用户名: 密码: 验证码:
岷江上游干旱河谷区土壤质量评价及侵蚀特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤的理化性质是影响土壤肥力的内在条件和综合反映土壤质量的重要组成部分,而土地利用管理是影响土壤性质变化的主要因素。深入了解不同土地利用方式对土壤物理化学性质的影响,是合理利用土地资源,改进土地利用方式,发展可持续农业的前提,也是生态脆弱区植被恢复的关键。本研究采用野外调查采样,实地放水冲刷和室内测定分析的试验方法,以岷江上游干旱河谷区不同土地利用类型和典型小流域坡面土壤作为研究对象,研究了不同土地利用方式下土壤肥力特征和人为活动对土壤质量的影响,探讨了该区域坡面径流侵蚀产沙的机理和养分随径流流失的影响因素,对于深入了解该地区土壤质量的变化规律,进行水土流失治理以及开展农业可持续发展具有重要的指导意义。主要研究结果如下:
     1.岷江上游干旱河谷区土层普遍较薄且富含砾石;土壤的潜在肥力较高,有效肥力偏低,其中有机质,全氮和全钾含量均达到高肥力水平,自然土壤中有机质和全氮含量比耕作土壤高,磷素则供应不足,耕地必须通过施肥提高磷含量以满足植物生长需求;土壤多呈中性偏碱性,且具有逐渐碱化的趋势;不同土地利用方式之间土壤理化性质(有机质、全氮、全磷、全钾、碱解氮、速效磷、速效钾含量等)均表现为差异显著(P<0.01)。土壤质量综合指数(IQ)表现为灌木林地(64.79%)>耕地(46.82%)>荒草地(43.65%)>裸地(40%)>园地(25.35%),土壤退化指数(ID)表现为园地(77.76%)>耕地(43.2%)>荒草地(14.85%)>灌木林地(0)>裸地(-26.07%)。利用土壤质量综合指数(IQ)与土壤退化指数(ID)2种定量化方法进行土壤质量评价结果不完全一致,表明这两种指数不能等效地评价该区不同土地利用类型下的土壤质量,相比而言,土壤质量综合指数因为考虑了选择指标的权重被认为是评价本研究区土壤质量状况的一种更合理方法。
     2.岷江上游干旱河谷区土壤质地主要为粉壤土、壤土和砂质壤土3种类型,所占比例分别为74.5%,18.6%和5.3%;土壤颗粒体积分形维数在2.5011~2.7825之间,其中粉壤土>壤土>砂壤土;耕地较原生植被灌木林地的土壤颗粒体积分形维数大,相同土地利用方式下分形维数随海拔降低而下降;土壤颗粒体积分形维数与黏粒(<0.002mm)和粉粒(0.002~0.05mm)含量以及土壤全钾含量呈极显著正相关关系,与砂粒(>0.05mm)含量呈极显著负相关关系,而与土壤有机质,全氮,全磷,速效磷和速效钾含量的相关性不显著。土壤质地越粗分形维数越小,土壤质地越细分形维数越大,土壤粒径分布分形维数可以作为表征土壤结构的重要指标。
     3.采用野外实地放水冲刷的试验方法,对岷江上游干旱河谷区龙坝沟流域不同土地利用方式(灌木林地、荒草地、耕地和裸地)下土壤抗冲性进行测试研究,分析土壤侵蚀产沙相关因素,结果表明:不同土地利用方式下放水冲刷试验径流量、径流含沙量存在较大差异,径流含沙量随着产流时间的延长,呈现规律性递减趋势。荒草地和小麦耕地的径流含沙量较小,且能在最短时间内趋于稳定,而裸地的含沙量在整个冲刷过程中最大,趋于稳定的时间滞后于其他几种土地利用方式。土壤抗冲系数均随冲刷时间延长呈波状上升变化趋势;土壤抗冲性从大到小依次为:荒草地、小麦耕地、灌木林地、玉米耕地、裸地;土壤的颗粒组成与土壤抗冲性能具有显著相关关系,土壤抗冲系数与粉粒体积分数呈显著负相关(相关系数为-0.992,P<0.01),与砂粒体积分数呈显著正相关(相关系数为0.925,P<0.01),与黏粒含量呈负相关关系,相关系数为-0.796,与土壤有机质含量关系不显著。
     4.岷江上游是我国水能资源丰富的地区之一,也是四川省发展特色干旱河谷农业的重要基地,水电站工程建设、陡坡开垦过程中,严重扰动了原有的土壤结构层次,地面的植被被破坏,从而造成了严重的新增水土流失,人为加速了该地区土壤侵蚀过程。本研究以径流侵蚀产沙为突破口,采用野外实地人工放水冲刷试验方法,对该区域开发建设中人为扰动坡面侵蚀产沙规律进行了模拟研究,结果表明:坡度为5°、10°和15°条件下,流量为2L·min~(-1)、3L·min~(-1)、4L·min~(-1)和5L·min~(-1)时径流量(W)与放水流量(Q)呈线性关系,关系式为W=31.999Q-46.497,相关系数r=0.9466,产沙量(Ms)与放水流量(Q)呈对数函数关系,其关系式为Ms=1137.657Ln(Q)+524.252,相关系数r=0.9535;坡度是影响原生地面径流产沙量的最主要因素,径流量、产沙量与坡度呈线性相关,随着坡度增大,径流量和产沙量都在线性增加;产沙量与径流量关系相当密切,呈直线相关关系变化,即随着径流量的增大,产沙量也在增大,其关系式为Ms=0.028W+0.343,相关系数r=0.9589。对人为扰动地面侵蚀产沙规律进行了模拟研究,为有效防止区域水土流失提供基础的理论数据,对于该区农业开发和生态建设有着重要的科学价值与现实意义。
     5.坡面径流是土壤泥沙和营养元素流失的动力和载体,冲刷过程中,径流首先选择性的携带土壤细颗粒,导致泥沙中细颗粒的增加,黏粒含量增多,与原地土壤相比,泥沙中细颗粒特别是黏粒含量显著增加,导致泥沙黏粒的富集;土壤有机质和全氮多与土壤细颗粒结合在一起,在径流冲刷过程中,泥沙黏粒的富集就会导致泥沙有机质和全氮的富集;坡度直接或者间接地影响着径流流速和侵蚀模数,从而对泥沙养分的富集产生着显著的影响;土壤中钾素分为难溶性和易溶性两种类型,在径流冲刷过程中,一部分钾溶解在径流液中,一部分被吸附保留在泥沙中,泥沙中的速效钾含量较原地土壤中的速效钾含量低,但不同坡度和放水流量条件下表现出和有机质,全氮一样的富集规律,即坡度相同,放水流量(冲刷强度)增大,泥沙速效钾的富集率有一定的减少,放水流量不变,随着坡度的增加,泥沙速效钾富集率均有减小的趋势。
