用户名: 密码: 验证码:
P-糖蛋白与药物相互作用模型的建立及其在药物评价中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
P-糖蛋白(P-gp)与药物相互作用研究属于药物研发早期药代性质预测的重要组成部分。新药的研发过程中,随着组合化学的发展,诞生了数量庞大的组合化学分子库,成千上万的新化学实体(NCEs)需要高通量、快速、灵敏而有效的评价筛选方法。本研究旨在建立快速预测P-gp与药物相互作用的体外及在体评价模型,丰富和完善临床前创新化合物药代性质评价体系,为创新药物的高内涵筛选提供技术支撑。
     课题研究内容分为两大部分:首先建立体外Caco-2细胞、肠外翻及在体肠灌流等模型,并采用多种工具药物对模型进行验证,以确保模型可靠性和实用性。所建成的模型可用于药物的肠道吸收性质预测;评价药物是否为P-gp底物、抑制剂及诱导剂等。其次应用所建立的模型和方法,开展对多种类型的创新化合物和适宜的中药复方与P-gp的相互作用进行预测和评价。
     模型建立及评价:
     Caco-2单层细胞外排模型,利用Caco-2细胞类似小肠上皮细胞且高表达P-gp的特性,将细胞接种到Millicell小室膜上,待细胞分化完成后进行转运实验,实验时分别将药物加入顶侧(AP侧)或底侧(BL侧),不同时间点取对应侧的样品,采用LC-MS或LC-MS/MS检测其药物浓度变化,计算表观渗透系数,可根据研究目的的不同,用于评价P-gp底物或抑制剂。
     荧光法预测P-gp抑制剂模型,采用具有荧光性质的P-gp底物Calcein-AM或Rho123与待测药物共同孵育作用于Caco-2细胞,实验根据细胞内荧光强度的变化,评价待测化合物是否为P-gp抑制剂。该模型可采用单层细胞种植于96孔板,联合荧光分光光度计检测,可实现药物的高通量筛选;也可以采用细胞悬液,联合流式细胞仪,可极大的提高检测准确性,适用于药物研发不同阶段的筛选。
     多药耐药逆转模型,P-gp是导致抗肿瘤药物产生MDR主要因素之一。通过考察肿瘤细胞(本实验采用Caco-2细胞)在P-gp抑制剂作用引起抗肿瘤药物IC50变化,用于抗肿瘤药物多药耐药逆转剂和P-gp抑制剂的快速筛查。
     P-gp体外诱导模型,采用Western blot法,将药物与Caco-2细胞共同孵育特定时间后,通过膜蛋白中的P-gp表达量的变化,评价药物对P-gp的诱导作用。
     建立了大鼠肠外翻模型,除用于P-gp的底物及抑制剂的评价外,还可用于考察和比较药物在不同肠段的吸收差异。为更加真实的模拟药物小肠吸收过程,建立大鼠在体肠灌流模型,模拟小肠对药物的吸收,用于评价P-gp的底物及抑制剂。
     模型应用:
     采用Caco-2单层细胞外排模型,对LZN033及其系列结构修饰物(该系列40个化合物)进行了透膜吸收预测,实验提示该类化合物基团中取代基上的带正电原子被取代后的化合物稳定性显著增高,提示该位点的取代基能提高其抗酶解的能力;带正电原子的取代基上的氢被进行合适的取代后的化合物透膜性明显提高,提示该位点的基团能提高化合物的透膜性。其中033、502、504、505、511、523初步评价为P-gp底物,提示上述化合物在采取合用抑制剂的方法,可能会提高化合物的体内生物利用度。
     对多种化合物的在Caco-2单层细胞上的双向转运特性进行初步评价,结果预测R-8021、S-8021、SFNF可能为P-gp和MRP2底物,Agm、SP-8、RS-8021、C36D2、HS-1等不受转运蛋白影响。初步解释了体内实验R-8021较RS-8021生物利用度低的原因,即R-8021受到P-gp外排的影响,导致进入体内的R-8021药量降低。上述各药由表观渗透系数Papp预测的体内生物利用度的结果,与体内实验基本相符。
     采用荧光法模型对17种化合物进行筛选,结果表明LSY-001、LSY-002、LSY-003、LSY-004分别增加胞内Calcein含量18.4%、27.2%、18.5%和30.5%,研究结果表明上述化合物为P-gp抑制剂。
     在对中药复方评价中,研究了当归芍药散在Caco-2细胞上的转运特性,针对中药复方成分复杂,且中药煎煮液质地浓稠,不适于直接给药的缺点,设计了经肠外翻给药后,将肠外翻内液用于细胞给药,实现了在细胞水平,中药复方经肠吸收有效成分的研究,结果表明复方滤过液和肠外翻内液中香草酸、白芍苷的Papp(A→B)高于各单体成分和单体成分混合液中Papp(A→B),提示在复方中药中存在其他配伍成分,产生药物相互作用,促进其A面到B面的药物转运,造成表观渗透系数的改变。而复方滤过液和肠外翻内液中Comp.A的Papp(A→B)低于单体和单体混合液中Papp(A→B),提示在复方中药中存在其他配伍成分抑制其由A面到B面的药物转运,造成透膜吸收性的改变。由此表明中药复方研究需从整体角度出发,单味中药成分或化学单体成分无法真实的反映中药复方的体内吸收特性。
     综上所述,目前已在体外、在体和离体等层次上初步建立起早期药物代谢性质快速评价体系中化合物与P-gp相互作用研究模型,根据不同实验目的,包括化合物所处的不同研发阶段的要求,进行相应模型的选择或不同模型的组合,能够完成对化合物的肠道吸收特性进行快速评价;对转运蛋白中的P-gp的底物、抑制剂和诱导剂进行筛选,为药物设计和开发药物的体内吸收特性评价提供依据,并对体内多种转运蛋白的研究提供参考依据。
Drug-drug interactions with P-glycoprotein (P-gp) are known to play a significant role in early drug discovery. Combinatorial chemistry and other advances in synthetic chemistry have led to a tremendous inflow of new chemical entities (NCEs) being fed into the screens for high throughput, high efficiency and high accuracy.There are diverse screens including in vivo and in vitro that are set-up in order to predict the interactions between P-glycoprotein and compounds.
