54] Leckbee J, Cordova S, Oliver B, et al. Load line evaluation of a 1-MV linear transformer driver (LTD)[C]. IEEE International Power Modulators and High Voltage Conference, Las Vegas, USA, 2008: 98-101.
    [55] Leckbee J, Maenchen J, Johnson D, et al. Design, simulation, and fault analysis of a 6.5-MV LTD for flash X-Ray radiography[J]. IEEE Transactions on Plasma Science, 2006, 34 (5): 1888-1899.
    [56] Veron L, Toury M, Vermare C, et al. IDERIX: an 8MV flash X-rays machine using a LTD generator design[C]. 16th IEEE International Pulsed Power Conference, Albuquerque,USA , 2007: 442-442.
    [57]孙凤举,邱爱慈,曾正中,等.直接驱动Z箍缩的FLTD型脉冲功率源的发展[J].中国工程科学, 2009, 11(11):56-63.
    [58] Mazarakis MG, Olson CL. A new high current fast 100ns LTD based driver for Z-pinch IFE at sandia[C]. 15th IEEE International Pulsed Power Conference, Monterey, USA, 2005: 1-4.
    [59] Olson CL, Mazarakis MG, Fowler WE, et al. Recyclable transmission line (RTL) and linear transformer driver (LTD) development for z-pinch inertial fusion energy (Z-IFE) and high yield. sandia national laboratory[R]. Sandia National Laboratory, 2007:SAND2007-0059.
    [60] Matzen MK. Pulsed power sciences at Sandia National Laboratories - The next generation[C]. 16th IEEE International Pulsed Power Conference, Albuquerque, USA , 2007: 1-15.
    [61] Stygar WA, Cuneo ME, Headley DI, et al. Architecture of petawatt-class z-pinch accelerators[J]. Physical Review Special Topics: Accelerators and Beams, 2007, 10 (3): 030401.
    [62] Stygar WA, Fowler WE, LeChien KR, et al. Shaping the output pulse of alinear-transformer-driver module[J]. Physical Review Special Topics:Accelerators and Beams, 2009, 12 (3): 030402.
    [63] Kim A, Frolov S, Alexeenko V, et al. Prefire probability of the switch type Fast LTD[C]. 17th IEEE International Pulsed Power Conference, Washington, USA, 2009: 565-570.
    [64] Biswas DJ, Nilaya JP, Chatterjee UK. On the recovery of a spark gap in a fast discharge circuit[J]. Review of Scientific Instruments, 1998, 69 (12): 4242-4244.
    [65] Boissady C, Riouxdamidau F. Coaxial fast metal-to-metal switch for high current[J]. Review of Scientific Instruments, 1978, 49 (11): 1537-1538.
    [66] Cai XJ, Zou XB, Ma L, et al. Preliminary experiments on gaseous recovery in gas spark gap switches[C]. 36th International Conference on Plasma Science, San Diego, USA, 2009: 241-244.
    [67] Cohn DB, Conley EE. Multichannel surface arc switch[J]. Review of Scientific Instruments, 1982, 53 (8): 1288-1290.
    [68] Cohn DB, Long WH, Stappaerts EA, et al. Multichannel switch triggered by low voltage auxiliary discharges[J]. Review of Scientific Instruments, 1982, 53 (2): 253-255.
    [69] He A, Li F, Deng J, et al. Primary investigation into the laser triggering multi-gap multi-channel gas switch in a single test module Facility[J]. Plasma Science and Technology, 2006, 8 (5): 602-606.
    [70] Jenkin LR. A multi-channel synchronization monitor for triggered spark-gap switches[J]. Radio and Electronic Engineer, 1966, 32 (5): 323-326.
    [71] Kemp MA, Curry RD, Kovaleski SD. Experimental study of the multichanneling self-break section of the rimfire switch[J]. IEEE Transactions on Plasma Science, 2006, 34 (1): 95-103.
    [72] Kemp MA, Curry RD, Kovaleski SD, et al. Experimental study of the multichanneling, 3 MV rimfire gas switch in the self breakdown mode[C]. 14th IEEE International Pulsed Power Conference, Monterey, USA, 2005: 746-750.
