用户名: 密码: 验证码:
二氧化锡多孔纳米固体的制备及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文中,我们利用溶剂热压方法制备了二氧化锡(Sn02)多孔纳米固体,并通过在高压氧气中烧结,减少了其中的纳米颗粒界面缺陷、改善了晶界的结晶质量,大幅度提高了载流子迁移率;在此基础上,将Sn02多孔纳米固体制成了气敏传感器,通过优化热处理条件实现了对CO气体的高气敏响应,并分析了气敏响应与载流子迁移率之间的关系;为进一步提高Sn02多孔固体的载流子迁移率,继而改善其气敏性能,我们首次把溶胶-凝胶法与溶剂热压方法相结合,制备了具有均匀孔径和良好综合性能的Sn02多孔纳米固体。主要结果如下:
     (1)首先,我们以商品Sn02纳米粉体为原料,利用溶剂热压方法制备了Sn02多孔纳米固体,并分析了不同实验参数(造孔剂用量、热压温度、热压压力和烧结温度)对孔结构和载流子迁移率的影响。结果表明,经过溶剂热压反应后,Sn02多孔纳米固体中的纳米颗粒发生了联结,为载流子的迁移提供了通道;另外,我们发现,通过改变造孔剂用量、热压温度、热压压力和烧结温度,可以在一定范围内对Sn02多孔纳米固体的孔容、孔径分布、比表面积等孔的进行调控,而且对Sn02多孔纳米固体的载流子浓度和迁移率等参数也产生了不同程度的影响。结果显示,对于3g SnO2纳米粉体,当造孔剂用量为5m1,热压温度、热压压力和烧结温度分别为200℃、60MPa和500℃时,Sn02多孔纳米固体同时具有较好的孔结构和电学性能。
     (2)为了进一步提高Sn02多孔纳米固体的载流子迁移率,我们分别在不同的常压气氛、高压氧气气氛中对样品进行热处理,并在高压氧气中低温长时间热处理样品,分析了载流子浓度和迁移率的变化规律,并利用交流阻抗谱进行了相关机理分析。综合分析测试结果发现:在常压氧气中500-C烧结可以促进Sn02多孔纳米固体界面氧空位的湮灭,迁移率有了很大提高;氮气中500℃烧结过程中,由于氧空位不能修复且有新的氧空位产生,样品载流子浓度升高、迁移率下降;在高压氧气中热处理提高了晶界处氧空位湮灭的速度,使Sn02多孔纳米固体的迁移率有了很大程度的提高:在高压氧气中350℃处理后,氧空位的重新分布、氧空位的湮灭和表面氧吸附三个作用相互竞争,在促进氧空位湮灭的同时抑制了新氧空位的产生,使Sn02多孔纳米固体的迁移率达到最高值35cm2/(V·s)。
     (3)为了考察载流子迁移率对气敏传感器性能的影响,我们在前期工作基础上,将Sn02多孔纳米固体制成了气敏传感器,并测试了热处理条件对其气敏性能的影响。研究结果表明,常压氧气中烧结虽然使样品迁移率有所上升,但表面氧空位减少(即活性点减少,这是影响气敏性能的关键因素),因此Sn02多孔纳米固体传感器的气敏响应降低;在常压氮气中烧结以后,氧空位的增加使Sn02多孔纳米固体传感器的气敏响应出现了最高值45.6;在高压氧气烧结过程中,由于表面活性点减少和载流子迁移率提高的相互竞争,使Sn02多孔纳米固体传感器的气敏响应首先随着氧气压力的升高先逐渐降低,在压力为4MPa时出现最低点,随后又呈现逐渐增大的趋势。相比之下,在高压氮气中烧结后,由于氮原子掺杂引起的载流子浓度和迁移率降低,导致Sn02多孔纳米固体传感器的气敏响应显著降低。
     (4)为了进一步改善Sn02多孔纳米固体的孔径均匀性和提高表面积,同时提高纳米颗粒之间的联结状态,我们首次将溶胶-凝胶法与溶剂热压方法相结合,制备了具有均匀孔道的Sn02多孔纳米固体,并分析了不同制备条件对孔结构和电学性能的影响。进一步地,以此材料为气敏元件制备了气敏传感器,测试了其对CO的气敏响应。结果表明:利用溶胶-凝胶法结合溶剂热压方法制备的Sn02多孔纳米固体,纳米颗粒粒径小,孔径分布均匀,孔容和比表面积都明显增大,虽然比表面积增加引起界面散射增多、迁移率下降,但这种新的Sn02多孔纳米固体对于CO表现出很好的气敏响应,远高于用商品Sn02纳米粉制备的Sn02多孔纳米固体传感器。
In this dissertation, the solvothermal hot-press (SHP) method was used to prepare SnO2porous nanosolid (PNS), in which the nanoparticles connected to each other and channels for carrier migration formed. For further improving the carrier mobility of SnO2PNS, it was calcined in high-pressure oxygen to reduce the oxygen vacancies and improve the interfacial crystallinity of SnO2nanoparticles. Furthermore, the SnO2PNS gas sensor was fabricated, and it was calcined in different atmospheres to analyse the relationship between the gas-sensing performance and carrier mobility. Finally, the sol-gel method was combined with the SHP one to prepare SnO2PNS with uniform pore size and high specific surface area. Besides, the SnO2PNS thus prepared exhibited rather good gas-sensing performance. The major results are listed below:
     (1) SnO2PNS was prepared by SHP method by using commercial SnO2nanoparticles as the starting material. The influences of the key parameters, including solvent volume, hot-press temperature, pressure and calcining temperature, on the pore structure and electric performance of SnO2PNS were explored. The results suggest that large amount of pores/channels have formed after SHP process. Moreover, it is proved that all the pore diameter distribution, pore volume and specific surface area of SnO2PNS can be modulated by optimizing the experimental parameters. As a result, the carrier concentration and mobility also changed accordingly. For3g SnO2nanoparticles used in the experiments, the SnO2PNS possesses optimumal pore structure and electric properties when the solvent volume, hot-press temperature, pressure and calcining temperature were5ml,200℃,60MPa and500℃, respectively.
     (2) In order to improve the carrier mobility of SnO2PNS, they were calcined both in different atomospheric-pressure atmospheres and high-pressure oxygen. The Hall effect measurement and the complex impedance spectra are used to analyze the changes of electric properties and related mechanism. The results suggest that during the calcining process, the experimental parameters greatly affected the electric properties of SnO2PNS:calcining at500℃in oxygen can facilitate the annihilation of oxygen vacancies within the interfacial region of SnO2nanoparticles, thus the carrier mobility greatly improved. In comparison, when being calcined at500℃in N2, the existing oxygen vacancies in SnO2cannot be effectively eliminated, contrarily, more new oxygen vacancies must have formed in SnO2nanoparticles. This phenomenon made the carrier concentration increased while the mobility decreased. However, calcining in high-pressure oxygen obviously increased the rate of oxygen vacancy annihilation, resulting in the increase of carrier mobility. When being heated at350℃in high-pressure oxygen, three processes may have happened within SnO2PNS:the re-distribution of oxygen vacancies, the annihilation of oxygen vacancies and oxygen molecule chemisorption. The last process competes with the former two processes, and they reached an equilibrium at a specific oxygen pressure, for example,4MPa in our sample, the highest carrier mobility of SnO2PNS reached35cm2/(V·s).
