用户名: 密码: 验证码:
高吸水纤维的制备与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高吸水纤维是在高吸水树脂的基础上发展起来的一种功能性纤维。高吸水纤维具有吸水能力和保水能力强,吸水后仍具有较好的强度,能保持纤维吸水后的完整性,而且易于加工的特点,因此高吸水纤维应用前景广阔。目前只有少数几个发达国家能够生产高吸水纤维,在国内高吸水纤维的研究正处于初级阶段。
     本课题采用溶液聚合法合成了纺丝液,并将其纺制成高吸水纤维,主要研究内容如下:
     1.研究了聚乙烯醇、粘度对纺丝液可纺性的影响以及表面活性剂对粘度的影响。研究表明,聚乙烯醇的加入大大改善了纺丝液的可纺性,纺丝液的可纺性随聚乙烯醇用量的增加而提高,以聚乙烯醇的用量为单体重量的20%为佳。体系的粘度为30000mpa.s时可纺性最佳。加入表面活性剂能够减小聚合体系的粘度,对体系粘度的调节比较理想。
     2.研究了丙烯酰胺用量、丙烯酸中和度、引发剂用量、聚乙烯醇用量、交联时间对高吸水纤维吸液倍率的影响。高吸水纤维的吸液倍率随丙烯酰胺用量的增加先增大后减小,丙烯酰胺用量为单体重量的25%时吸液倍率最大;吸液倍率随丙烯酸中和度的增加而增加,在中和度为75%时,吸液倍率出现极值,丙烯酸中和度大于75%后吸液倍率又下降;吸液倍率随引发剂用量的增加先增加后下降,当引发剂用量为单体重量的3%时出现最高吸液倍率:吸液倍率随聚乙烯醇用量的增加而下降,考虑到纺丝液的可纺性随聚乙烯醇用量的增加而增加,选择聚乙烯醇的用量为单体重量的20%为宜:吸液倍率随交联时间的增加先增大后减少,交联时间为130℃下交联20min为宜。选择上述各最佳条件,高吸水纤维的最高吸水倍率可达320g/g,最高吸盐水倍率可达50g/g。
     3.研究了高吸水纤维的吸水速率、耐热稳定性和力学性能。与高吸水树脂相比,高吸水纤维具有较好的吸水速率,2min可吸水100g/g;在50℃下高吸水纤维的稳定性很好;随高吸水纤维吸水倍率增加,断裂强度下降,而断裂伸长率增大。
    
     4.借助DSC、SEM研究了高吸水纤维及其吸水凝胶的结构。DCS谱
    图显示高吸水纤维具有两个玻璃化转变温度区间,表明在高吸水纤维内形
    成了相分离。高吸水纤维的横截面SEM照片显示出纤维内部有许多微孔,
    微孔直径一般在1哪~20哪之间,其有利于提高纤维的吸水速率。高吸水
    纤维的表面sEM照片显示纤维表面有许多微小的凹槽,其长度一般为10哪
    左右,有利于吸水倍率的提高。
Superabsorbent fiber is a kind of functional fiber based on superabsorbent polymer, which has wonderful water-absorbing and water-retaining ability, can maintain better strength and integrity after absorbing water, and can be processed easily. So it will be used widely in the future. Nowadays only a few developed countries can product superabsorbent fiber, and research on superabsorbent fiber is in the primary state in our country.
    Superabsorbent polymer was prepared by solution polymerization and spinned into fiber. The main content as follows:
    1. Effect of PVA, viscidity on the spinnability was studied and effect of surface active agent on viscidity was also studied. The results showed that spinnability was greatly improved by PVA, 20% of monomer was the best content. When the viscidity of spinning solution was 30000mpa.s, the spinnability was best. The viscidity reduced by increasing surface agent, and the adjustment was ideal.