     This dissertation consists of two parts. Firstly, we established Caco-2 cell line model, in vitro everted gut sacs and in situ perfusion method. A set of well-characterized and well-studied compounds were selected to test the validity of the assay.
     Model Construction:
     The Caco-2 cell monolayer is similar with the small intestine epithelium, which expresses P-gp highly and makes it an attractive model for P-gp substrate screening. In the transport experiment, the Caco-2 cells are seeded in the Millicell firstly, and 21 days later the cells complete the differentiation and can be used for transport studies. The bi-directional permeability studies were initiated by adding an appropriate volume of buffer containing test compound to either the apical (for apical to basolateral transport; A to B) or basolateral (for basolateral to apical transport; B to A) side of the monolayer. The concentrations of test compound were analyzed by LC-MS or LC-MS/MS method. Then apparent permeability (Papp) was calculated.
     P-gp inhibition studies were conducted using fluorescent dye Rhodamine123 and Calcein-AM as the probe. Accumulation of intracellular calcein fluorescence was measured using a Spectrofluorophotometer or flow cytometry. P-gp inhibitors significantly increased intracellular calcein fluorescence in Caco-2 cells.
     Using cultured Caco-2 monolayers on 96 well and measured with a Spectrofluorophotometer is a useful tool in high-throughput screening. Importantly, using Caco-2 cells in suspension combined with flow cytometry analysis improve reliability, specificity, and sensitivity of the assay.
     We established multi-drug resistance reversal model for P-gp, which was one of major causes for multidrug resistance (MDR).The determination of inhibitory concentrations (IC50 values) allowed to differentiate cytostatics into P-gp or non-P-gp inhibitors.This assay was improved as a high-throughput screening-capable assay. P-gp induction model: induction of P-gp expression in Caco-2 cells treated with compounds was measured using Western blot analysis. Our results showed that this model couble be used to the research of P-gp induction.
     The effects of compounds on rat intestinal P-gp function were studied on everted gut sacs and in situ intestinal perfusion models. The absorption of drugs were studied by the means of the everted gut scas and predict absorption trend in different intestines.
     Model Application:
     Permeability of two series new peptide drug candidates synthesized by our institute was evaluated in Caco-2 cell monolayer. Results from Caco-2 model demonstrated that if the N atom in free amino groups at N terminal ureido of the linear decapeptide substituted by alkyl group, the stability of the peptide increased signicantly. The H atom in free amino groups at N terminal ureido of the linear decapeptide substituted by alkyl group, the modified peptide shows high permeability.
     We used Caco-2 cells to screen compounds for their permeability characteristics and P-glycoprotein interactions on Bi-directional transport method. Compounds such as R-8021, S-8021 and thiophenorphine were P-gp and MRP2 substrates,thus Agm, SP-8, RS-8021, C36D2 and HS-1 were not. This result explained lower bioavailability of R-8021 comparing to RS-8021.
     Fluorescence assay was used to screen 17 componds’interaction with P-gp. It shows that LSY-001, LSY-002, LSY-003 and LSY-004 upregulated intracellular calcein up to 18.4%, 27.2%, 18.5% and 30.5% respectively. The result indicated that these four compounds were P-gp inhibitors.
     The permeability characteristics of Traditional Chinese Medicine prescription Dang-gui Shao-yao San (DSS) were carried on Caco-2 cell monolayer. A new method was designed, in which the internal liquid obtained from everted gut sacs was added to Caco-2 cell incubation culture. By using this assay, it may overcome defects such as constituents complex and thick in Traditional Chinese Medicine prescription. The results indicated that Papp(A→B) of vanillic acid and albiflorin after compound filtering and the internal liquid obtained from everted gut sacs was significantly higher than that of the monomers or mixture of monomers in DSS. It shows that in the presence of other herb couple components, the influx permeability (A to B) of vanillic acid and albiflorin significantly increased promote transport. Otherwise, Compound A shows just the opposite result.
     In summary, we had successfully established integated rapid Drug-drug interactions with P-glycoprotein models. It could be used to screen compounds associated with P-glycoprotein in vitro, in vivo and in situ. The screening models of discovery compounds for their intestinal permeability characteristics and P-glycoprotein interactions are well established and used in pharmaceutical industries. Furthermore identification of compounds that are P-gp substrates, inhibitors, and inducers can aid drug candidate selection and optimization and offer reference to the research of other transport proteins.
引文
[1] Rodrigues AD.Preclinical drug metabolism in the age of high-throughput screening: an industrial perspective. Pharm Res, 1997, 14(11): 1504-1510.
    [2] Juliano RL and Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta, 1976, 455(1): 152-162.
    [3] Sauna ZE, Kim IW and Ambudkar SV. Genomics and the mechanism of P-glycoprotein (ABCB1). J Bioenerg Biomembr, 2007, 39(5-6): 481-487.
    [4] Grube M, Meyer zu Schwabedissen HE, Prager D, Haney J, Moritz KU, Meissner K, Rosskopf D, Eckel L, Bohm M, Jedlitschky G and Kroemer HK. Uptake of cardiovascular drugs into the human heart: expression, regulation, and function of the carnitine transporter OCTN2 (SLC22A5). Circulation, 2006, 113(8): 1114-1122.
    [5] Constable PA, Lawrenson JG, Dolman DE, Arden GB and Abbott NJ. P-Glycoprotein expression in human retinal pigment epithelium cell lines. Exp Eye Res, 2006, 83(1): 24-30.
    [6] Zhou SF. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica, 2008, 38(7-8): 802-832.