     (3) After being calcined in different atmoshperes, the SnO2PNS sensors were fabricated and their gas-sensing response to1000ppm CO was tested. The results demonstrated that when being calcined in N2, the oxygen vacancies in SnO2PNS cannot be effectively repaired. Contrarily, more oxygen vacancies may have formed, thus SnO2PNS sensor exhibits much higher response to CO. On comparison, considerable amount of oxygen vacancies in SnO2must have disappeared when it was calcined in O2, resulting in the poor gas-sensing performance of SnO2PNS sensor. This result reveals that the concentration of oxygen vacancy played a dominant role in gas-sensing performance. Due to the competition between the effects of oxygen vacancies and carrier mobility, calcining SnO2PNS in oxygen of ever-increasing pressure resulted in the degradation of gas-sensing performance at first, followed by a monotonic improvement above4.0MPa. On comparison, because of introduction of N-containing species, the response of SnO2PNS sensors was severely harmed after calcining them in high-pressure nitrogen.
     (4) In order to further improve the pore size uniformity of SnO2PNS, and increase its specific surface area, we combined the sol-gel method and SHP route to prepare SnO2PNS for the first time. The results show that the SnO2PNS samples thus prepared possesses much smaller nanoparticle size, more uniform pore diameter, larger pore volume and higher specific surface area, but its carrier mobility becomes lower. The influences of the key parameters, including hot-press temperature and pressure, on the pore structure and electric performance of SnO2PNS were investigated. Besides, the gas-sensing response of this kind of SnO2PNS to CO is much higher than that of the SnO2PNS prepared from the commercial SnO2nanoparticles.
引文
[1]S. de Monredon, A. Cellot, F. Ribot, C. Sanchez, L. Armelao, L. Gueneau, L. Delattre, Synthesis and characterization of crystalline tin oxide nanoparticles. J. Mater. Chem.12 (2002) 2396-2400.
    [2]R.E. Presley, C.L. Munsee, C.-H. Park, D. Hong, J.F. Wager, D.A. Keszler, Tin oxide transparent thin-film transistors. J. Phys. D 37 (2004) 2810.
    [3]H.J. Snaith, C. Ducati, SnO2-base dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron convension efficency. Nano Lett.10 (2010)1259-1265.
    [4]J.Y. Liu, T. Luo, T.S. Mouli, F.L. Meng, B. Sun, M.Q. Li, J.H. Liu, A novel coral-like porous SnO2 hollow architecture:biomimetic swallowing growth mechanism and enhanced photovoltaic property for dye-sensitized solar cell application. Chem. Commun.46 (2010) 472-474.
    [5]J.S. Chen, C.M. Li, W.W. Zhou, Q.Y. Yan, L.A. Archer, X.W. Lou, One-pot formation of SnO2 hollow nanospheres and α-Fe2C3@SnO2 nanorattles with large void space and their lithium strorage properties. Nanoscale 1 (2009) 280-285.
    [6]J.F. Ye, H.J. Zhang, R. Yang, X.G. Li, L.M. Qi, Morphology-controlled synthesis of SnO2 nanotubes by using 1D silica mesostructures as sacrificial templates and their applications in lithium-ion batteries. Small 6 (2010) 296-306.
    [7]X.M. Yin, C.C. Li, M. Zhang, Q.Y. Hao, S. Liu, Q.H. Li, L.B. Chen, T.H. Wang, SnO2 monolayer porous hollow spheres as a gas sensor. Nanotechnology 20 (2009)455503.
    [8]C.H. Wang, X.F. Chu, M.M. Wu, Highly sensitive gas sensors based on hollow SnO2 spheres prepared by carbon sphere template method. Sens. Actuators, B 120(2007)508-513.
    [9]G. Wang, W. Lu, J.H. Li, J. Choi, Y.S. Jeong, S.Y. Choi, J.B. Park, M.K. Ryu, K. Lee, Ⅴ-shaped tin oxide nanostructures featuring a broad photocurrent signal: An effective visible-light-driven photoctalyst. Small 2 (2006) 1436-1439.
    [10]M. Batzill, U. Diebold, The surface and materials science of tin oxide. Progress in Surface Science 79 (2005) 47-154.
    [11]C.G Fonstad, R.H. Reduker, Electrical properties of high-quality stannic oxide crystals. J. Appl. Phys.42 (1971) 2911-2918.
    [12]S. Samson, C.G Fonstad, Defect structure and electronic donor levels in stannic oxide crystals. J. Appl. Phys.44 (1973) 4618-4621.
    [13]C. Kilic, A. Zunger, Origins of coexistence of conductivity and transparency in SnO2. Phys. Rev. Lett.88 (2002) 095501.
    [14]M. A. Maki-Jaskari, T.T. Rantala, Theoretical study of oxygen-deficient SnO2 (110) surfaces. Phys. Rev. B 65 (2002) 245428.
    [15]D.F. Cox, T.B. Fryberger, S. Semancik, Summary Abstract: Oxygen-vacancy-derived defect electronic states on the SnO2 (110) surface. J. Vac. Sci. Technol. A 6,828 (1988) 575075.
    [16]M.S. Moreno, R.F. Egerton, J.J. Rehr, P.A. Midgley, Electronic structure of tin oxides by electron energy loss spectroscopy and real-space multiple scattering calculations. Phys. Rev. B,71 (2005) 035103.
    [17]A. Walsh, G.W. Watson, Electronic structures of rocksalt, litharge, and herzenbergite SnO by density functional theory. Phys. Rev. B,70 (2004) 235114.
    [18]M.S. Huh, B.S. Yang, J. Lee, et al., Improved electrical properties of tin-oxide films by using ultralow-pressure sputtering process. Thin Solid Films 518 (2009) 1170-1173.
    [19]I.H. Kim, J.H. Ko, D. Kim, et al., Scattering mechanism of transparent conducting tin oxide films prepared by magnetron sputtering. Thin Solid Films 515(2006)2475-2480.
    [20]S. Dasgupta, R. Kruk, N. Mechau, H. Hahn, Inkjet printed, high mobility inorganic-oxide field effect transistors processed at room temperature. ACS Nano 5 (2011) 9628-9638.
    [21]L.A. Dunlop, A. Kursumovic, J.L. MacManus-Driscoll, Highly conducting, transparent rhombic/cubic indium tin oxide nanocomposite thin films. Crystal Growth & Design,10 (2010) 1370-1375.
    [22]D.-H. Lee, S.-Y. Han, GS. Hermanc, C.-H. Chang, Inkjet printed high-mobility indium zinc tin oxide thin film transistors. J. Mater. Chem.19 (2009) 3135-3137.
    [23]C.-G. Lee, A. Dodabalapur, Solution-processed zinc_tin oxide thin-film transistors with low interfacial trap density and improved performance. Appl. Phys. Lett.96 (2010)243501.
    [24]K. Song, D. Kim, X.-S. Li, T. Jun, Y. Jeonga, J. Moon, Solution processed invisible all-oxide thin film transistors. J. Mater. Chem.19 (2009) 8881-8886.
    [25]D. Kim, Y. Jeonga, K. Song, S.-K. Park, G Cao, J. Moon, Inkjet-printed zinc tin oxide thin-film transistor. Langmuir 25 (2009) 11149-11154.