    2. Effect of some factors on absorbency was investigated. The absorbency increased first and reduced then as the content of AM increased, it got the maximize when the content was 25% of monomer. The absorbency increased as the neutralization value increased, and attained the maximize when the neutralization value was 75%, after this point, the absorbency descent. The absorbency increased first, then decreased as the content of initiator increased, the absorbency was best when the content was 3%. The absorbency reduced by increasing PVA, we choose the content of PVA as 20%, because the spinnability increased by increasing PVA. When cross-linking time became long, the absorbency increased first and decreased then. 20min on 130 C was an adaptable cross-linking time. According to these conditions, the absorbency of H2O could get 320g/g, and the absorbency of 0.9% NaCL solution could get 50g/g.
    3.Absorbent velocity ,heat stability and mechanical property were studied, compared with superabsorbent polymer , the superabsorbent fiber had better
    
    
    absorbent velocity , and could absorb 100g /g H2O within 2 min. Heat stability was good on 50 C .As the absorbency increased, break strength fell and extension at break increased.
    4.The structure of superabsorbent fiber was studied DSC and SEM. DSC showed there were two glass transitions and phase interface came into being in the superabsorbent fiber. SEM showed there were a great deal of micropores in the superabsorbent fiber whose size varied from 1 m to 20 m, and there were a lot of dents whose size was about 10 m, which could improved the absorbency.
引文
[1] 邹新禧编著.超强吸水剂,第二版,化学工业出版社,北京,2002
    [2] 刘嵩,李磊.合成高吸水聚合物的进展,高分子材料科学与工程,2001,17(3):11
    [3] 刘延伟.国内外高吸水树脂最新发展动向(二),中国化工信息,2000(20):8
    [4] 江镇海.高吸水树脂市场看好,四川化工与腐蚀控制,2001,4(3):62—63
    [5] 陶再荣,徐福泉.超吸水纤维及其应用,产业用纺织品,1991(4):21—23
    [6] USP.59611478, Superabsorbent wound dressing,Timmermans,laus J, Octber 5,1999.
    [7] USP.5423787,Sanitary napkin or incontinence guard, Kjellberg,Moniea M.L, June 13,1995
    [8] USP.6330385,Cables with water-blocking and flame-retarding fibers,Sheu,J, December 11,2001
    [9] USP.5082719,Water resistant communications cable, Arroyo, Candido J., January21,1992
    [10] 赵稼祥.医用功能纤维,中国石化出版社,1996
    [11] 高茜斐,赵耀明.高吸水纤维,合成纤维,2002,7:24~27
    [12] 高桥智三.高分子(日),1989,38(12):1074
    [13] 马书斌,宁家成.高吸水纤维的开发和应用现状,石油化工,1994,23:820—825
    [14] 顾利霞等.亲水性纤维,中国石化出版社,1997:231
    [15] USP6194630. Superabsorbent fiber or nonwoven material, a method for its manufacture, and an absorbent article comprising the superabsorbent fiber or nonwoven material, Chihani, Thami, Canback, February 27, 2001
    [16] EPO425296. Superabsorbent polymer fibers and processes for their production, Richard H., August 7, 2002
    [17] USP4892533.Ultra highwater-absorbing fiber-forming composition,Le-Khac,
    
    January 9,1990