    [7] Kimura Y, Morita SY, Matsuo M and Ueda K. Mechanism of multidrug recognition by MDR1/ABCB1. Cancer Sci, 2007, 98(9): 1303-1310.
    [8] Sauna ZE and Ambudkar SV. About a switch: how P-glycoprotein (ABCB1) harnesses the energy of ATP binding and hydrolysis to do mechanical work. Mol Cancer Ther, 2007, 6(1): 13-23.
    [9] Callaghan R, Crowley E, Potter S and Kerr ID. P-glycoprotein: so many ways to turn it on. J Clin Pharmacol, 2008, 48(3): 365-378.
    [10] Leonard GD, Fojo T and Bates SE. The role of ABC transporters in clinical practice. Oncologist, 2003, 8(5): 411-424.
    [11] Litman T, Zeuthen T, Skovsgaard T and Stein WD. Competitive, non-competitive and cooperative interactions between substrates of P-glycoprotein as measured by its ATPase activity. Biochim Biophys Acta, 1997, 1361(2): 169-176.
    [12]张会杰,熊玉卿. P-糖蛋白药物外排作用的研究进展.中国临床药理学杂志, 2004, 20(4): 317-320.
    [13] Hunter HM, Pallis M, Seedhouse CH, Grundy M, Gray C and Russell NH. The expression of P-glycoprotein in AML cells with FLT3 internal tandem duplications is associated with reduced apoptosis in response to FLT3 inhibitors. Br J Haematol, 2004, 127(1): 26-33.
    [14] Ghauharali RI, Westerhoff HV, Dekker H and Lankelma J. Saturable P-glycoprotein kinetics assayed by fluorescence studies of drug efflux from suspended human KB8-5 cells. Biochim Biophys Acta, 1996, 1278(2): 213-222.
    [15] Rosenberg MF, Kamis AB, Callaghan R, Higgins CF and Ford RC. Three-dimensional structures of the mammalian multidrug resistance P-glycoprotein demonstrate major conformational changes in the transmembrane domains upon nucleotide binding. J Biol Chem, 2003, 278(10): 8294-8299.
    [16] Sauna ZE, Smith MM, Muller M, Kerr KM and Ambudkar SV. The mechanism of action of multidrug-resistance-linked P-glycoprotein. J Bioenerg Biomembr, 2001, 33(6): 481-491.
    [17] Mertens-Talcott SU, De Castro WV, Manthey JA, Derendorf H and Butterweck V. Polymethoxylated flavones and other phenolic derivates from citrus in their inhibitory effects on P-glycoprotein-mediated transport of talinolol in Caco-2 cells. J Agric Food Chem, 2007, 55(7): 2563-2568.
    [18] Raad I, Terreux R, Richomme P, Matera EL, Dumontet C, Raynaud J and Guilet D. Structure-activity relationship of natural and synthetic coumarins inhibiting the multidrug transporter P-glycoprotein. Bioorg Med Chem, 2006, 14(20): 6979-6987.
    [19] Shitan N, Tanaka M, Terai K, Ueda K and Yazaki K. Human MDR1 and MRP1 recognize berberine as their transport substrate. Biosci Biotechnol Biochem, 2007, 71(1): 242-245.
    [20] Hugger ED, Novak BL, Burton PS, Audus KL and Borchardt RT. A comparison of commonly used polyethoxylated pharmaceutical excipients on their ability to inhibit P-glycoprotein activity in vitro. J Pharm Sci, 2002, 91(9): 1991-2002.
    [21] Hugger ED, Audus KL and Borchardt RT. Effects of poly(ethyleneglycol) on efflux transporter activity in Caco-2 cell monolayers. J Pharm Sci, 2002, 91(9): 1980-1990.
    [22] Arima H, Yunomae K, Hirayama F and Uekama K. Contribution of P-glycoprotein to the enhancing effects of dimethyl-beta-cyclodextrin on oral bioavailability of tacrolimus. J Pharmacol Exp Ther, 2001, 297(2): 547-555.
    [23] He L and Liu GQ. Effects of various principles from Chinese herbal medicine on rhodamine123 accumulation in brain capillary endothelial cells. Acta Pharmacol Sin, 2002, 23(7): 591-596.
    [24]吉兆宁,刘国卿. P-糖蛋白介导多药耐药性的逆转.中国临床药理学与治疗学, 2002, 7(03): 269-272.
    [25] Kamei J, Hirano S, Miyata S, Saitoh A and Onodera K. Effects of first- and second-generation histamine-H1-receptor antagonists on the pentobarbital-induced loss of the righting reflex in streptozotocin-induced diabetic mice. J Pharmacol Sci, 2005, 97(2): 266-272.
    [26] Krishna R and Mayer LD. Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci, 2000, 11(4): 265-283.
    [27] Wandel C, Kim RB, Kajiji S, Guengerich P, Wilkinson GR and Wood AJ. P-glycoprotein and cytochrome P-450 3A inhibition: dissociation of inhibitory potencies. Cancer Res, 1999, 59(16): 3944-3948.
    [28] Lum BL and Gosland MP. MDR expression in normal tissues. Pharmacologic implications for the clinical use of P-glycoprotein inhibitors. Hematol Oncol Clin North Am, 1995, 9(2): 319-336.
    [29] Dantzig AH, de Alwis DP and Burgess M. Considerations in the design and development of transport inhibitors as adjuncts to drug therapy. Adv Drug Deliv Rev, 2003, 55(1): 133-150.
    [30]李传刚,李墨林,周琴,舒晓宏,刘用楫,韩国柱.β-榄香烯对人膀胱癌BIU-87细胞磷脂膜功能及Bcl-2表达的影响.中草药, 2007, 38(6): 886-889.
    [31]蔡宇,余绍蕾,陈冰.中药活性成分逆转K562/ADM耐药性聚类模糊研究.中国药学杂志, 2006, 41(13): 971-973.