    [73] Kovalchuk BM. Multi gap spark switches[C]. 11th IEEE International Pulsed Power Conference, Baltimore, USA, 1997: 59-67.
    [74] Kovalchuk BM, Kim AA, Kumpjak EV, et al. Multi gap switch for Marx generators[C]. 13th IEEE International Pulsed Power Conference, Las Vegas, USA, 2001: 1739-1742.
    [75] LeChien KR, Gahl JM. Investigation of a multichanneling, multigap Marx bank switch[J]. Review of Scientific Instruments, 2004, 75 (1): 174-178.
    [76] LeChien KR, Gahl JM. Multichannel and impedance analysis of the laser-triggered rimfire gas switch[J]. IEEE Transactions on Plasma Science, 2006, 34 (5): 1646-1652.
    [77] LeChien KR, Gahl JM, Struve KW. Electrical effects of multichanneling in the 2.5 MV rimfire gas switch using a laser trigger[C]. 15th IEEE International Pulsed Power Conference, Monterey, USA, 2005: 619-622.
    [78] Liang T, Sun F, Qiu A, et al. 200 kV multigap multichannel gas spark switch for fast linear transformer driver[C]. International Conference on High Voltage Engineering and Application (ICHVE 2008), Chongqing, China, 2008: 474-476.
    [79] Liu X, Liang T, Sun F, et al. A multi-gap multi-channel gas switch for the linear transformer driver[J]. Plasma Science and Technology, 2009: 725-729.
    [80] Liu Z, Yan K, Winands GJJ, et al. Multiple-gap spark gap switch[J]. Review of Scientific Instruments, 2006, 77 (7): 073501.
    [81] Golnabi H, Samimi H. Triggerable spark gap switches for pulsed gas lasers[J]. Review of Scientific Instruments, 1994, 65 (9): 3030-3031.
    [82] Hongtao L, Jianjun D, Weiping X, et al. The delay and jitter characteristics of laser-triggered multistage switch: a parametric study[J]. IEEE Transactions on Plasma Science, 2007, 35 (6): 1787-1790.
    [83] Hutsel B, Sullivan D, Benwell A, et al. Characterization of runtime and jitter on a laser triggered spark gap switch[C]. 16th IEEE International Pulsed Power Conference, Albuquerque, USA , 2007: 110-113.
    [84] Hutsel BT, Benwell A, Kovaleski SD, et al. Runtime and jitter on a laser-triggered spark-gap switch[J]. IEEE Transactions on Plasma Science, 2008, 36 (5): 2541-2545.
    [85] Hutsel BT, Kovaleski SD, Sullivan DL, et al. Effects of laser triggering parameters on runtime and jitter of a gas switch[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16 (4): 999-1005.
    [86] MacGregor SJ, Tuema FA. Triggered gas switches[C]. IEE Colloquium on New Developments in Pulsed Power Technology, London, England, 1991: 1-4.
    [87] Small LL, McKen DCD, Offenberger AA. Low itter, low inductance, electrically triggered spark gap[J]. Review of Scientific Instruments, 1984, 55 (7): 1084-1089.
    [88] Sullivan DL, Gahl JM, Kovaleski SD, et al. Study of laser target triggering for spark gap switches[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16 (4): 956-960.
    [89] Tkotz R, Schlaug M, Christiansen J, et al. Triggering of radial multichannel pseudospark switches by a pulsed hollow cathode discharge[J]. IEEE Transactions on Plasma Science, 1996, 24 (1): 53-54.
    [90]姜晓峰.快脉冲LTD开关触发方式及击穿特性的研究[D].西安:西北核技术研究所, 2009:16-46.
    [91]孙凤举,邱爱慈,邱毓昌,等.多级多通道低电感火花气体开关[J].高压电器, 2001, 37 (5): 37-41.
    [92]李洪涛.“Z-pinch”加速器闭合开关技术研究[D].绵阳:中国工程物理研究院, 2003: 25-43.
    [93] Mitton C, Corrow G, Hansen M, et al. Cygnus PFL switch jitter[C]. 16th IEEE International Pulsed Power Conference, Albuquerque, USA , 2007: 415-419.