    [18] USP5154165.Polymer compositions and absorbent fibers produced , Le-Khac, September 29,1992
    [19] USP5827861 .Method of producing fiber or film, Brunskill, December 10,1996
    [20] Akers,Paul J. Future for superabsorbent fibers,Technical Tectitles International, February6.1997
    [21] 罗益锋.高吸水性树脂与纤维,高科技纤维与应用,1999,24(4):32—36
    [22] 祝志峰等.高吸水材料及其在纺织工业中的应用前景,中国纺织大学学报, 1994,20(4):80—86
    [23] Davies,Stan.Recent developments in technical nonwovens,June5,1996
    [24] USP.5395411 ,filter for air cleaning, Kobayashi, Takahito March 7,1995
    [25] USP.6013349,Wiping sheet, Takeuchi,Shimoe,Nariaki et.al,Jnauary 11,2000
    [26] USP.5817391,Three-dimensional knit spacer fabric for bed pads, Rock, October6, 1998
    [27] USP.5344698,Composite under garment fabric,Rock,Moshe,Lumb,September 3,1994
    [28] USP.5287650,Struetured medium for the cultivation of greenery and a waterproofing system to facilitate the installation of said medium on buildings,Moriguchi,Ishihara,Kubo,February22,1994
    [29] 董纪震等.合成纤维生产工艺学,中国纺织出版社,1994
    [30] Song, K-G., Yoon, K-J., Ko, S-W. Synthesis of acrylic acid-based superabsorbent interpenetrated with sodium PVA sulfate using inverse-emulsion polymerization, European Polymer Journal, v38, n3, March, 2002, p579-586
    [31] Yoon, Kee Jong, Kim,Byoung Chul. Highly absorbable lyocell fiber spun from celluloses/hydrolyzed starch-g-PAN solution in NMMO monohydrate, European Polymer Journal, v39, n11, November, 2003, p2115-2120
    [32] Rana, Pradeep K., Sarkar,Nandala Debl, Sahoo,Anusmeta,Swain, Sarat K. Characterization and properties of chemically modified Corchorus capsularis jute fiber via pulping and grafting: Infrared, thermogravimetric analysis, differential
    
    scanning calorimeitry, scanning electron microscopy, x-ray diffraction, biodegradation, and superabsorbency. Journal of Polymer Science,Part A: Polymer Chemistry, v41, n17, Sep 1, 2003, p2696-2703
    [33] Stejska, E.O.Characterization of a polypropylene/super-absorbent web by NMR diffusion studies, Applied Spectroscopy, v50, n11,Nov, 1996, p1402-1707
    [34] USP6342298.Multicomponet superabsorbent fibers, Evans, January 29, 2002
    [35] 侯震伟,陈立新.湿法纺丝时纺丝原液凝固成形机理的探讨,中国纺织大学学报,1996,22(1):68-72
    [36] 李瑶君.高吸湿聚氨脂纤维的研究,聚氨脂工业,1990(3):26-29
    [37] Junwu Chen, Hasen Park,Kinam, Swelling behaviors ofpolyacrylate superabsorbent in the mixtures of water and hydrophilic solvents,J.Appl.Polym.Sci.2000, 75(11):1331-1338
    [38] Erdermer Karada, Dursun Saraydin,Yasemin, Swelling studies of copolymeric acrylamide/crotonic acid hydrogels as carriers for agriculture uses, Polymersfor Advanced Technologies,2000,11(2):59-68
    [39]Wen-Fu Lee, Ren-Jey Wu, Superabsorbent polymeric materials, Ⅰ :Swellingbehaviors of erosslinked poly(sodium acrylate-co-hydroxyethyl methacrylate) in apueous salt solution, J.Appl.Polym.Sci. 1996,62(7): 1099-1114