    [26]M.-G. Kim, M.G Kanatzidis, A. Facchetti, T.J. Marks, Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat. Mater.10 (2011) 382-388.
    [27]D.F. Cox, T.B. Fryberger, S. Semancik, Oxygen vacancies and defect electronic states on the SnO2 (110)-1×1 surface, Phys. Rev. B:Condens. Matter 38 (1988) 2072-2083.
    [28]J.H.C. van Hooff, J.F. van Helden, Formation of peroxo radicals on tin dioxide, J. Catal.8(1967) 199-200.
    [29]J.H.C. van Hooff, Formation of paramagnetic surface species during the oxidation of nonstoichiometric TiO2(A), SnO2, and ZnO. J. Catal.11 (1968) 277-279.
    [30]P. Meriaudeau, C. Naccache, A.J. Tench, Paramagentic oxygen species adsorbed on reduced SnO2. J. Catal.21 (1971) 208-211.
    [31]C. Hauser, Considerations on oxygen paramagnetic centers adsorbed on TiO2 and SnO2. Chem. Phys. Lett.18 (1973) 205-208.
    [32]N. Yamazoe, J. Fuchigami, M. Kishikawa, T. Seiyama, Interactions of tin oxide with O2, H2O and H2. Surf. Sci.86 (1979) 335-344.
    [33]Z.R. Dai, Z.W. Pan, Z.L. Wang, Ultra-long single crystalline nanoribbons of tin oxide. Solid State Commun.118 (2001) 351-354.
    [34]Z.R. Dai, J.L. Gole, J.D. Stout, Z.L. Wang, Tin oxide nanowires, nanoribbons, and nanotubes. J. Phys. Chem. B 106 (2002) 1274-1279.
    [35]Z.R. Dai, Z. Wei Pan, Z.L. Wang, Growth and structure evolution of novel tin oxide diskettes. J. Am. Chem. Soc.124 (2002) 8673-8680.
    [36]Z.L. Wang, Nanobelts, nanowires, and nanodiskettes of semiconducting oxides—from materials to nanodevices. Adv. Mater.15 (2003) 432-436.
    [37]J.Q. Hu, Y. Bando, D. Goldberg, Self-catalyst growth and optical properties of novel SnO2 fishbone-like nanoribbons. Chem. Phys. Lett.372 (2003) 758-762.
    [38]J.Q. Hu, Y. Bando, D. Goldberg, Self-catalyst growth and optical properties of novel SnO2 fishbone-like nanoribbons. Chem. Phys. Lett.372 (2003) 758-762.
    [39]N.S. Ramgir, I.S. Mulla, K.P. Vijayamohanan, Shape selective synthesis of unusal nanobipyramids, cubes, and nanowires of RuO2:SnO2. J. Phys. Chem. B 108(2004)14815-14819.
    [40]E.R. Leite, J.W. Gomes, M.M. Oliviera, E.J.H. Lee, E. Longo, J.A. Varela, C.A. Paskocimas, T.M. Boschi, F. Lanciotti Jr., P.S. Pizani, P.C. Soares Jr., Synthesis of SnO2 nanoribbons by a carbothermal reduction process. J. Nanosci. Nanotech. 2(2002)125-128.
    [41]J.X. Wang, D.F. Liu, X.Q. Yan, H.J. Yuan, L.J. Ci, Z.P. Zhou, Y. Gao, L. Song, L.F. Liu, W.Y. Zhou, G. Wang, S.S. Xie, Growth of SnO2 nanowires with uniform branched structures. Solid State Commun.130 (2004) 89-94.
    [42]J. Hu, Y. Bando, Q. Liu, D. Goldberg, Laser-ablation growth and optical properties of wide and long single-crystal SnO2 ribbons. Adv. Funct. Mater.13 (2003) 493-496.
    [43]C. Ye, X. Fang, Y. Wang, T. Xie, A. Zhao, L. Zhang, Novel synthesis of tin dioxide nanoribbons via a mild solution approach. Chem. Lett.33 (2004) 54-55.
    [44]C.-F. Wang, S.-Y. Xie, S.-C. Lin, X. Cheng, X.H. Zhang, R.-B. Huang, L.S. Zheng, Glow discharge growth of SnO2 nano-needles from SnH4. Chem. Commun. (2004) 1766-1767.
    [45]Y. Liu, J. Dong, M. Liu, Well-aligned nano-box-beams of SnO2. Adv. Mater.16 (2004) 353-356.
    [46]Y. Wang, J.Y. Lee, T.C. Deivaraj, Controlled synthesis of V-shaped SnO2 nanorods. J. Phys. Chem. B 108 (2004) 13589-13593.
    [47]B. Cheng, J.M. Russell, W. Shi, L. Zhang, E.T. Samulski, Large-scale, solution-phase growth of singlecrystalline SnO2 nanorods. J. Am. Chem. Soc. 126(2004)5972-5973.
    [48]D.-F. Zhang, L.-D. Sun, J.-L. Yin, C.-H. Yan, Low-temperature fabrication of highly crystalline SnO2 nanorods. Adv. Mater.15 (2003) 1022-1025.
    [49]S.C. Yang, D.J. Yang, J. Kim, J.M. Hong, H.G. Kim, I.D. Kim, H. Lee, Hollow TiO2 hemispheres obtained by colloidal templating for application in dye-sensitized solar cells. Adv. Mater.20 (2008) 1059-1064.
    [50]D. Grosso, C. Boissiere, C. Sanchez, Ultralow-dielectric-constant optical thin films built from magnesium oxyfluoride vesicle-like hollow nanoparticles. Nat. Mater.6(2007) 572-575.
    [51]A.M. Cao, J.S. Hu, H.P. Liang, L.J. Wan, Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. Angew. Chem. Int. Ed.44 (2005) 4391-4395.
    [52]H. Zhang, Q. Zhu, Y. Zhang, Y. Wang, L. Zhao, B. Yu, One-pot synthesis and hierarchical assembly of hollow CuO2 microspheres with nanocrystals-composed porous multishell and their gas-sensing properties. Adv. Funct. Mater.17 (2007) 2766-2771.
    [53]Y.E. Chang, D.Y. Youn, G. Ankonina, D.J. Yang, H.G. Kim, A. Rothschild, I.D. Kim, Fabrication and gas sensing properties of hollow SnO2 hemispheres. Chem. Commun.27 (2009) 4019-4021.
    [54]W.W. Wang, Y.J. Zhu, L.X. Yang, ZnO-SnO2 hollow spheres and hierarchical nanosheets:Hydrothermal preparation, formation mechanism, and photocatalytic properties. Adv. Funct. Mater.17 (2007) 59-64.
    [55]S.W. Kim, M. Kim, W.Y. Lee, T. Hyeon, Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions. J. Am. Chem. Soc.124 (2002) 7642-7643.
    [56]H.P. Liang, H.M. Zhang, J.S. Hu, Y.G. Guo, L.J. Wan, C.L. Bai, Pt hollow nanospheres:Facile synthesis and enhanced electrocatalysts. Angew. Chem. Int. Ed.43 (2004) 1540-1543.
    [57]IUPAC, manual of symbols and terminology. Pure Appl. Chem.31 (1972) 578-638.
    [58]M. Yang, J. Ma, C.L. Zhang, Z.Z. Yang, Y.F. Lu, General synthetic route toward functional hollow spheres with double-shelled structures. Angew. Chem. Int. Ed. 44 (2005) 6727-6730.