    [94] Niedbalski J. High-voltage multichannel rail gap switch triggered by corona discharges[J]. Review of Scientific Instruments, 2003, 74 (7): 3520-3523.
    [95]孙铁平,丛培天,曾正中.用于FLTD的多级气体开关实验研究[C].第十一届高功率粒子束学术交流会,丽江,云南,2008: 34-37.
    [96]姜晓峰,孙凤举,梁天学,等.一种多间隙气体开关击穿特性的实验研究[J].高电压技术, 2009, 35 (1): 103-107.
    [97] Woodworth JR, Alexander JA, Gruner FR, et al. Low-inductance gas switches for linear transformer drivers[J]. Physical Review Special Topics-Accelerators and Beams, 2009, 12 (6): 060401.
    [98] Woodworth JR, Hahn K, Alexander JA, et al. Gas switch studies for Linear Transformer Drivers[C]. 16th IEEE International Pulsed Power Conference, Albuquerque, USA , 2007: 250-253.
    [99]梁天学,孙才新,邱爱慈,等. 200kV多级多通道火花开关[J].高电压技术, 2006, 32 (10): 56-58.
    [100] Hahn K, Woodworth JR, Clark WT, et al. Spectroscopic studies of gas switches for linear transformer drivers[C]. 16th IEEE International Pulsed Power Conference, Albuquerque, USA , 2007: 125-128.
    [101] Mazarakis MG, Fowler WE, LeChien KL, et al. High-current linear transformer driver development at Sandia National Laboratories[J]. IEEE Transactions on Plasma Science, 2010, 38 (4): 704-713.
    [102] Mazarakis MG, Fowler WE, Kim AA, et al. High current, 0.5-MA, fast, 100-ns, linear transformer driver experiments[J]. Physical Review Special Topics: Accelerators and Beams,2009, 12 (5): 050401.
    [103] Mazarakis MG, Fowler WE, McDaniel DH, et al. High current linear transformer driver (LTD) experiments[C]. 16th IEEE International Pulsed Power Conference, Albuquerque, USA , 2007: 222-225.
    [104] Mazarakis MG, Fowler WE, LeChien KR, et al. High current linear transformer driver (LTD) development at Sandia National Laboratories[C]. 36th International Conference on Plasma Science, San Diego, USA, 2009: 704-713.
    [105] Mazarakis MG, Fowler WE, Long FW, et al. High Current Fast 100-NS LTD Driver Development in Sandia Laboratory[C]. 15th IEEE International Pulsed Power Conference, Monterey, USA, 2005: 390-393.
    [106]梁天学.应用于短脉冲直线型脉冲变压器的200kV气体火花开关设计及特性研究[D].重庆:重庆大学, 2007: 21-45.
    [107]吴撼宇,蒯斌,丛培天.脉冲触发多通道气体开关特性研究[C].第九届高功率粒子束学术交流会,延吉,吉林, 2004: 106-108.
    [108]吴撼宇,丛培天,孙铁平.多级气体开关的电场优化设计.第十一届高功率粒子束学术交流会,丽江,云南, 2008: 12-15.
    [109]周良骥,邓建军,陈林,等. 1MA直线型变压器驱动源模块设计[J].强激光与粒子束, 2010, 22 (3): 465-468.
    [110] Matia D, Krompholz H, Giesselmann M, et al. A 15 kA linear transformer driver[C]. 17th IEEE International Pulsed Power Conference, Washington, USA, 2009: 926-929.
    [111] Kovalchuk BM, Kharlov AV, Zherlitsyn AA, et al. 40 GW linear transformer driver stage for pulse generators of Mega-ampere range[J]. Laser and Particle Beams, 2009, 27 (3): 371-378.
    [112]梁天学,孙凤举,邱爱慈,等.触发电压对±100kV多级多通道开关性能的影响[J].强激光与粒子束, 2010, 22 (5): 1177-1180.
    [113] Liu XD, Sun FJ, Liang TX, et al. Experimental study on multigap multichannel gas spark closing switch for LTD[J]. IEEE Transactions on Plasma Science, 2009, 37 (7): 1318-1323.