    [32] Limtrakul P, Khantamat O and Pintha K. Inhibition ofP-glycoprotein function and expression by kaempferol and quercetin. J Chemother, 2005, 17(1): 86-95.
    [33] Engdal S and Nilsen OG. Inhibition of P-glycoprotein in Caco-2 cells: effects of herbal remedies frequently used by cancer patients. Xenobiotica, 2008, 38(6): 559-573.
    [34] Bansal T, Awasthi A, Jaggi M, Khar RK and Talegaonkar S. Pre-clinical evidence for altered absorption and biliary excretion of irinotecan (CPT-11) in combination with quercetin: possible contribution of P-glycoprotein. Life Sci, 2008, 83(7-8): 250-259.
    [35] Hellum BH and Nilsen OG. In vitro inhibition of CYP3A4 metabolism and P-glycoprotein-mediated transport by trade herbal products. Basic Clin Pharmacol Toxicol, 2008, 102(5): 466-475.
    [36] Adams M, Mahringer A, Kunert O, Fricker G, Efferth T and Bauer R. Cytotoxicity and p-glycoprotein modulating effects of quinolones and indoloquinazolines from the Chinese herb Evodia rutaecarpa. Planta Med, 2007, 73(15): 1554-1557.
    [37] Marchetti S, Mazzanti R, Beijnen JH and Schellens JH. Concise review: Clinical relevance of drug drug and herb drug interactions mediated by the ABC transporter ABCB1 (MDR1, P-glycoprotein). Oncologist, 2007, 12(8): 927-941.
    [38] Di YM, Li CG, Xue CC and Zhou SF. Clinical drugs that interact with St. John's wort and implication in drug development. Curr Pharm Des, 2008, 14(17): 1723-1742.
    [39] Nowack R. Review article: cytochrome P450 enzyme, and transport protein mediated herb-drug interactions in renal transplant patients: grapefruit juice, St John's Wort - and beyond! Nephrology (Carlton), 2008, 13(4): 337-347.
    [40] DuBuske LM. The role of P-glycoprotein and organic anion-transporting polypeptides in drug interactions. Drug Saf, 2005, 28(9): 789-801.
    [41] Dasgupta A. Herbal supplements and therapeutic drug monitoring: focus on digoxin immunoassays and interactions with St. John's wort. Ther Drug Monit, 2008, 30(2): 212-217.
    [42] Westphal K, Weinbrenner A, Zschiesche M, Franke G, Knoke M, Oertel R, Fritz P, von Richter O, Warzok R, Hachenberg T, Kauffmann HM, Schrenk D, Terhaag B, Kroemer HK and Siegmund W. Induction of P-glycoprotein by rifampin increases intestinalsecretion of talinolol in human beings: a new type of drug/drug interaction. Clin Pharmacol Ther, 2000, 68(4): 345-355.
    [43] Lee VH, Sporty JL and Fandy TE. Pharmacogenomics of drug transporters: the next drug delivery challenge. Adv Drug Deliv Rev, 2001, 50 Suppl 1: S33-40.
    [44] Kullak-Ublick GA, Ismair MG, Stieger B, Landmann L, Huber R, Pizzagalli F, Fattinger K, Meier PJ and Hagenbuch B. Organic anion-transporting polypeptide B (OATP-B) and its functional comparison with three other OATPs of human liver. Gastroenterology, 2001, 120(2): 525-533.
    [45] Inui K, Terada T, Masuda S and Saito H. Physiological and pharmacological implications of peptide transporters, PEPT1 and PEPT2. Nephrol Dial Transplant, 2000, 15 Suppl 6: 11-13.
    [46] Konig J, Cui Y, Nies AT and Keppler D. Localization and genomic organization of a new hepatocellular organic anion transporting polypeptide. J Biol Chem, 2000, 275(30): 23161-23168.
    [47] Kusuhara H, Suzuki H and Sugiyama Y. The role of P-glycoprotein and canalicular multispecific organic anion transporter in the hepatobiliary excretion of drugs. J Pharm Sci, 1998, 87(9): 1025-1040.
    [48] Borst P, Evers R, Kool M and Wijnholds J. The multidrug resistance protein family. Biochim Biophys Acta, 1999, 1461(2): 347-357.
    [49] Greiner B, Eichelbaum M, Fritz P, Kreichgauer HP, von Richter O, Zundler J and Kroemer HK. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Invest, 1999, 104(2): 147-153.
    [50] Masuda S, Uemoto S, Hashida T, Inomata Y, Tanaka K and Inui K. Effect of intestinal P-glycoprotein on daily tacrolimus trough level in a living-donor small bowel recipient. Clin Pharmacol Ther, 2000, 68(1): 98-103.
    [51] Hirohashi T, Suzuki H, Chu XY, Tamai I, Tsuji A and Sugiyama Y. Function and expression of multidrug resistance-associated protein family in human colon adenocarcinoma cells (Caco-2). J Pharmacol Exp Ther, 2000, 292(1): 265-270.
    [52] Jonker JW, Smit JW, Brinkhuis RF, Maliepaard M, Beijnen JH, Schellens JH and Schinkel AH. Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. JNatl Cancer Inst, 2000, 92(20): 1651-1656.
    [53] Ayrton A and Morgan P. Role of transport proteins in drug absorption, distribution and excretion. Xenobiotica, 2001, 31(8-9): 469-497.
    [54] Balimane PV, Patel K, Marino A and Chong S. Utility of 96 well Caco-2 cell system for increased throughput of P-gp screening in drug discovery. Eur J Pharm Biopharm, 2004, 58(1): 99-105.
    [55] Smalley J, Kadiyala P, Xin B, Balimane P and Olah T. Development of an on-line extraction turbulent flow chromatography tandem mass spectrometry method for cassette analysis of Caco-2 cell based bi-directional assay samples. J Chromatogr B Analyt Technol Biomed Life Sci, 2006, 830(2): 270-277.