    [59]F. Caruso, R.A. Caruso, and H. Mohwald, Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 282 (1998) 1111-1114.
    [60]Y. Zeng, X. Wang, H. Wang, Y. Dong, Y. Ma, J.N. Yao, Multi-shelled titania hollow spheres fabricated by a hard template strategy:enhanced photocatalytic activity. Chem. Commum.46 (2010) 4312-4313.
    [61]D. Liu, K. Nakashima, Synthesis of hollow metal oxide nanoshperes by templating polymeric micelles with core-shell-corona architecture. Inorg. Chem. 48 (2009) 3898-3900.
    [62]A. Khanal, Y. Inoue, M. Yada, K. Nakashima, Synthesis of silica hollow nanoparticles templated by polymeric micelles with core-shell-corona architecture. J. Am. Chem. Soc.129 (2007) 1534-1535.
    [63]C.I. Zoldesi, A. Imhof, Synthesis of monodisperse colloidal spheres, capsules, and microballoons by emulsion templating. Adv. Mater.17 (2005) 924-928.
    [64]G.R. Bourret, R.B. Lennox, 1D Cu(OH)2 nanomaterial synthesis templated in water microdroplets. J. Am. Chem. Soc.132 (2010) 6657-6659.
    [65]Q. Peng, Y.J. Dong, YD. Li, ZnSe semiconductor hollow microspheres. Angew. Chem. Int. Ed.42 (2003) 3027-3030.
    [66]X. Liang, X. Wang, Y. Zhuang, B. Xu, S. Kuang, Y. Li, Formation of CeO2-ZrO2 solid solution nanocages with controllable structures via Kirkendall effect. J. Am. Chem. Soc.130 (2008) 2736-2737.
    [67]YD. Yin, R.M. Rioux, C.K. Erdonmez, S. Hughes, GA. Somorjai, A.P. Alivisatos, Formation of hollow nanocrystals through the nanoscale Kirkendall Effect. Science 304 (2004) 711-714.
    [68]R.L. Penn, J.F. Banfield, Imperfect oriented attachment:Dislocation generation in defect-free nanocrystals. Science 281 (1998) 969-971.
    [69]D.B. Yu, X.Q. Sun, J.W. Zou, Z.R. Wang, F. Wang, K. Tang, Oriented assembly of Fe2O3 nanoparticles into monodisperse hollow single-crystal microspheres. J. Phys. Chem. B 110 (2006) 21667-21671.
    [70]B. Liu, H.C. Zeng, Symmetric and asymmetric Ostwald ripening in the fabrication of homogeneous core-shell semiconductor. Small 1 (2005) 566-571.
    [71]Y. Chang, J.J. Teo, H.C. Zeng, Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres. Langmuir 21 (2005) 1074-1079.
    [72]YJ. Xiong, B. Wiley, J.Y. Chen, Z.Y. Li, YD. Yin, Y.N. Xia, Corrosion-based shnthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon properties. Angew. Chem. Int. Ed.44 (2005) 7913-7917.
    [73]X.W. Lou, Y. Wang, C.L. Yuan, J.Y. Lee, L.A. Archer, Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 18(2006)2325-2329.
    [74]Q. Zhao, Y. Xie, T. Dong, Z. Zhang, Oxidation-crystallization process of colloids:an effective approach for the morphology controllable synthesis of SnO2 hollow spheres and rod bundles. J. Phys. Chem. C 111 (2007) 11598-11603.
    [75]J. Liu, F. Meng, T. Luo, W. Li, M. Li, J. Liu, Novel facile detection of persistent organic pollutants using highly sensitive gas sensor. Talanta 82 (2010) 409-416.
    [76]S. Liu, M. Xie, Y. Li, X. Guo, W. Ji, W. Ding, C. Au, Novel sea urchin-like hollow core-shell SnO2 superstructures:facile synthesis and excellent ethanol sensing performance. Sens. Actuators, B 151 (2010) 229-235.
    [77]S. Fujihara, T. Maeda, H. Ohgi, E. Hosono, H. Imai, S.-H. Kim, Hydrothermal routes to prepare nanocrystalline mesoporous SnO2 having high thermal stability, Langmuir 20 (2004) 6476-6481.
    [78]S.Y. Ho, A.S.W. Wong, G.W. Ho, Controllable porosity of monodispersed tin oxide nanospheres via an additive-free chemical route. Cryst. Growth Des. 9(2009)732-736.
    [79]M.A. Hossain, G.W. Yang, M. Parameswaran, J.R. Jennings, Q. Wang, Mesoporous SnO2 spheres synthesized by electrochemical anodization and their application in CdSe-sensitized solar cells, J. Phys. Chem. C 114 (2010) 21878-21884.
    [80]M.A. Hossain, J.R. Jennings, Z.Y. Koh, Q. Wang, Carrier generation and collection in CdS/CdSe-sensitized SnO2 solar cells exhibiting unprecedented photocurrent densities. ACS Nano 5 (2011) 3172-3181.
    [81]X. Dou, D. Sabba, N. Mathews, L.H. Wong, Y.M. Lam, S. Mhaisalkar, Hydrothermal synthesis of high electron mobility Zn-doped SnO2 nanoflowers as photoanode material for efficient dye-Sensitized solar cells, Chem. Mater.23 (2011)3938-3945.
    [82]J. Qian, P. Liu, Y. Xiao, Y. Jiang, Y. Cao, X. Ai, H. Yang, TiO2-coated multilayered SnO2 hollow microspheres for dye-sensitized solar cells. Adv. Mater.21 (2009) 3663-3667.
    [83]F. Gyger, M. Hu bner, C. Feldmann, N. Barsan, U. Weimar, Nanoscale SnO2 hollow spheres and their application as a gas-sensing material. Chem. Mater.22 (2010)4821-4827.
    [84]Z.P. Li, Q.Q. Zhao, W.L. Fan, J.H. Zhan, Porous SnO2 nanospheres as sensitive gas sensors for volatile organic compound detection. Nanoscale 3 (2011) 1646-1652.
    [85]J.-H. Jeun, D.-H. Kim, S.-H. Hong, Synthesis of porous SnO2 foams on SiO2/Si substrate by electrochemical deposition and their gas sensing properties. Sensors and Actuators B 161 (2012)784-790.
    [86]K.-M. Kim, K.-I. Choi, H.-M. Jeong, H.-J. Kim, H.-R. Kim, J.-H. Lee, Highly sensitive and selective trimethylamine sensors using Ru-doped SnO2 hollow spheres. Sensors and Actuators B 166-167 (2012) 733-738.
    [87]P. Tiwana, P. Docampo, M.B. Johnston, H.J. Snaith, L.M. Herz, Electron Mobility and Injection Dynamics in Mesoporous ZnO, SnO2, and TiO2 Films Used in Dye-Sensitized Solar Cells, ACS Nano 5 (2011) 5158-5166.
    [88]刘秀琳,徐红燕,孟宪平,李梅,崔得良,宋云京,白见强,李木森.利用溶剂热压方法制备羟基磷灰石多孔纳米固体.物理化学学报20(2004)608-611.
    [89]刘秀琳,徐红燕,李梅,孟宪平,王琪珑,蒋民华,崔得良.二氧化锆多孔纳米固体的制备与性质表征.功能材料增刊35(2004)3119-3122.