    [114] Liu XD, Jiang XF, Sun FJ, et al. Experimental study on synchronous discharge of ten multigap multichannel gas switches[J]. IEEE Transactions on Plasma Science, 2009, 37 (10): 1943-1947.
    [115] Liu XD, Sun FJ, Liang TX, et al. Study on firing conditions of multigap gas switch for fast linear transformer driver[J]. IEEE Transactions on Plasma Science, 2010, 38 (7): 1670-1674.
    [116] Kim AA, Bastrikov AN, Volkov SN, et al. Development of the ultra-fast LTD stage[C].14th International Conference on High-Power Particle Beams, Albuquerque, USA, 2002: 81-84.
    [117] Rose DV, Welch DR, Oliver BV, et al. Power flow in a 7-cavity fast-rise LTD system[C]. 14th IEEE International Pulsed Power Conference, Dallas,Texas, USA, 2003: 845-848.
    [118] Leckbee J, Cordova S, Oliver B, et al. Testing of a 1-MV linear transformer driver (LTD) for radiographic applications[C]. 17th IEEE International Pulsed Power Conference, Washington, USA, 2009: 156-160.
    [119] Glover SF, Reed KW, White FE, et al. Genetic optimization for pulsed power system configuration[C]. 16th IEEE International Pulsed Power Conference, Albuquerque, USA, 2007: 226-230.
    [120] Glover SF, White FE, Reed KW, et al. Genetic optimization for pulsed-power system configuration[J]. IEEE Transactions on Plasma Science, 2009, 37 (2): 339-346.
    [121]王庆峰,刘庆想,张政权,等.开关抖动对直线变压器驱动源波形叠加的影响[J].强激光与粒子束, 2010, 22(4): 701-704.
    [122]刘轩东,孙凤举,姜晓峰,等.气体开关抖动对单模块快脉冲直线型变压器驱动源输出特性的影响[J].强激光与粒子束, 2010, 22(5): 1163-1166.
    [123] Kim AA, Sinebryukhov V, Kovalchuk BM, et al. Super fast 75 ns LTD stage[C]. 16th IEEE International Pulsed Power Conference, Albuquerque, USA, 2007: 148-151.
    [124] Kim AA, Kovalchuk BM, Bastrikov AN, et al. 100ns current rise time LTD stage[C]. 13th IEEE International Pulsed Power Conference, Las Vegas, USA, 2001: 1491-1494.
    [125]周文康,周良骥,陈林,等. 100GW直线变压器驱动源的物理设计与模拟[J].强激光与粒子束, 2008, 20 (2): 327-330.
    [126]文康珍,文远芳,黎文安.二维开域静电场的ANSYS解法[J].武汉大学学报(工学版), 2007, 40(5): 116-118.
    [127]邱关源.电路[M].北京:高等教育出版社, 1989: 158-170.
    [128]田彦民,许日,孙凤举,等.一种100kV快前沿脉冲触发器[J].高电压技术, 2002, 28(S1): 21-25.
    [129]刘鹏.低抖动100kV快前沿触发器主开关工作性能研究[D].西安:西安交通大学, 2005: 27-33.
    [130]王团结. 50kV触发器前级触发氢闸流管及输出火花隙开关性能的研究[D].西安:西北核技术研究所, 2005: 20-34.
    [131] Glidden SC, Sanders HD. High voltage solid state trigger generators[C]. 15th IEEE International Pulsed Power Conference, Monterey, USA, 2005: 927-930.
    [132] Glover SF, Zutavern FJ, Swalby ME, et al. Pulsed and DC charged PCSS-based trigger generators[C]. 17th IEEE International Pulsed Power Conference, Washington, USA, 2009: 1444-1447.
    [133] Liu P, Qiu A, Sun F, et al. Development of a sub-nanosecond jitter eight-output 150-KV trigger generator[C]. 17th IEEE International Pulsed Power Conference, Washington, USA, 2009: 613-617.
    [134] Ramrus A, Rohwein G, Fleming H, et al. A 1.1 MV rep-rate in-line output switch and triggering system[C]. 14th IEEE International Pulsed Power Conference, Dallas, Texas, USA, 2003: 1431-1434.
