用户名: 密码: 验证码:
基于环路卡尔曼估计的惯性/GPS深组合算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
惯性/GPS深组合将惯性导航系统和GPS信号处理环路进行组合,在提升整体导航能力的同时有效提高GPS在高动态下的适应能力,以及GPS在弱信号环境下的工作性能。本文基于对GPS环路的分析,设计了环路卡尔曼估计算法,并研究了惯性/GPS深组合技术的核心算法,以GPS作为卫星导航系统的研究对象,分析了深组合几种主要算法的实现方法并对算法进行了仿真验证。
     论文首先分析了跟踪环路的结构,基于跟踪环路中各项参数的物理意义,建立了GPS跟踪环路中各路相关累加量的数学表达式并建立了环路参数与位置速度等相关导航参数的关系模型,在此基础上提出了一种基于卡尔曼最优估计和状态反馈控制的PLL控制算法,该算法可以有效减小PLL中热噪声引起的鉴相器抖动,并可以更精确地估计卫星信号频率。
     为了分析深组合中惯导对GPS的辅助作用,论文设计了一种基于环路卡尔曼滤波估计及惯导辅助GPS跟踪环路方法的半耦合深组合模型,着重分析了卡尔曼估计器的频率和非相干观测量的获取,以及惯导辅助GPS跟踪中的速度辅助和加速度辅助方法,最后对半耦合深组合进行了仿真,验证了其正确性。
     随后,论文提出了断开码环/载波环,利用鉴相器建立位置/速度组合模型并直接采用惯导产生GPS本地信号的全耦合深组合算法,分析了码环鉴相器、载波鉴频器、载波鉴相器三种观测量,对观测方程建模,观测量获取方法以及观测噪声进行了分析,设计并最后仿真验证了模型的正确性和性能。
     最后论文设计了一种高动态深组合快速仿真平台,特别讨论了基于发射时间的动态GPS信号产生方法和基于特征信号量的GPS快速跟踪环路,这两项技术在确保了验证平台正确性的基础上很好地提升了深组合研究的效率。
An INS/GPS deep integrated system uses INS to couple with GPS signal process loop, which can improve the precision of both the systems and improve the adaptability of GPS as well. Performance of GPS on a dynamic carrier and under a weak signal environment can be raised using deep integration. This dissertation studies on a series of algorithms of deep integration based on GPS. The validity and performance of the algorithms are tested by simulation. Some novel methods are also brought forward to improve the capability of algorithms or increase of efficiency of simulation.
     Firstly, the design of GPS track loop based on a kalman filter and a states feedback control is analyzed. The mathematical expression of coherent integration is deduced to build the measurement model. A kalman filter is adopted to estimate the frequency and frequency shift and a states feedback is used to control the VCO to generate local signal, which may reduce the thermal noise in PLL.
     After the study on classical tracking loop, a semi-deep integration method which uses loop kalman filters to get measurement and uses INS to aid on GPS loop is discussed. The frequency of loop kalman filter and the INS aid patterns are analyzed and the validity is tested by simulation.
     This dissertation also emphasizes the deep integration method which cuts off the classical tracking loop. In the new method, PLL/FLL/DLL is cut off and a vector tracking loop based on INS and kalman filter is presented. Measurement model and noise are discussed and the performance is proved.
     Finally, a deep integrated simulation system for highly dynamic signal is designed. The dynamic signal generator based on transmit time and the fast tracking loop based on characteristic value of signal are studied to improve the efficiency of simulation. The simulation shows validity of the algorithms and the dynamic performance of the navigation system is evidently improved.
引文
[1]李跃,邱致和.导航与定位,第二版.北京:国防工业出版社, 2008:429~430.
    [2]黄汛,高启孝,李安,等. INS/GPS超紧耦合技术研究现状及展望.飞航导弹, 2009(4):42~47.
    [3] M.G. Petovello, D. Sun, G. Lachapelle, et al. Performance Analysis of an Ultra-Tightly Integrated GPS and Reduced IMU System. ION GNSS 2007, Fort Worth, TX, USA.
    [4] D. Landis, T. Thorvaldsen, B. Fink, et al. A Deep Integration Estimator for Urban Ground Navigation. Position, Location, And Navigation Symposium, 2006.
    [5] Timothy M. Buck, Jason Wilmot and Michael J. Cook. A High G, MEMS Based, Deeply Integrated, INS/GPS, Guidance, Navigation and Control Flight Management Unit. Position, Location, And Navigation Symposium, 2006.
    [6] Lars Dyrud, Bill Woessner, Aleksandar Jovancevic, et al. Ultra Tightly Coupled GPS/INS Receiver for TSPI Applications. ION GNSS 2007, Fort Worth, TX, USA.
    [7] M.G. Petovello, C. O'Driscoll and G. Lachapelle. Ultra-Tight GPS/INS for Carrier Phase Positioning In Weak-Signal Environments. NATO RTO SET-104 Symposium on Military Capabilities Enabled by Advances in Navigation Sensors. 2007, Antalya, Turkey, NATO.
    [8] Ravindra Babu and Jinling Wang. Ultra-tight GPS/INS/PL Integration: A System Concept and Performance Analysis. GPS Solution, 2009(13):75~82.
    [9] M.G. Petovello and G. Lachapelle. Comparison of Vector-Based Software Receiver Implementations with Application to Ultra-Tight GPS/INS Integration. ION GNSS 2007, Fort Worth, TX, USA.
    [10] Thomas Pany, Bernhard Riedl, Jon Winkel, et al. Coherent Integration Time: The Longer, the Better. InsideGNSS, 2009, 6:52~61.