    [90]H. Xu, X. Liu, M. Li, Z. Chen, D. Cui, M. Jiang, X. Meng, L. Yu, C. Wang. Preparation and characterization of TiO2 bulk porous nanosolids. Mater. Lett.59 (2005)1962-1966.
    [91]孟宪平.微孔型无机粉末的水热热压固化及固化体性能研究.吉林大学博士论文,P13-15。
    [92]W. Wu, G.H. Nancollas. A New Understanding of the Relationship Between Solubility and Particle Size. J. Solution Chem.27 (1998) 521-531.
    [93]孟宪平.微孔型无机粉末的水热热压固化及固化体性能研究.吉林大学博士论文,P10-11。
    [94]刘秀琳,徐红燕,余丽丽,李梅,王成建,崔得良,蒋民华.ZnO纳米颗粒的 自组装及多孔纳米固体的研制.科学通报49(2004)2410-2415.
    [95]李梅,刘秀琳,徐红燕,崔得良,任燕,孙海燕,陶绪堂,蒋民华.水和辛胺对ZnO多孔纳米块体孔道结构的影响.化学学报63(2005)1510-1514.
    [96]刘秀琳,余丽丽,徐红燕,李梅,王成建,蒋民华,崔得良.Ti02多孔纳米固体对罗丹明B的热催化降解作用.化学学报62(2004)2398-2402.
    [97]X.L. Liu, D.L. Cui. Photoluminescence enhancement of ZrO2/Rhodamine B nanocomposites. J. Mater. Sci.40 (2005) 1111-1114.
    [98]H. Xu, X. Liu, D. Cui, M. Li, M. Jiang. A novel method for improving the performance of ZnO gas sensors. Sens. Actuators B 114 (2006) 301-307.
    [99]Q. Yu, K. Wang, C. Luan, Y. Geng, G. Lian, D. Cui. A dual-functional highly responsive gas sensor fabricated from SnO2 porous nanosolid. Sens. Actuators B 159(2011)271-276.
    [100]L.J. van der Pauw, A method of measuring specific resistivity and Hall effect discs of arbitrary shape, Philips Res. Repts 13 (1958) 1-9.
    [1]B. O'Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991) 737-740.
    [2]X. Dou, D. Sabba, N. Mathews, L.H. Wong, Y.M. Lam, S. Mhaisalkar, Hydrothermal synthesis of high electron mobility Zn-doped SnO2 nanoflowers as photoanode material for efficient dye-Sensitized solar cells, Chem. Mater.23 (2011)3938-3945.
    [3]I. Bedja, S. Hotchandani, P.V. Kamat, Preparation and photoelectrochemical characterization of thin SnO2 nanocrystalline semiconductor films and their sensitization with bis (2,2'-bipyridine)(2,2'-bipyridine-4,4'-dicarboxylic acid) ruthenium(II) complex, J. Phys. Chem.98 (1994) 4133-4140.
    [4]S. Ferrere, A. Zaban, B.A. Gregg, Dye sensitization of nanocrystalline tin oxide by perylene derivatives, J. Phys. Chem. B 101 (1997) 4490-4493.
    [5]T. Hasobe, H. Imahori, P.V. Kamat, S. Fukuzumi, Quaternary self-organization of porphyrin and fullerene units by clusterization with gold nanoparticles on SnO2 electrodes for organic solar cells, J. Am. Chem. Soc.125 (2003) 14962-14963.
    [6]M.A. Hossain, G.W. Yang, M. Parameswaran, J.R. Jennings, Q. Wang, Mesoporous SnO2 spheres synthesized by electrochemical anodization and their application in CdSe-sensitized solar cells, J. Phys. Chem. C 114 (2010) 21878-21884.
    [7]F. Fungo, L. Otero, E.N. Durantini, J.J. Silber, L.E. Sereno, Photosensitization of thin SnO2 nanocrystalline semiconductor film electrodes with metallodiporphyrin, J. Phys. Chem. B 104 (2000) 7644-7651.
    [8]H. Kim, C.M. Gilmore, A. Pique, J.S. Horwitz, H. Mattoussi, H. Murata, Z.H. Kafafi, D.B. Chrisey, Electrical, optical and structural properties of indium-tin oxide thin films for organic light-emitting devices, J. Appl. Phys.86 (1999) 6451-6456.
    [9]E. Shanthi, V. Duta, A. Banerjee, K.L. Chopra, Electrical and optical properties of undoped and antimony-doped tin oxide films, J. Appl. Phys.51 (1980) 6243-6251.
    [10]J. Bruneaux, H. Cachet, M. Froment, A. Messad, Correlation between structure and electrical properties of sprayed tin oxide films with and without fluorine doping, Thin Solid Films 197 (1991) 129-141.
    [11]T. Sahm, L. Madler, A. Gurlo, N. Barsan, S.E. Pratsinis, U. Weimar, Flame spray synthesis of tin dioxide nanoparticles for gas sensing, Sens. Actuators, B 98(2004)148-153.
    [12]F. Hernandez-Ramirez, A. Tarancon, O. Casals, J. Arbiol, A. Romano-Rodriguez, J.R. Morante, High response and stability in CO and humidity measures using a single SnO2 nanowire, Sens. Actuators, B 121 (2007) 3-17.
    [13]I. Kocemba, J.Rynkowski, The influence of catalytic activity on the response of Pt/SnO2 gas sensors to carbon monoxide and hydrogen, Sens. Actuators, B 155 (2011)659-666.
    [14]M.S. Arnold, P. Avouris, Z.W. Pan, Z.L. Wang, Field-effect transistors based on single semiconducting oxide nanobelts, J. Phys. Chem. B 107 (2003) 659-663.
    [15]C. Gu, J. Huang, Y. Wu, M. Zhai, Y. Sun, J. Liu, Preparation of porous flower-like ZnO nanostructures and their gas-sensing property. J. Alloys Compd. 509(2011)4499-4504.
    [16]S.C. Yeow, W.L. Onga, A.S.W. Wong, G.W. Ho, Template-free synthesis and gas sensing properties of well-controlled porous tin oxide nanospheres. Sens. Actuators B 143 (2009) 295-301.
    [17]C. Hu, Z. Gao, X. Yang, A facile hydrothermal route to synthesis of nonporous and porous hierarchical copper dendrites. J. Cryst. Growth 306 (2007) 390-394.
    [18]J. Macan, A. Gajovic, H. Ivankovic. Porous zirconium titanate ceramics synthesized by sol-gel process. J. Eur. Ceram. Soc.29 (2009) 691-696.
    [19]M. Verdenelli, S. Parola, F. Chassagneux, J.M. Letoffe, H. Vincent, J.P. Scharff, J. Bouix, Sol-gel preparation and thermo-mechanical properties of porous xAl2O3-ySiO2 coatings on SiC Hi-Nicalon fibres. J. Eur. Ceram. Soc.23 (2003) 1207-1213.
    [20]C. X. Shan, Z. Liu, Z. Z. Zhang, D. Z. Shen, S. K. Hark, A simple route to porous ZnO and ZnCdO nanowires. J. Phys. Chem. B 110 (2006) 11176-11179.
    [21]H. Yu, D. Wang, M.Y. Han. Top-down solid-phase fabrication of nanoporous Cadmium oxide architectures. J. Am. Chem. Soc.129 (2007) 2333-2337.