    [135] Wheat RM, Dalex GE. Multiple output timing and trigger generator[C]. 17th IEEE International Pulsed Power Conference, Washington, USA, 2009: 1372-1375.
    [136]陈炜峰,蒋全兴.一种电阻脉冲分压器的研制[J].高电压技术, 2006, 32(7): 76-78.
    [137]马连英,曾正中,安小霞,等.一种用于测量快前沿高压脉冲的电阻分压器[J].电工电能新技术, 2010, 29(1): 58-61.
    [138]曲忠旭,陈炜峰,刘伟莲.高压纳秒脉冲电阻分压器的结构[J].电子测量技术, 2009, 32(11): 23-26.
    [139]卫兵,傅贞,王玉娟,等.用于Marx发生器电压测量的水电阻分压器[J].高电压技术, 2008, 34(5): 1077-1081.
    [140] Harada T, Kawamura T, Akatsu Y, et al. Development of a high quality resistance divider for impulse voltage measurements[J]. IEEE Transactions on Power Apparatus and Systems, 1971, 90 (5): 2247-2250.
    [141] Rungis J, Brown DE. Stacking of high-voltage resistance dividers[J]. Science measurement and technology, 1982, 129 (2): 119-120.
    [142] Tsao SH, Fletcher R. On the output resistance of self-checking voltage dividers[J]. IEEE Transactions on Instrumentation and Measurement, 1983, 32 (4): 469-471.
    [143] White HJ. Transient response of high voltage resistance dividers[J]. Review of Scientific Instruments, 1949, 20 (11): 837-839.
    [144] Douglass JD, Greenly JB, Hammer DA, et al. Design and use of small rogowski coils for use with large, fast current pulses[C]. 15th IEEE International Pulsed Power Conference, Monterey, USA, 2005: 717-720.
    [145] Wei L, Xianggen Y, Deshu C, et al. The study of transient performance for electronic current transformer sensor based on rogowski coil[C]. 41st International Universities Power Engineering Conference, Newcastle, England, 2006: 162-165.
    [146] Bastrikov AN, Kim AA, Kovalchuk BM, et al. Low inductance multigap spark modules[J]. Russia Physics Journal, 1997, 40 (12): 1125-1134.
    [147] Martin TH. An empirical formula for gas switch breakdown delay[C]. 7th IEEE International Pulsed Power Conference, Monterey, California, USA, 1989: 73-79.
    [148] Kececioglu DB, Wendai W. Parameter estimation for mixed-Weibull distribution[C]. International Symposium on Product Quality and Integrity, Anaheim, California, USA 1998: 247-252.
    [149] Kaminskiy MP, Krivtsov VV. A simple procedure for Bayesian estimation of the Weibull distribution[J]. IEEE Transactions on Reliability, 2005, 54 (4): 612-616.
    [150] Dan L, Hong-Zhong H, Yu L. A method for parameter estimation of Mixed Weibull distribution[C]. 55th Annual Reliability & Maintainability Symposium, Fort Worth, Texas, USA, 2009: 129-133.
    [151] Cousineau D. Fitting the three-parameter weibull distribution: review and evaluation of existing and new methods[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2009, 16 (1): 281-288.
    [152]杨谋存,聂宏.三参数Weibull分布参数的极大似然估计数值解法[J].南京航空航天大学学报, 2007, 39(1): 22-25.
    [153]肖良华,赵宇,黄敏.引入位置参数的三参数Weibull过程及其点估计方法[J].北京航空航天大学学报, 2004, 30(9): 897-900.
    [154]汤银才,侯道燕.三参数Weibull分布参数的Bayes估计[J].系统科学与数学, 2009, 29(1): 109-115.
    [155] Kim AA, Mazarakis MG, Manylov VI, et al. Energy loss due to eddy current in linear transformer driver cores[J]. Physical Review Special Topics-Accelerators and Beams, 2010, 13 (7): 070401.
    [156]韩旻,邹晓兵,张贵新.脉冲功率技术基础[M].北京:清华大学出版社,2010:151-155.
    [157] H.Bluhm(原著),江伟华,张弛(译).脉冲功率系统的原理与应用[M].北京:清华大学出版社,2008:166-168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700