    [56] Artursson P and Karlsson J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun, 1991, 175(3): 880-885.
    [57] Hidalgo IJ, Raub TJ and Borchardt RT. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology, 1989, 96(3): 736-749.
    [58] Hidalgo IJ and Borchardt RT. Transport of bile acids in a human intestinal epithelial cell line, Caco-2. Biochim Biophys Acta, 1990, 1035(1): 97-103.
    [59] Walle UK, Galijatovic A and Walle T. Transport of the flavonoid chrysin and its conjugated metabolites by the human intestinal cell line Caco-2. Biochem Pharmacol, 1999, 58(3): 431-438.
    [60] Barta CA, Sachs-Barrable K, Feng F and Wasan KM. Effects of monoglycerides on P-glycoprotein: modulation of the activity and expression in Caco-2 cell monolayers. Mol Pharm, 2008, 5(5): 863-875.
    [61] Yoo HH, Lee M, Lee MW, Lim SY, Shin J and Kim DH. Effects of Schisandra lignans on P-glycoprotein-mediated drug efflux in human intestinal Caco-2. Planta Med, 2007, 73(5): 444-450.
    [62] Weiss J, Dormann SM, Martin-Facklam M, Kerpen CJ, Ketabi-Kiyanvash N and Haefeli WE. Inhibition of P-glycoprotein by newer antidepressants. J Pharmacol Exp Ther, 2003, 305(1): 197-204.
    [63] Zhu HJ, Wang JS, Markowitz JS, Donovan JL, Gibson BB, Gefroh HA and Devane CL. Characterization of P-glycoprotein inhibition by major cannabinoids from marijuana. J Pharmacol Exp Ther, 2006, 317(2): 850-857.
    [64] Timo Korjamo, Paavo Honkakoski, Marjo-Riitta Toppinen, Sanna Niva, Absorption properties and P-glycoprotein activity of modified Caco-2 cell lines. J Pharm Sci, 2005,26(6): 266-279.
    [65] Naomi Mizuno, Takuro Niwa, Yoshihisa Yotsumoto, Yuichi Sugiyama.Impact of Drug Transporter Studies on Drug Discovery and Development. Pharmacol Rev, 2003,55(6):425–461.
    [66] Praveen V. Balimane, Saeho Chong.A combined cell based approach to identify P-glycoproteinsubstrates and inhibitors in a single assay. Int J Phar.2005 30 (1) 80–88.
    [67] You J, LiQP, Yu YW, et al.Absorp tion of zedoary oil in rat intestine using in situ single pass perfusion model[ J ]. Acta Pharm Sin , 2004, 39: 849 -853.
    [68] Adachi Y, Suzuki H and Sugiyama Y. Comparative studies on in vitro methods for evaluating in vivo function of MDR1 P-glycoprotein. Pharm Res, 2001, 18(12): 1660-1668.
    [69] Dagenais C, Graff CL and Pollack GM. Variable modulation of opioid brain uptake by P-glycoprotein in mice. Biochem Pharmacol, 2004, 67(2): 269-276.
    [70] Schuetz EG, Umbenhauer DR, Yasuda K, Brimer C, Nguyen L, Relling MV, Schuetz JD and Schinkel AH. Altered expression of hepatic cytochromes P-450 in mice deficient in one or more mdr1 genes. Mol Pharmacol, 2000, 57(1): 188-197.
    [71] Djuv A and Nilsen OG. Caco-2 cell methodology and inhibition of the P-glycoprotein transport of digoxin by Aloe vera juice. Phytother Res, 2008, 22(12): 1623-1628.
    [72] Inokuchi H, Takei T, Aikawa K and Shimizu M. The effect of hyperosmosis on paracellular permeability in Caco-2 cell monolayers. Biosci Biotechnol Biochem, 2009, 73(2): 328-334.
    [73] Guan S, Chen X and Huang M. Caco-2 cells model an effective tool for the research of drug absorption. Chin Pharmacol Bull, 2004, 20(6): 609-614.
    [74] Foger F, Kopf A, Loretz B, Albrecht K and Bernkop-Schnurch A. Correlation of in vitro and in vivo models for the oral absorption ofpeptide drugs. Amino Acids, 2008, 35(1): 233-241.
    [75] Lalloo AK, Luo FR, Guo A, Paranjpe PV, Lee SH, Vyas V, Rubin E and Sinko PJ. Membrane transport of camptothecin: facilitation by human P-glycoprotein (ABCB1) and multidrug resistance protein 2 (ABCC2). BMC Med, 2004, 2: 16.
    [76] von Richter O, Glavinas H, Krajcsi P, Liehner S, Siewert B and Zech K. A novel screening strategy to identify ABCB1 substrates and inhibitors. Naunyn Schmiedebergs Arch Pharmacol, 2009, 379(1): 11-26.
    [77] Tan W, Chen H, Zhao J, Hu J and Li Y. A study of intestinal absorption of bicyclol in rats: active efflux transport and metabolism as causes of its poor bioavailability. J Pharm Pharm Sci, 2008, 11(3): 97-105.
    [78] Anderle P, Niederer E, Rubas W, Hilgendorf C, Spahn-Langguth H, Wunderli-Allenspach H, Merkle HP and Langguth P. P-Glycoprotein (P-gp) mediated efflux in Caco-2 cell monolayers: the influence of culturing conditions and drug exposure on P-gp expression levels. J Pharm Sci, 1998, 87(6): 757-762.
    [79]黄程辉,谢兆霞,秦群,林秀梅.拮新康逆转K562/A02细胞多药耐药的机理研究.湖南中医学院学报, 2004, 24(1): 7-10.
    [80] Biedler JL and Riehm H. Cellular resistance to actinomycin D in Chinese hamster cells in vitro: cross-resistance, radioautographic, and cytogenetic studies. Cancer Res, 1970, 30(4): 1174-1184.