    [22]R. Xu, J. Wang, Q. Li, G. Sun, E. Wang, S. Li, J. Gu, M. Ju, Porous cobaltoxide (Co3O4) nanorods:Facile syntheses, optical property and application inlithium-ion batteries. J. Solid State Chem.182 (2009) 3177-3182.
    [23]A. Hadi, I.I. Yaacob, Novel synthesis of nanocrystalline CeO2 by mechanochemical and water-in-oil microemulsion methods. Mater. Let.61 (2007) 93-96.
    [24]M. Yang, J. Ma, C.L. Zhang, Z.Z. Yang, Y.F. Lu, General synthetic route toward functional hollow spheres with double-shelled structures. Angew. Chem. Int. Ed. 44 (2005) 6727-6730.
    [25]Y. Zeng, X. Wang, H. Wang, Y. Dong, Y. Ma, J.N. Yao, Multi-shelled titania hollow spheres fabricated by a hard template strategy:enhanced photocatalytic activity. Chem. Commun.46 (2010),4312-4314.
    [26]A. Khanal, Y. Inoue, M. Yada, K. Nakashima, Synthesis of silica hollow nanoparticles templated by polymetric micelle with core-shell-corona structure. J. Am. Chem. Soc.129 (2007) 1534-1535.
    [27]G.R. Bourret, R.B. Lennox, 1D Cu(OH)2 nanomaterial synthesis templated in water microdroplets. J. Am. Chem. Soc.132 (2010) 6657-6659.
    [28]Z.P. Li, Q.Q. Zhao, W.L. Fan, J.H. Zhan, Porous SnO2 nanospheres as sensitive gas sensors for volatile organic compounds detection. Nanoscale 3 (2011) 1646-1652.
    [29]B.P. Jia, L. Gao, Morphological transformation of Fe3O4 spherical aggregates from solid to hollow and their self-assembly under an external magnetic field. J. Phys. Chem. C,112 (2008) 666-671.
    [30]H. Xu, X. Liu, M. Li, Z. Chen, D. Cui, M. Jiang, X. Meng, L. Yu, C. Wang, Preparation and characterization of TiO2 bulk porous nanosolids. Mater. Lett. 59(2005)1962-1966.
    [31]H.Y. Xu, X.L. Liu, D.L. Cui, M. Li, M.H. Jiang, A novel method for improving the performance of ZnO gas sensors. Sens. Actuators, B 114 (2006) 301-307.
    [32]Q.Q. Yu, K. Wang, C.H. Luan, Y.J. Geng, G. Lian, D.L. Cui, A dual-functional highly responsive gas sensor fabricated from SnO2 porous nanosolid. Sens. Actuators, B 159 (2011) 271-276.
    [33]X.L. Liu, D.L. Cui. Photo luminescence enhancement of ZrO2/Rhodamine B nanocomposites. J. Mater. Sci.40 (2005) 1111-1114.
    [34]孟宪平.微孔型无机粉末的水热热压固化及固化体性能研究.吉林大学博士论文,P10-13.
    [35]W. Wu, G.H. Nancollas, A New Understanding of the Relationship Between Solubility and Particle Size. J. Solution Chem.27 (1998) 521-531.
    [36]L.J. van der Pauw, A method of measuring specific resistivity and Hall effect discs of arbitrary shape, Philips Res. Repts 13 (1958) 1-9.
    [37]J. Ahmed, S. Vaidya, T. Ahmad, P.S. Devi, D. Das, A.K. Ganguli, Tin dioxide nanoparticles:Reverse micellar synthesis and gas sensing properties. Mater. Res. Bull.43 (2008) 264-271.
    [38]张建荣,高濂,纳米晶氧化锡的水热合成与表征.化学学报61(2003)1965-1968.
    [39]B. Zhu, C.M. Liu, M.B. Lv, X.R. Chen, J. Zhu, G.F. Ji, Structures, phasetransition, elasticproperties of SnO2 from first-principles analysis. Physica B 406 (2011) 3508-3513.
    [40]D.F. Cox, T.B. Fryberger, S. Semancik, Oxygen vacancies and defect electronic states on the SnO2 (110)-1×1 surface, Phys. Rev. B 38 (1988) 2072-2083.
    [1]B. O'Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991) 737-740.
    [2]M. Gratzel, Photoelectrochemical Cells. Nature 414 (2001) 338-340.
    [3]Katoh, R.; Furube, A.; Yoshihara, T.; Hara, K.; Fujihashi, G.; Takano, S.; Murata, S.; Arakawa, H.; Tachiya, M. Efficiencies of electron injection from excited N3 dye into nanocrystalline semiconductor (ZrO2, TiO2, ZnO, Nb2O5, SnO2, In2O3) Films. J. Phys. Chem. B 108 (2004) 4818-4822.
    [4]Asbury, J. B.; Hao, E.; Wang, Y. Q.; Ghosh, H. N.; Lian, T. Q. Ultrafast Electron Transfer Dynamics from Molecular Adsorbates to Semiconductor Nanocrystalline Thin Films. J. Phys. Chem. B 105 (2001) 4545-4557.
    [5]Fessenden, R. W.; Kamat, P. V. Rate constants for charge injection from excited sensitizer into SnO2, ZnO, and TiO2 semiconductor nanocrystallites. J. Phys. Chem.99 (1995) 12902-12906.
    [6]Fukai, Y.; Kondo, Y.; Mori, S.; Suzuki, E. Highly Efficient Dye-Sensitized SnO2 Solar Cells Having Sufficient Electron Diffusion Length. Electrochem. Commun. 9(2007) 1439-1443.
    [7]Y. Cheng, K.S. Chen, N.L. Meyer, J. Yuan, L.S. Hirst, P.B. Chase, P. Xiong, Functionalized SnO2 nanobelt field-effect transistor sensors for label-free detection of cardiac troponin, Biosensors and Bioelectronics 26 (2011) 4538-4544.
    [8]M.S. Arnold, P. Avouris, Z.W. Pan, Z.L. Wang, Field-effect transistors based on single semiconducting oxide nanobelts, J. Phys. Chem. B 107 (2003) 659-663.
    [9]E. Hendry, M. Koeberg, B. O'Regan, M. Bonn, Field effects on electron transport in nanostructured TiO2 revealed by terahertz spectroscopy, Nano Lett.6 (2006) 755-759.
    [10]Ozgur, U.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Dogan, S.; Avrutin, V.; Cho, S. J.; Morkoc-, H. A Comprehensive Review of ZnO Materials and Devices. J. Appl. Phys.2005,98,041301.
    [11]Zarzebski, Z. M.; Marton, J. P. Physical Properties of SnO2 Materials.3. Optical Properties. J. Electrochem. Soc.1976,123, C333-C346.
    [12]Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, ZnO nanostructures for dye-sensitized solar cells, Adv. Mater.21 (2009) 4087-4108.
    [13]P. Tiwana, P. Docampo, M.B. Johnston, H.J. Snaith, L.M. Herz, Electron Mobility and Injection Dynamics in Mesoporous ZnO, SnO2, and TiO2 Films Used in Dye-Sensitized Solar Cells, ACS Nano 5 (2011) 5158-5166.
    [14]Q. Yu, K. Wang, C. Luan, Y. Geng, G. Lian, D. Cui, A dual-functional highly responsive gas sensor fabricated from SnO2 porous nanosolid, Sens. Actuators, B 159(2011)271-276.