    [11] Matthew Lashley, David M. Bevly and John Y. Hung. Analysis of Deeply Integrated and Tightly Coupled Architectures. ION PLANS 2010, Indian Wells, CA, USA.
    [12]于洁,王新龙. SINS/GPS超紧致组合导航系统设计及分析.航空兵器, 2010(3):3~8.
    [13]高鹏,闫立伟,富立,等.一种微惯性/软件接收机超紧组合方案研究.第一届中国卫星导航学术年会, 2010,北京.
    [14]刘焕淋,向劲松,代少升.扩展频谱通信.北京:北京邮电大学出版社, 2008: 34~35.
    [15]苗剑锋,陈武,刘建业,等.基于软件无线电技术的GPS软件接收机的研究与实现.南京航空航天大学学报, 2008, 40(6):774~779.
    [16] Oleksiy V. Korniyenko and Mohammad S. Sharawi. GPS Software Receiver Implementations. IEEE Potentials Magazine, 2007, 26(3):42~46.
    [17]王超,崔晓伟,尹旭明,等. GPS软件接收机的频域相关捕获算法.微计算机信息, 2006, 22(12-1):186~187, 208.
    [18] Zhen Zhu, Frank van Graas and Janusz Starzyk. GPS Signal Acquisition Using The Repeatability of Successive Code Phase Measurements. GPS Solution, 2008(12): 43~53.
    [19]刘志俭,刘毅,王跃科. GPS中频信号的建模与仿真.计算机仿真, 2007, 24(11):42~44, 54.
    [20]姜华,毛志刚,谢憬.基于CORDIC算法的GPS载波跟踪环鉴相器的设计.信息技术, 2008(1):52~54.
    [21] Bradford W. Parkinson and James J. Spilker Jr. Global Positioning System: Theory and Applications, American Insitute of Aeronautics and Astronautics, 1996.
    [22]谢钢. GPS原理与接收机设计.北京:电子工业出版社, 2009: 275~277.
    [23] James J. Spilker. Digital Communication by Satellite. USA:Prentice-Hall, 1977:336~398.
    [24] Santiago Alban, Dennis M. Akos and Stephen M. Rock. Performance Analysis and Architecutres for INS-Aided GPS Tracking Loops. ION National Technical Meeting, 2003, CA, USA.
    [25] Raymond L. Filler. The Acceleration Sensitivity of Quartz Crystal Oscillators: A Review. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 11998, 35(3):297~305.
    [26] Elliott D. Kaplan. GPS原理与应用(邱致和,王万义译).北京:电子工业出版社, 2002:97.
    [27]胡寿松.自动控制原理,第四版.北京:科学出版社, 2001:398~433.
    [28]苗剑峰.抗差自适应GPS软件接收机的关键技术研究, [博士学位论文].南京:南京航空航天大学, 2009:81~83.
    [29] SE4110L PointCharger TM GPS Receiver IC Datasheet Rev 3.0. May-11-2006.
    [30]唐小妹.高性能导航接收机中的载波恢复与载噪比估计研究, [硕士学位论文].长沙:国防科技大学, 2005: 32~40.
    [31] Bo Zheng and Gerard Lachapelle. GPS Software Receiver Enhancements for Indoor Use. ION GNSS, 2005, Long Beach, CA, USA.
    [32] I H. Choi, S.H. Park, D.J. Cho, et al. A Novel Weak Signal Acquisition Scheme for Assisted GPS. ION GNSS, 2002, Portland, OR, USA.
    [33]王仕成,杨东方,刘志国,等.一种高动态GPS软件接收机方案研究.宇航学报, 2009, 30(3):1079~1085.
    [34] Tsung-Yu Chiou and Santiago Alban, Sarah Atwater, et al. Performance Analysis and Experimental Validation of a Doppler-Aided GPS/INS Receiver for JPALS Applications. ION GNSS, 2004, Long Beach, CA, USA.
    [35]刘建业,曾庆化,赵伟等.导航系统理论与应用.西安:西北工业大学出版社, 2010: 350~355.
    [36] Peter Rinder and Nicolaj Berelsen. Design of a Single Frequency GPS Software Receiver, [Master Thesis]. Denmark, Alborg University, 2004.
    [37] Betz John W. and Koldziejski Kevin R. Extended Theory of Early-Late Code Tracking for a Bandlimited GPS Receiver. Navigation: Journal of the Insitute of Navigation, 2000, 47(3):211~226
    [38]王兰芳,吴长奇,高秀英.基于FLL与PLL级联的高动态载波跟踪技术.电子测量技术, 2009, 34(03):25~27
    [39]谢钢. GPS原理与接收机设计.北京:电子工业出版社, 2009: 300.
    [40] Francis Natali. Noise Performance Of a Cross-Product AFC with Decision Feedback for DPSK Signals. Proceedings of the National Telesystems Conference, 1983, San Francisco, CA, USA.
    [41] Lei Dong. IF GPS Signal Simulator Development and Verification, [Master Thesis]. Calgary, Alberta, Canada: University of Calgary, 2003: 11.
    [42] Kai Borre, Dennis M. Akos, Nicolaj Bertelsen, et al. A Software-Defined GPS and Galileo Receiver. Boston: Birkh?user, 2006.
    [43]鲁郁. GPS全球定位接收机——原理与软件实现.北京:电子工业出版社. 2009.
    [44]秦永元.惯性导航.北京:科学出版社. 2006.
    [45]袁信,郑谔.捷联式惯性导航原理.南京:航空专业教材编审组, 1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700