    [81] Tang XQ, Bi H, Feng JQ and Cao JG. Effect of curcumin on multidrug resistance in resistant human gastric carcinoma cell line SGC7901/VCR. Acta Pharmacol Sin, 2005, 26(8): 1009-1016.
    [82] Volm M. Multidrug resistance and its reversal. Anticancer Res, 1998, 18(4C): 2905-2917.
    [83] Roy JN, Barama A, Poirier C, Vinet B and Roger M. Cyp3A4, Cyp3A5, and MDR-1 genetic influences on tacrolimus pharmacokinetics in renal transplant recipients. Pharmacogenet Genomics, 2006, 16(9): 659-665.
    [84] Chen J and Raymond K. Roles of rifampicin in drug-drug interactions: underlying molecular mechanisms involving the nuclear pregnane X receptor. Ann Clin Microbiol Antimicrob, 2006, 5: 3.
    [85] Shirasaka Y, Kawasaki M, Sakane T, Omatsu H, Moriya Y, Nakamura T, Sakaeda T, Okumura K, Langguth P and Yamashita S. Induction of human P-glycoprotein in Caco-2 cells: development of a highly sensitive assay system for P-glycoprotein-mediated drug transport. Drug Metab Pharmacokinet, 2006, 21(5): 414-423.
    [86] Fenner KS, Troutman MD, Kempshall S, Cook JA, Ware JA, Smith DA and Lee CA. Drug-drug interactions mediated through P-glycoprotein: clinical relevance and in vitro-in vivo correlation using digoxin as a probe drug. Clin Pharmacol Ther, 2009, 85(2): 173-181.
    [87] Barthe L, Woodley J and Houin G. Gastrointestinal absorption of drugs: methods and studies. Fundam Clin Pharmacol, 1999, 13(2): 154-168.
    [88] Kilic FS, Batu O, Sirmagul B, Yildirim E and Erol K. Intestinal absorption of digoxin and interaction with nimodipine in rats. Pol J Pharmacol, 2004, 56(1): 137-141.
    [89] Berruet N, Sentenac S, Auchere D, Gimenez F, Farinotti R and Fernandez C. Effect of efavirenz on intestinal p-glycoprotein and hepatic p450 function in rats. J Pharm Pharm Sci, 2005, 8(2): 226-234.
    [90] Varma MV, Kapoor N, Sarkar M and Panchagnula R. Simultaneous determination of digoxin and permeability markers in rat in situ intestinal perfusion samples by RP-HPLC. J Chromatogr B Analyt Technol Biomed Life Sci, 2004, 813(1-2): 347-352.
    [91] Varma MV and Panchagnula R. Prediction of in vivo intestinal absorption enhancement on P-glycoprotein inhibition, from rat in situ permeability. J Pharm Sci, 2005, 94(8): 1694-1704.
    [92] Xu YA, Fan G, Gao S and Hong Z. Assessment of intestinal absorption of vitexin-2''-o-rhamnoside in hawthorn leaves flavonoids in rat using in situ and in vitro absorption models. Drug Dev Ind Pharm, 2008, 34(2): 164-170.
    [93] Sababi M, Borga O and Hultkvist-Bengtsson U. The role of P-glycoprotein in limiting intestinal regional absorption of digoxin in rats. Eur J Pharm Sci, 2001, 14(1): 21-27.
    [94] Koda Y, Shiotani K, Toth I, Tsuda Y, Okada Y and Blanchfield JT. Comparison of the in vitro apparent permeability and stability of opioid mimetic compounds with that of the native peptide. BioorgMed Chem Lett, 2007, 17(7): 2043-2046.
    [95] Burton PS, Conradi RA, Ho NF, Hilgers AR and Borchardt RT. How structural features influence the biomembrane permeability of peptides. J Pharm Sci, 1996, 85(12): 1336-1340.
    [96] Wu S, Campbell C, Koda Y, Blanchfield JT and Toth I. Investigation of the route of absorption of lipid and sugar modified leu-enkephalin analogues and their enzymatic stability using the caco-2 cell monolayer system. Med Chem, 2006, 2(2): 203-211.
    [97] Chua HL, Jois S, Sim MK and Go ML. Transport of angiotensin peptides across the Caco-2 monolayer. Peptides, 2004, 25(8): 1327-1338.
    [98]阎平,谢剑炜.高效液相色谱法测定盐酸噻吩诺啡有关物质的方法研究.分析试验室, 2006, 25(12): 8-10.
    [99]雍政,颜玲娣,周培岚,温泉,颜慧,宫泽辉.噻吩诺啡强镇痛和低依赖药理学特性与其激动中枢阿片受体的关系.中国药理学与毒理学杂志, 2008, 22(4): 257-262.
    [100] Hu M, Chen J, Zhu Y, Dantzig AH, Stratford RE, Jr. and Kuhfeld MT. Mechanism and kinetics of transcellular transport of a new beta-lactam antibiotic loracarbef across an intestinal epithelial membrane model system (Caco-2). Pharm Res, 1994, 11(10): 1405-1413.
    [101] Sun H and Pang KS. Permeability, transport, and metabolism of solutes in Caco-2 cell monolayers: a theoretical study. Drug Metab Dispos, 2008, 36(1): 102-123.
    [102]杨乔.当归芍药散治疗作用的研究进展.医学综述, 2008, 14(10): 1545-1547.
    [103] Butterweck V and Derendorf H. Potential of pharmacokinetic profiling for detecting herbal interactions with drugs. Clin Pharmacokinet, 2008, 47(6): 383-397.
    [104] Yang XX, Hu ZP, Duan W, Zhu YZ and Zhou SF. Drug-herb interactions: eliminating toxicity with hard drug design. Curr Pharm Des, 2006, 12(35): 4649-4664.