    [40] Wen-Fu Lee, Ren-Jey Wu, Superabsorbent polymeric materials, Ⅱ :Swellingbehaviors of crosslinked poly(sodium acrulate-co-hydroxyethl methaerylate) in apueous salt solution, J.Appl.Polym.Sci. 1997,64(9): 1701 - 1712
    [41] Wen-Fu Lee, Ren-Jey Wu, Superabsorbent polymeric materials,Ⅲ:Effect of initial total monomer concentration on the Swelling behaviors of crosslinked poly(sodium acrulate-co-hydroxyethl methacrylate) in apueous salt solution, J.Appl.Polym.Sci. 1997,64(12): 2371-2380
    [42] Wen-Fu Lee, Ren-Jey Wu, Superabsorbent polymeric materials, Ⅳ:Swellingbehaviors of crosslinked poly(sodium acrulate-co-hydroxyethl methacrylate) in apueous salt solution, J.Appl.Polym.Sci. 1998,66(3): 499-507
    [43] Wen-Fu Lee, Ren-Jey Wu, Superabsorbent polymeric materials,Ⅶ:Swellingbehaviors of crosslinked poly(sodium acrulate-co-hydroxyethl methacrylate) in
    
    apueous salt solution, J.Appl.Polym.Sci.2000,77(8): 1749-1759
    [44] K.Mohana Raju, M.Padmanabha Raju, Synthesis and swelling properties of superabsorbentcopolymers,Advances In Polymer Technology,2001,20(2): 146-154
    [45] Doo-Won Lim, Kee-Jong Yoon, Sohk-Won Ko,Synthesis of AA-based superabsorbent interpenetrated with sodium PVA sulfate, Journal of applied polymer science,2000,78(13):2525-2532
    [46] Jun Chen, Haesnnu Park, Kinam Park, Synthesis of superporous hydrogels: Hydrogels with fasts welling and superabsorbent properties,Journal of bio-medical materials research, 1999, 44 (1) : 53-62
    [47] Omldian,H.,Hashemi,S.A., Sammes,P.G.,Meldrum,I.,Model for the swelling of superabsorbent polymers, Polymer,1998,39(26):6697-6704
    [48] 陈育宏,曹爱年.聚丙烯酸盐高吸水树脂的合成,化工时刊,2001,15(12): 26-28
    [49] 竺亚斌,浦炳寅.耐盐性高吸水树脂的合成及性能研究,高分子材料科学与工程,1999,15(6):169-170
    [50] 陈军武,赵耀明.反相悬浮聚合法制备高吸水树脂及其性能研究,高分子材料科学与工程,2000,16(1):67-69
    [51] 殷敬华,莫志深主编.现代高分子物理学,科学出版社,第一版,2001
    [52] USP4861539.Process of making water-absorbent, water-insoluble, cross-linked fiber or film, Allen Adrian S, Farrar David,Flesher Peter, August 29,1989
    [53] EPO342919. Absorbent products and their manufacture, Flesher Peter, Allen Adrian,Farrar Davin,December 23,1989
    [54] EP4962172. Absorbent products and their manufacture, Flesher Peter, Allen Addan,Farrar Davin,Deeember, Octber 09,1990
    [55] Flory P.J, Principles og Polymer Chemistry, Cornell Univ.press, 1995
    [56] 兰建武等.聚芳醚砜酮纺丝溶液流变性能的研究,合成纤维工业,2002,25(2):12-16
    [57] 沈一丁编著.高分子表面活性剂,化学工业出版社,2002
    [58] 赵国玺编著.表面活性剂物理化学,北京大学出版社,1990
    
    
    [59] 潘才元主编.高分子化学,中国科学技大术学出版社,2001
    [60] 于俊荣,杨新戈.聚丙烯酸盐系高吸水性树脂的制备与性能,合成技术及应用,1997,12(4):15-20
    [61] 孙小然,唐桂芬.耐盐性交联聚丙烯酸类高吸水树脂的制备,河北理工学院学报,2000,22(1):71-76
    [62] 袁昂,黄次沛.水溶性PVA纤维,2002,31(1):23-26
    [63] 汪多仁.高吸水纤维的合成与应用,生活用纸,2002,(10):41-42
    [64] 吴人洁编著.现代分析技术在高聚物中的应用,上海科学技术出版社,1990
    [65] 宋宏主编.高分子材料的研究与测定,大连工学院出版社,1988
    [66] 王胜利.硕士毕业论文,天津工业大学,2003,3
    [67] 余琨编著.材料结构分析基础,科学出版社,2000
    [68] 周玉,武高辉编著.材料分析测试技术-材料X射线衍射与电子显微分析,哈尔滨工业大学出版社,第一版,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700