    [15]L.J. van der Pauw, A method of measuring specific resistivity and Hall effect discs of arbitrary shape, Philips Res. Repts 13 (1958) 1-9.
    [16]A. Rothschild, Y. Komem, The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors, J. Appl. Phys.95 (2004) 6374-6380.
    [17]J. Getino, J. Gutierrez, L. Ares, J.I. Robla, M.C. Horrillo, I. Sayago, J.A. Agapito, Integrated sensor array for gas analysis in combustion atmospheres, Sens. Actuators, B 33 (1996) 128-133.
    [18]A. Oprea, E. Moretton, N. Barsan, W.J. Becker, J. Wollenstein, U. Weimar, Conduction model of SnO2 thin films based on conductance and Hall effect measurements, J. Appl. Phys.100 (2006) 033716,1-10.
    [19]S. Chang, Oxygen chemisorption on tin oxide:Correlation between electrical conductivity and EPR measurements, J. Vac. Sci. Technol.17 (1980) 366-369.
    [20]D.F. Cox, T.B. Fryberger, S. Semancik, Oxygen vacancies and defect electronic states on the SnO2 (110)-1×1 surface, Phys. Rev. B:Condens. Matter 38 (1988) 2072-2083.
    [21]A. Labidi, C. Jacolin, M. Bendahan, A. Abdelghani, J. Guerin, K. Aguir, M. Maaref, Impedance spectroscopy on WO3 gas sensor, Sens. Actuators, B 106 (2005)713-718.
    [22]V. Demarne, A. Grisel, R. Sanjines, D. Rosenfeld, F. Levy, Electrical transport properties of thin polycrystalline SnO2 film sensors, Sens. Actuators, B 7 (1992) 704-708.
    [23]M.W.J. Prins, K.-O. Grosse-Holz, J.F.M. Cillessen, L.F. Feiner, Grain-boundary-limited transport in semiconducting SnO2 thin films:Model and experiments, J. Appl. Phys.83 (1998) 888-893.
    [24]C. Malagu, M.C. Carotta, A. Giberti, V. Guidi, G. Martinelli, M.A. Ponce, M.S. Castro, C.M. Aldao, Two mechanisms of conduction in polycrystalline SnO2, Sens. Actuators, B 136 (2009) 230-234.
    [25]B. Kamp, R. Merkle, R. Lauck, J. Maier, Chemical diffusion of oxygen in tin dioxide:Effects of dopants and oxygen partial pressure, J. Solid State Chem. 178(2005)3027-3039.
    [26]S.R. Morrison, The chemical physics of surfaces, second ed., Plenum Press, New York,1990.
    [27]C. Nayral, E. Viala, P. Fau, F. Senocq, J.C. Jumas, A. Maisonnat, B. Chaudret, Synthesis of tin and tin oxide nanoparticles of low size dispersity for application in gas sensing, Chem. Eur. J.6 (2000) 4082-4090.
    [28]M. Ippommatsu, H. Ohnishi, H. Sasaki, T. Matsumoto, Study on the sensing mechanism of tin oxide flamable gas sensors using the Hall effect, J. Appl. Phys. 69(1991)8368-8374.
    [1]M. Di Giulio, G. Micocci, R. Rella, P. Siciliano, A. Tepore, Properties of reactively sputtered tin oxide films as CO gas sensors, Sens. Actuators, B 23 (1995) 193-195.
    [2]T.K.H. Starke, G.S.V. Coles, Laser-ablated nanocrystalline SnO2 material for low-level CO detection, Sens. Actuators, B 88 (2003) 227-233.
    [3]I. Kocemba, J. Rynkowski, The influence of catalytic activity on the response of Pt/SnO2 gas sensors to carbon monoxide and hydrogen, Sens. Actuators, B 155 (2011)659-666.
    [4]U.-S. Choi, G. Sakai, K. Shimanoe, N. Yamazoe, Sensing properties of SnO2-Co3O4 composites to CO and H2, Sens. Actuators, B 98 (2004) 166-173.
    [5]J.T. McCue, J.Y. Ying, SnO2-In2O3 nanocomposites as semiconductor gas sensors for CO and NOx detection, Chem. Mater.19 (2007) 1009-1015.
    [6]S. Habibzadeh, A.A. Khodadadi, Y. Mortazavi, CO and ethanol dual selective sensor of Sm2O3-doped SnO2 nanoparticles synthesized by microwave-induced combustion, Sens. Actuators, B 144 (2010) 131-138.
    [7]Z. Jin, H. Zhou, Z. Jin, R.F. Savinell, C. Liu, Application of nano-crystalline porous tin oxide thin film for CO sensing, Sens. Actuators, B 52 (1998) 188-194.
    [8]Y. Shimizu, A. Jono, T. Hyodo, M. Egashira, Preparation of large mesoporous SnO2 powder for gas sensor application, Sens. Actuators, B 108 (2005) 56-61.
    [9]H. Li, F. Meng, Y. Sun, J. Liu, Y. Wan, B. Sun, J. Liu, Mesoporous SnO2 sensor prepared by carbon nanotubes as template and its sensing properties to indoor air pollutants, Procedia Engineering 7 (2010) 172-178.
    [10]P. Sun, W. Zhao, Y. Cao, Y. Guan, Y. Sun, G. Lu, Porous SnO2 hierarchical nanosheets:hydrothermal preparation, growth mechanism, and gas sensing properties, CrystEngComm 13 (2011) 3718-3724.
    [11]A. Rosental, A. Tarre, A. Gerst, T. Uustare, V. Sammelselg, Atomic-layer chemical vapor deposition of SnO2 for gas-sensing applications, Sens. Actuators, B 77 (2001) 297-300.
    [12]C.S. Moon, H. Kim, G. Auchterlonie, J. Drennan, J. Lee, Highly sensitive and fast responding CO sensor using SnO2 nanosheets, Sens. Actuators, B 131 (2008) 556-564.
    [13]A. Salehi, A highly sensitive self heated SnO2 carbon monoxide sensor, Sens. Actuators, B 96 (2003) 88-93.
    [14]A. Wisitsoraat, A. Tuantranont, V. Patthanasettakul, T. Lomas, P. Chindaudom, Ion-assisted e-beam evaporated gas sensor for environmental monitoring, Sci. Technol. Adv. Mater.6 (2005) 261-265.
    [15]Y.C. Lee, H. Huang, O.K. Tan, M.S. Tse, Semiconductor gas sensor based on Pd-doped SnO2 nanorod thin films, Sens. Actuators, B 132 (2008) 239-242.
    [16]S.M. Sedghi, Y. Mortazavi, A. Khodadadi, Low temperature CO and CH4 dual selective gas sensor using SnO2 quantum dots prepared by sonochemical method, Sens. Actuators, B 145 (2010) 7-12.
    [17]Q. Yu, K. Wang, C. Luan, Y. Geng, G. Lian, D. Cui, A dual-functional highly responsive gas sensor fabricated from SnO2 porous nanosolid, Sens. Actuators, B 159(2011)271-276.
    [18]J. Getino, J. Gutierrez, L. Ares, J.I. Robla, M.C. Horrillo, I. Sayago, J.A. Agapito, Integrated sensor array for gas analysis in combustion atmospheres, Sens. Actuators, B 33 (1996) 128-133.