    [105] Hu Z, Yang X, Ho PC, Chan SY, Heng PW, Chan E, Duan W, Koh HL and Zhou S. Herb-drug interactions: a literature review. Drugs, 2005, 65(9): 1239-1282.
    [1] Sauna ZE, Kim IW, Ambudkar SV. Genomics and the mechanism of P-glycoprotein (ABCB1) [J]. J Bioenerg Biomembr, 2007, 39(5-6): 481-487.
    [2] Grube M, Meyer zu Schwabedissen HE, Pr?ger D, Uptake of cardiovascular drugs into the human heart: expression, regulation, and function of the carnitine transporter OCTN2 (SLC22A5) [J]. Circulation, 2006, 113(8): 1114-1122.
    [3] Constable PA, Lawrenson JG, Dolman DE, et al. P-Glycoprotein expression in human retinal pigment epithelium cell lines [J]. Exp Eye Res, 2006, 83(1):24-30.
    [4] Zhou SF. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition [J]. Xenobiotica, 2008, 38(7-8): 802-832.
    [5] Kimura Y, Morita SY, Matsuo M, et al. Mechanism of multidrug recognition by MDR1/ABCB1 [J]. Cancer Sci, 2007, 98(9):1303-1310.
    [6] Sauna ZE, Ambudkar SV. About a s witch: how P-glycoprotein (ABCB1) harnesses the energy of ATP binding and hydrolysis to do mechanical work [J]. Mol Cancer Ther, 2007, 6(1):13-23.
    [7] Callaghan R, Crowley E, Potter S, et al. P-glycoprotein: so many ways to turn it on [J]. J Clin Pharmacol, 2008, 48(3): 365-378.
    [8] Litman T, Zeuthen T, Skovsgaard T, et al. Competitive, non-competitive and cooperative interactions between substrates of P-glycoprotein as measured by its ATPase activity[J]. Biochim Biophys Acta, 1997, 1361(2): 169-176.
    [9] Hunter HM, Pallis M, Seedhouse CH, et al. The expression of P-glycoprotein in AML cells with FLT3 internal tandem duplications is associated with reduced apoptosis in response to FLT3 inhibitors [J]. Br J Haematol, 2004, 127(1): 26-33.
    [10]张会杰,熊玉卿. P-糖蛋白药物外排作用的研究进展[J].中国临床药理学杂志, 2004, 20(4): 317-320.
    [11] Ikeda R, Che XF, Yamaguchi T, et al. Cepharanthine potently enhances the sensitivity of anticancer agents in K562 cells [J]. Cancer Sci, 2005, 96(6): 372-376.
    [12] González-Coloma A, Guada?o A, de Inés C, et al. Selective action of acetogenin mitochondrial complex I inhibitors[J]. Z Naturforsch [C], 2002, 57(11-12): 1028-1034.
    [13] Rosenberg MF ,Kamis AB ,Collaghan R , et al .Three dimensional structures of the mammalian multidrug resistance p-glycoprotein demonstrate major conformational changes in the transmembrane domains upon nucleotide binding [J]. J Biol Chem, 2003, 278 (11): 8294-8299
    [14] Constantinides PP, Wasan KM. Lipid formulation strategies for enhancing intestinal transport and absorption of P-glycoprotein (P-gp) substrate drugs: in vitro/invivo case studies[J]. J Pharm Sci, 2007, 96(2): 235-248.
    [15]李传刚,李墨林,周琴,等.β-榄香烯对人膀胱癌BIU-87细胞磷脂膜功能及Bcl-2表达的影响[J].中草药, 2007, 38(6): 886-889.
    [16] Yang XX, Hu ZP, Duan W, et al. Drug-herb interactions: eliminating toxicity with hard drug design [J]. Curr Pharm Des, 2006, 12(35): 4649-4664.
    [17] Komoto C, Nakamura T, Yamamori M, et al. Reversal effects of Ca2+ antagonists on multidrug resistance via down-regulation of MDR1 mRNA[J]. Kobe J Med Sci, 2008, 53(6): 355-363.
    [18] Dixit SG, Zingarelli B, Buckley DJ, et al. Nitric oxide mediates increased P-glycoprotein activity in interferon-{gamma}-stimulated human intestinal cells [J]. Am J Physiol Gastrointest Liver Physiol, 2005, 288(3): G533-540.
    [19]何娟,刘晓磊,彭文兴. P-糖蛋白介导的肿瘤多药耐药逆转机制研究进展[J].中国药房, 2006, 17(3): 218-220.
    [20] Zibell G, Unkrüer B, Pekcec A, et al. Prevention of seizure-induced up-regulation of endothelial P-glycoprotein by COX-2 inhibition [J]. Neuropharmacology, 2009, 56(5): 849-855.
    [21] Limtrakul P, Khantamat O, Pintha K. Inhibition of P-glycoprotein function and expression by kaempferol and quercetin[J]. J Chemother, 2005, 17(1): 86-95.
    [22] Engdal S, Nilsen OG. Inhibition of P-glycoprotein in Caco-2 cells: effects of herbal remedies frequently used by cancer patients[J]. Xenobiotica, 2008, 38(6): 559-573.
    [23] Bansal T, Awasthi A, Jaggi M, et al. Pre-clinical evidence for altered absorption and biliary excretion of irinotecan (CPT-11) in combination with quercetin: possible contribution of P-glycoprotein[J]. Life Sci, 2008, 83(7-8): 250-259.
    [24] Hellum BH, Nilsen OG. In vitro inhibition of CYP3A4 metabolism and P-glycoprotein-mediated transport by trade herbal products [J]. Basic Clin Pharmacol Toxicol, 2008, 102(5): 466-475.
    [25] Adams M, Mahringer A, Kunert O, et al. Cytotoxicity and p-glycoprotein modulating effects of quinolones and indoloquinazolines from the Chinese herb Evodia rutaecarpa [J]. Planta Med, 2007, 73(15): 1554-1557.