The physical and chemical property of the soil is an important part of the internalcondition of the influence of soil fertility and integrated to reflect soil quality. Land usemanagement is the direct and profound factors that influence the soil properties.Understanding of the influence of land use management to the soil physical and chemicalproperty is the precondition to improve land use, development of sustainable agriculturepremise and is the key to the recovery of the ecologically fragile vegetation and lies. In thisstudy, the method of field investigation, sampling, field water erosion and indoor experimentwere used. The object of this research is the Minjiang River dry valley area of different landuse types and typical small watershed slopes. The soil fertility characteristics of differentland-use patterns and human activities on soil quality have been studied to explore the factorsaffecting the mechanism of the region runoff erosion and sediment and nutrient loss withrunoff. The main findings are listed as follows:
     1. The Minjiang River dry valley soil generally thin and rich gravel; higher potentialfertility of soil fertility is low effective, including organic matter, total nitrogen and totalpotassium content of high fertility levels in the natural soil organic matter and nitrogencontentcultivated soils, phosphorus inadequate supply of arable land must be increased byfertilization phosphorus content in order to meet the demand for plant growth; mostly neutralto slightly alkaline soil, and has alkalized gradually; physical and chemical properties of soilbetween the different land use patterns(organic matter, total nitrogen, total phosphorus, totalpotassium, available nitrogen, available phosphorus, available potassium, etc.) showed asignificant difference (P <0.01). Comprehensive index of soil quality performance for theshrub land (64.79%)> arable land (46.82%) of grassland (43.65%)> bare land (40%)> Corner(25.35%) and soil degradation in the performance of an index for the garden (77.76%)> arableland (43.2%)> the wasteland (14.85%)> shrub land (0)> bare land (-26.07%). Soil qualityindex (IQ) and soil degradation index (ID) quantitative method for soil quality evaluationresults are not totally consistent, indicating that these two indices can not be equivalent toevaluate the quality of the soil in the area of different land use types, In contrast, thecomprehensive index of soil quality because it takes into account the right of choice of indicators weight is considered a more reasonable way to evaluate the situation of the studyarea, soil quality.