    [19]A. Oprea, E. Moretton, N. Barsan, W.J. Becker, J. Wollenstein, U. Weimar, Conduction model of SnO2 thin films based on conductance and Hall effect measurements, J. Appl. Phys.100 (2006) 033716-1-10.
    [20]H. Xu, X. Liu, D. Cui, M. Li, M. Jiang, A novel method for improving the performance of ZnO gas sensors, Sens. Actuators, B 114 (2006) 301-307.
    [21]L. J. van der Pauw, A method of measuring specific resistivity and Hall effect discs of arbitrary shape, Philips Res. Repts 13 (1958) 1-9.
    [22]N. Yamazoe, G. Sakai, K. Shimanoe, Oxide semiconductor gas sensors, Catalysis Surveys from Asia 7 (2003) 63-75.
    [23]A. Gurlo, Interplay between O2 and SnO2:Oxygen ionosorption and spectroscopic evidence for adsorbed oxygen, ChemPhysChem 7 (2006) 2041-2052.
    [24]M. Tiemann, Porous metal oxides as gas sensors, Chem. Eur. J.13 (2007) 8376-8388.
    [25]D.F. Cox, T.B. Fryberger, S. Semancik, Oxygen vacancies and defect electronic states on the SnO2 (110)-1×1 surface, Phys. Rev. B 38 (1988) 2072-2083.
    [26]Y.L. Chai, D.T. Ray, H.S. Liu, C.F. Dai, Y.H. Chang, Characteristics of La0.8Sr0.2Co1-xCuxO3-δ film and its sensing properties for CO gas, Mater. Sci. Eng. A 293 (2000) 39-45.
    [27]C.M. Chiu, Y.H. Chang, Characteristics and sensing properties of dipped La0.8Sr0.2Co1-xNixO3-δfilm for CO gas sensors, Thin Solid Films 342 (1999) 15-19.
    [28]P. Song, H. Qin, S. Huang, X. Liu, R. Zhang, J. Hu, M. Jiang, Characteristics and sensing properties of La0.8Pb0.2Fe1-xNixO3 system for CO gas sensors, Mater. Sci. Eng. B 138 (2007) 193-197.
    [29]Y.C. Chen, Y.H. Chang, G.J. Chen, Y.L. Chai, D.T. Ray, The sensing properties of heterojunction SnO2/La0.8Sr0.2Co0.5Ni0.5O3 thin-film CO sensor, Sens. Actuators, B 96 (2003) 82-87.
    [30]S.W. Lee, P.P. Tsai, H. Chen, Comparison study of SnO2 thin- and thick-film gas sensors, Sens. Actuators, B 67 (2000) 122-127.
    [31]G. Korotcenkov, The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors, Mater. Sci. Eng. R 61 (2008) 1-39.
    [32]M. Ippommatsu, H. Ohnishi, H. Sasaki, T. Matsumoto, Study on the sensing mechanism of tin oxide flammable gas sensors using the Hall effect, J. Appl. Phys.69(1991)8368-8374.
    [33]A. Rothschild, Y. Komem, The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors, J. Appl. Phys.95 (2004) 6374-6380.
    [34]S. Chang, Oxygen chemisorption on tin oxide:Correlation between electrical conductivity and EPR measurements, J. Vac. Sci. Technol.17 (1980) 366-369.
    [35]Y. Inoue, M. Nomiya, O. Takai, Physical properties of reactive sputtered tin-nitride thin films, Vacuum 51 (1998) 673-676.
    [36]I. Bertoti, Characterization of nitride coatings by XPS, Surf. Coat. Technol. 151-152(2002) 194-203.
    [37]G. Soto, W. de la Cruz, M.H. Farias, XPS, AES, and EELS characterization of nitrogen-containing thin films, J. Electron. Spectrosc. Relat. Phenom.135 (2004) 27-39.
    [38]M.S. Arnold, P. Avouris, Z.W. Pan, Z.L. Wang, Field-effect transistors based on single semiconducting oxide nanobelts, J. Phys. Chem. B 107 (2003) 659-663.
    [1]C. Canali, C. Jacoboni, F. Nava, G. Ottaviani, A. Alberigi-Quaranta, Electron drift velocity in silicon. Phys. Rev. B 12 (1975) 2265-2284.
    [2]G. Ottaviani, L. Reggiani, C. Canali, F. Nava, A. Alberigi-Quaranta, Hole drift velocity in silicon. Phys. Rev. B 12 (1975) 3318-3329.
    [3]C.T. Sah, P.C.H. Chan, C.K. Wang, R.L.Sah, K.A. Yamakawa, R. Lutwack, Effect of zinc impurity in silicon solar-cell efficiency. IEEE Trans. Electron Devices ED-28 (1981) 304-313.
    [4]S. Selberherr, Analysis and Simulation of Semiconductor Devices. Springer, 1984.
    [5]C. Jacoboli, C. Canali, G Ottaviani, A. Alberigi-Quaranta, A review of some charge transport properties of silicon. Solid State Electronics 20 (1977) 77-89.
    [6]D.M. Caughey, R.E. Thomas, Carrier mobilities in silicon empirically related to doping and field. Proc. IEEE 52 (1967) 2192-2193.
    [7]J.M. Dorkel, Ph. Leureq, Carrier mobilities in silicon semi-empirically related to temperature, doping and injection level. Solid State Electronics 24 (1981) 821-825.
    [8]陈治明,王建农,半导体器件的材料物理学基础。科学出版社,1999,PP.52-80.
    [9]孟宪平.微孔型无机粉末的水热热压固化及固化体性能研究.吉林大学博士论文,P10-11。
    [10]N. Yamazoe, G. Sakai, K. Shimanoe. Oxide semiconductor gas sensors. Catalysis Surveys from Asia 7 (2003) 63-75.
    [11]G. Korotcenkov. The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater. Sci. Eng., R 61 (2008) 1-39.
    [12]H. Ogawa, M. Nishikawa, A. Abe, Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films. J. Appl. Phys.53 (1982) 4448-4455.
    [13]A. Rothschild, Y. Komem, The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. J. Appl. Phys.95 (2004) 6374-6380.
    [14]C. Xu, J. Tamaki, N. Miura, N. Yamazoe, Grain size effects on gas sensitivity of porous SnO2-based elements. Sens. Actuators, B 3 (1991) 147-155.
    [15]X.L. Liu, D.L. Cui. Photoluminescence enhancement of ZrO2/Rhodamine B nanocomposites. J. Mater. Sci.40 (2005) 1111-1114.
    [16]H. Xu, X. Liu, D. Cui, M. Li, M. Jiang. A novel method for improving the performance of ZnO gas sensors. Sens. Actuators B 114 (2006) 301-307.
    [17]Q. Yu, K. Wang, C. Luan, Y. Geng, G. Lian, D. Cui. A dual-functional highly responsive gas sensor fabricated from SnO2 porous nanosolid. Sens. Actuators B 159(2011)271-276.
    [18]H. Xu, X. Liu, M. Li, Z. Chen, D. Cui, M. Jiang, X. Meng, L. Yu, C. Wang. Preparation and characterization of TiO2 bulk porous nanosolids. Mater. Lett.59 (2005) 1962-1966.
    [19]孟宪平.微孔型无机粉末的水热热压固化及固化体性能研究.吉林大学博士论文,P13-15。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700