    [26]蔡宇,余绍蕾,陈冰.中药活性成分逆转K562/ADM耐药性聚类模糊研究[J].中国药学杂志, 2006, 41(13): 971-973.
    [27] Lan K, He JL, Tian Y, et al. Intra-herb pharmacokinetics interaction between quercetin and isorhamentin [J]. Acta Pharmacol Sin, 2008, 29(11): 1376-1382.
    [28] Romiti N, Pellati F, Nieri P, et al. P-Glycoprotein inhibitory activity of lipophilic constituents of Echinacea pallida roots in a human proximal tubular cell line [J]. Planta Med, 2008, 74(3): 264-266.
    [29]高娜,茆俊卿,张育.中药逆转白血病多药耐药的研究进展[J].江苏中医药, 2007, 39(3): 60-62.
    [30]渡边由香.芍药甘草汤对人P-GP ATPase活性的抑制作用[J].国外医学中医中药分册, 2005, 27(5): 16.
    [31]杨国武,党琦,李新民.天佛参逆转K_(562)/ADM细胞株耐药性的作用及机制探讨[J].现代中西医结合杂志, 2002, 11(19): 1865-1867.
    [32]谢长生,周维顺,冯正权,等.复方三根制剂对MDR细胞株K562/ADR和K562/VCR逆转作用的研究[J].中国实验方剂学杂志, 2003, 9(4): 26-30.
    [33]黄程辉,谢兆霞,秦群,等.拮新康逆转K562/A02细胞多药耐药的机理研究[J].湖南中医学院学报, 2004, 24(1): 7-10.
    [34] Marchetti S, Mazzanti R, Beijnen JH, et al. Concise review: Clinical relevance of drug drug and herb drug interactions mediated by the ABCtransporter ABCB1 (MDR1, P-glycoprotein) [J]. Oncologist, 2007, 12(8): 927-941.
    [35] Di YM, Li CG, Xue CC, et al. Clinical drugs that interact with St. John's wort and implication in drug development [J]. Curr Pharm Des, 2008, 14(17): 1723-1742.
    [36] Nowack R. Review article: cytochrome P450 enzyme, and transport protein mediated herb-drug interactions in renal transplant patients: grapefruit juice, St John's Wort - and beyond [J]. Nephrology (Carlton), 2008, 13(4): 337-347.
    [37] DuBuske LM. The role of P-glycoprotein and organic anion-transporting polypeptides in drug interactions[J]. Drug Saf, 2005, 28: 789–801.
    [38] Dasgupta A. Herbal supplements and therapeutic drug monitoring: focus on digoxin immunoassays and interactions with St. John's wort [J]. Ther Drug Monit, 2008, 30(2): 212-217.
    [1] Yong Z,Yan LD,Zhou PL,Wen Q,Yan H,Gong ZH. Relationship between strong antinociception and low dependence of thienorphine and its actiVation fbrcentral opioid receptor[J]. Chin J Pharmacol Toxicol(中国药理学与毒理学杂志), 2008,22(4):257-262.
    [2] Yan P, Xie JW. Methodology of determination of thiophenorphine hydrochloride and its impurities by HPLC[J]. Chin J Analysis Laboratory(分析实验室), 2006,25(12):8-10.
    [3] Djuv A, Nilsen OG. Caco-2 cell methodology and inhibition of the P-glycoprotein transport of digoxin by Aloe vera juice [J]. Phytother Res, 2008, 22(12):1623-1628.
    [4] von Richter O, Glavinas H, Krajcsi P, Liehner S, Siewert B, Zech K. A novel screening strategy to identify ABCB1 substrates and inhibitors [J]. Naunyn Schmiedebergs Arch Pharmacol, 2009 , 379(1):11-26.
    [5] Tan W, Chen H, Zhao J, Hu J, Li Y. A study of intestinal absorption of bicyclol in rats: active efflux transport and metabolism as causes of its poor bioavailability [J]. J Pharm Pharm Sci, 2008, 11(3):97-105.
    [6] Roy JN, Barama A, Poirier C, Vinet B, Roger M. Cyp3A4, Cyp3A5, and MDR-1 genetic influences on tacrolimus pharmacokinetics in renal transplant recipients [J]. Pharmacogenet Genomics, 2006, 16(9):659-665.
    [7] Inokuchi H, Takei T, Aikawa K, Shimizu M. The effect of hyperosmosis on paracellular permeability in Caco-2 cell monolayers [J]. Biosci Biotechnol Biochem, 2009 , 73(2): 328-334.
    [8] Lalloo AK, Luo FR, Guo A, Paranjpe PV, Lee SH, Vyas V, et al. Lee SH, Membrane transport of camptothecin: facilitation by human P-glycoprotein (ABCB1) and multidrug resistance protein 2 (ABCC2) [J]. BMC Med, 2004, 2:16.
    [9] Chen J, Raymond K. Roles of rifampicin in drug-drug interactions: underlying molecular mechanisms involving the nuclear pregnane X receptor [J]. Ann Clin Microbiol Antimicrob, 2006, 5:3.
    [10] F?ger F, Kopf A, Loretz B, Albrecht K, Bernkop-Schnürch A. Correlation of in vitro and in vivo models for the oral absorption of peptide drugs [J]. Amino Acids, 2008, 35(1): 233-241.
    [11] Artursson P, Karlsson J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells[J]. Biochem Biophys Res Commun, 1991, 175(3): 880.
    [12] Hu M, Chen J, Zhu Y, Dantzig AH, Stratford RE Jr, Kuhfeld MT. Mechanism and kinetics of transcellular transport of a new beta-lactam antibiotic loracarbef across an intestinal epithelial membrane model system (Caco-2) [J]. Pharm Res, 1994,11(10):1405-1413.
    [13] Sun H, Pang KS. Permeability, transport, and metabolism of solutes in Caco-2 cell monolayers: a theoretical study [J]. Drug Metab Dispos, 2008, 36(1):102-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700