     2. The Minjiang River dry valley soil texture is mainly silt loam, loam and sandy loamtypes. The proportion was74.5%,18.6%and5.3%, respectively. The soil particle fractaldimension of the body is between2.5011~2.7825, powder loam> loam> sandy loam. Arableland than the native vegetation filling the woodland soil particles volume integral are thefractal dimension, fractal dimension in the same land use reduces the downward trend withaltitude. Fractal dimension of soil particle volume fraction of clay (<0.002mm) and silt (0.002to0.05mm), volume fraction and soil potassium content was highly significant positivecorrelation with sand (>0.05mm), volume one hundred content showed a highly significantnegative correlation with soil organic matter, total nitrogen, total phosphorus, available P andK content did not reach significant level. More coarse soil texture points the smaller thefractal dimension and soil texture, the more segments the greater the dimension of soilparticle size distribution of fractal dimension can be used as an important indicator of thecharacterization of soil structure. The fractal dimension changes can be a goodcharacterization of the trend of changes in soil chemistry, physical properties, can also serveas a comprehensive indicator of the diagnosis of soil fertility and evaluation of soil structure.For understanding soil formation process and its evolution mechanism and so have importanttheoretical and practical significance.
     3. Different land uses so that the erosion tests runoff, runoff sediment concentration isquite different. However, the overall trend is the erosion over time, the runoff of a graduallyincreasing trend. Produce runoff bare land runoff, followed by shrubs and wheat farmland,grassland and maize cultivated land is the minimum. Runoff sediment concentration with theextension of the production flow time, showing the regularity of a decreasing trend. Grasslandand wheat farmland runoff sediment concentration is less and less time to stabilize, while thebare ground sediment throughout the erosion process and sediment concentration tends to astable time lag in several other land uses. Soil erosion resistance of extended wavy changewith the erosion of time, but all in all continues to meet scour the longer the soil impactresistance, the stronger the law. Native grassland, the greatest impact, followed by wheatfarmland, native bush forest, corn cropland, bare soil erosion resistance minimum. The size ofthe soil erosion resistance and soil silt content have very significant negative correlation,correlation coefficient-0.992; It was a significant positive correlation with sand content, thecorrelation coefficient of0.925; It was negatively correlated with clay content, the correlationcoefficient is-0.796; and soil organic matter content was not significant.
     4. Rainfall runoff is the Minjiang River dry valley area sediment production on the most important dynamic factor. The upper reaches of Minjiang River is rich in water resources inChina region, is also an important base for the Sichuan Development Features arid valleyagriculture, hydropower project construction on steep slopes in the reclamation process,serious disturbance original soil structure level, the ground vegetation is destroyed resulting inserious soil erosion in the new, artificially accelerate the process of soil erosion in the area.This study runoff erosion and sediment yield as a breakthrough, artificial Scouring field sitetest methods, development and construction in the area of human disturbance groundSEDIMENT simulation study results show that: the slope of5°,10°and15°conditions, theflow rate of2L·min~(-1),3L·min~(-1),4L·min~(-1)and5L·min~(-1)when runoff and drainage flow linearrelationship, the relationship is W=31.999Q-46.497, r=0.9466, sediment yield and watertraffic was a logarithmic function, its relation to Ms=1137.657Ln(Q)+524.252, r=0.9535;slope of the most important factors that affect the the native surface runoff sediment yield,runoff, sediment yield and the slope was linearly correlated, with slope increases runoff andsediment yield linear; sediment yield and runoff are all very close, was a linear correlationbetween changes with increasing runoff and sediment yield also increased its relationsformula Ms=0.028W+0.343, r=0.9589. Theory of human disturbance ground SEDIMENTsimulation study effectively prevents regional soil erosion data has important scientific valueand practical significance for the area of agricultural development and ecologicalconstruction.
     5. Runoff is the loss of soil sediment and soil nutrient elements of power and carrier.Therunoff in the slope transfer process is actually a process of interaction of runoff with surfacesoil particles in this process, runoff first selective carrying soil fine particles. Compared withthe in situ soil, sediment fine particles, especially clay content increased significantly, leadingto the enrichment of clay sediment. Soil organic matter and total multi-combination with finesoil particles, silt clay enrichment will lead to the enrichment of sediment organic matter andnitrogen in runoff from washing process. Sediment nutrient enrichment by the modulus ofrunoff velocity and erosion, runoff velocity and erosion modulus smaller sediment organicmatter and nitrogen enrichment of higher degree. Slope, directly or indirectly affect the flowrate of runoff and erosion modulus, and thus a significant impact on sediment nutrientenrichment. Divided into two types of insoluble and soluble soil K in runoff erosion process,part of the potassium is dissolved in the runoff solution, Part of adsorption remains in thesediment of potassium in the sediment compared with in situ soil available. The potassiumcontent is low, but under different slope and water flow conditions and organic matter, totalnitrogen enrichment patterns. The same slope, the water flow (washed intensity) increases,some reduction in the accumulation rate of sediment available K, constant water flow, with the increase of the slope, sediment potassium enrichment rate tends to decrease.
引文
张荣祖.1992.横断山区干旱河谷.北京:科学出版社:2~11
    庞学勇,包维楷,吴宁.2008.岷江上游干旱河谷气候特征及成因.长江流域资源与环境,17(1):46~53
    邓玉林,孟兆鑫,王玉宽,等.2008.岷江流域土壤侵蚀变化与治理对策研究.水土保持学报,10(5):21~22
    胡志斌,何兴元,江晓波.2004.岷江上游典型时期景观格局变化及驱动力初步分析.应用生态学报,15(10):17~18
    胡志斌,何兴元,李月辉.2006.岷江上游居民点分布格局及影响因子分析.辽宁工程技术大学学报.自然科学版,25(4):623~625
    胡志斌,何兴元,李月辉.2007.岷江上游地区人类活动强度及其特征.生态学杂志,26(4):539~543
    李爱农,周万村,江晓波.2003.遥感和GIS技术支持下的岷江上游15年土地利用/土地覆被动态变化研究.水土保持学报,17(4):153~156
    李丽光,何兴元,李秀珍.2004.岷江上游干旱河谷农林边界影响域的研究.应用生态学报,15(10):1804~1808
    李辉霞,周红艺.2009.岷江上游地区水土流失危险度评价.中国水土保持,10:22~25
    叶延琼,陈国阶,樊宏.2002.岷江上游脆弱生态环境刍论.长江流域资源与环境,11(4):383~387
    叶延琼,樊宏,陈国阶.2002.岷江上游土地退化及其防治对策.水土保持通报,22(6):56~70
    叶延琼,陈国阶,杨国定.2002.岷江上游生态环境问题及整治对策.重庆环境科学,24(1):2~5
    陈国阶,涂建军,樊宏.2006.岷江上游生态建设的理论与实践.重庆:西南师范大学出版社:1~32
    田茂洁.2011.横断山区干旱河谷小流域土壤特性的空间分异.水土保持研究,18(3):19~23
    黄雪菊,孙辉,唐亚.2007.黑水河干旱河谷沿程土壤物理参数梯度变化特征研究.四川环境,26(6):32~39
    刘斌,张仁绥,纪先桃.1990.岷江上游干旱河谷的水土流失现状和原因.四川农业大学学报,8(1):351~354
    陈祖明,任守贤.1992.岷江上游森林水文效应研究.地理学报,47(1):49~57
    李明森.1989.横断山区土壤区划.山地研究,7(z):38~45
    张一平,段泽新,窦军霞.2005.岷江上游干暖河谷与元江干热河谷的气候特征比较研究.长江流域资源与环境,14(1):77~82
    陈奇伯,王克勤,李艳梅.2003.金沙江干热河谷不同类型植被改良土壤效应研究.水土保持学报,17(2):67~113
    樊宏,张建平.2002.岷江上游半干旱河谷土地利甩/土地覆盖研究.中国沙漠,22(3):273~278
    关文彬,冶民生,马克明.2004.岷江干旱河谷植被分类及其主要类型.山地学报,22(6):679~686
    郭永明,汤宗祥.1996.岷江上游土壤生态环境问题与地学条件的关系.土壤农化通报,11(3):73~77
    包维楷,王春明.2000.岷江上游山地生态系统的退化机制.山地学报,18(1):57~62
    刘斌,张仁绥,纪先桃.1990.岷江上游干旱河谷的水土流失现状和原因.四川农业大学学报,8(1):351~354
    张建平,樊宏,叶延琼.2002.岷江上游土壤侵蚀及其防治对策.水土保持学报,16(5):19~22
    鲍文,丁德蓉,袁志忠.2004.岷江上游土壤生态环境问题及其防治对策.国土与自然资源研究,(2):48~49
    孙辉,唐亚,黄雪菊.2005.横断山区干旱河谷研究现状和发展方向.世界科技研究与发展,27(3):54~61
    鲁晓阳.1999.岷江上游生态环境治理对策探讨.四川环境,18(1):72~74
    李虎杰.2001.岷江上游生态环境建设与经济可持续发展.四川环境,(4):51~56
    伺锦峰,樊宏,叶延琼.2002.岷江上游生态重建的模式.前沿论坛,(5):35~37
    赵永华,刘耿.2011.岷江上游地区的生态环境问题研究.安徽农业科学,39(6):3508~3511
    梁云南.1990.岷江上游地区水土流失问题浅析.四川水利,11(5):29~33
    刘文彬.1994.岷江上游半干旱河谷灌丛的主要类型.山地研究,12(1):27~31
    唐家良,周麟,罗贵生.2009.岷江上游干旱河谷区阳坡土壤性质空间分异特征.山地学报,27(5):531~537
    柏松,黄成敏,唐亚.2008.岷江上游干旱河谷海拔梯度上的土壤发生特征.土壤,40(6):980~985
    郭晓鸣.2010.西部干旱河谷地区生态建设战略选择研究.http://wenku.baidu.com/view/a7d68666caaedd3383c4d351.html[2012-6-4]
    何毓蓉,张丹,张映翠.1999.金沙江干热河谷区云南土壤退化过程研究.土壤侵蚀与水土保持学报,5(4):1~9
    黄成敏,何毓蓉,张丹.2001.金沙江干热河谷典型区(云南省)土壤退化机理研究Ⅱ土壤水分与土壤退化长江流域资源与环境,10(6):578~584
    黄成敏,刘淑珍.1996.云南元谋干热河谷区土壤侵蚀对土壤肥力的影响.热带亚热带土壤科学,5(2):102~107
    孙辉,唐亚,陈克明.1999.固N植物篱防治坡耕地土壤侵蚀效果研究.水土保持通报,19(6):1~6
    汪媛媛,杨忠芳,余涛.2011.土壤质量评价研究进展.安徽农业科学,39(36):22617~22622,22657
    张心昱,陈利顶.2006.土壤质量评价指标体系与评价方法研究进展与展望.水土保持研究,13(3):30~34
    刘占峰,傅伯杰,刘国华.2006.土壤质量与土壤质量指标及其评价.生态学报,26(3):901~913
    熊东红,贺秀斌,周红艺.2005.土壤质量评价研究进展.世界科技研究与发展,27(1):71~75
    曹志洪.2000.继承传统土壤学成果促进现代土壤学发展.中国基础科学,(2):11~16
    王效举,龚子同.1997.红壤丘陵小区域水平上不同时段土壤质量变化的评价和分析.地理科学,17(2):141~148
    刘世梁,傅伯杰,陈利项.2003.两种土壤质量变化的定量评价方法比较.长江流域资源与环境,12(5):422~426
    赵锦梅,张德罡,刘长仲.等.2012.祁连山东段高寒地区土地利用方式对土壤性状的影响.生态学报,32(2):548~556
    许明祥,刘国彬,赵允格.等.2011.黄土丘陵区土地利用及环境因子对土壤质量指标变异性的影响.应用生态学报,22(2):409~417
    范建容,宫奎方,唐家良.2010.土地利用方式对西藏东部河谷山地土壤肥力性质的影响.地理研究,29(8):1528~1536
    侯鹏程.2009.土地利用方式的变化对土壤质量的影响—以现代农业生态观光区为例.安徽农业科学,37(15):7098~7100
    尹刚强,田大伦,方晰.等.2008.不同土地利用方式对湘中丘陵区土壤质量的影响.林业科学,44(8):9~15
    范建容.2010.土地利用方式对西藏东部河谷山地土壤肥力性质的影响.地理研究,29(8):70~79
    巩杰,陈利顶,傅伯杰.2004.黄土丘陵区小流域土地利用和植被恢复对土壤质量的影响,23(12):70~75
    刘占锋,傅伯杰,刘国华.等.2006.土壤质量与土壤质量指标及评价.生态学报,26(3):901~913
    苏永中,赵哈林.2003.科尔沁沙地不同土地利用和管理方式对土壤质量性状的影响.应用生态学报,14(10):1681~1686
    郜文军,王印传,陈飞,等.2008.小流域自然土壤与耕作土壤养分比较及影响因素分析.山地学报,26(5)632~637
    张鹏飞,田长彦,卞卫国,等.2004.克拉玛依农业开发区土壤质量评价指标的筛选.干旱区研究,21(2):165~170
    曹慧,孙辉,杨浩,等.2003.土壤酶活性及其对土壤质量的指示研究进展.应用与环境生物学报,9(1):105~109
    张华,张甘霖,漆志平,等.2003.热带地区农场尺度土壤质量现状的系统评价.土壤学报,40(2):186~193
    赵玉国,张甘霖,张华,等.2004.海南岛土壤质量系统评价与区域特征探析.中国农业生态学报,12(3):13~15
    刘世梁,傅伯杰,吕一河,等.2003.坡面土地利用方式与景观位置对土壤质量的影响.生态学报,23(3):414~420.
    郑昭佩,刘作新.2003.土壤质量及其评价.应用生态学报,14(1):131~134
    赵其国,孙波,张桃林.1997.土壤质量与持续环境Ⅰ:土壤质量的定义及评价方法.土壤,(3):113~120
    郭旭东,傅伯杰,陈利顶.2001.低山丘陵区土地利用方式对土壤质量地影响—以河北省遵化市为例.地理学报,56(4):447~455
    廖晓勇,陈治谏,刘邵权.2005.三峡库区小流域土地利用方式对土壤肥力的影响.生态环境,14(1):99~101
    高中贵,彭补拙,喻建华.2005.经济发达区土地利用变化对土壤性质的影响—以江苏省昆山市为例.自然资源学报,20(1):44~51
    刘晓冰,刑宝山,Herbert S J.2002.土壤质量及其评价指标.农业系统科学与综合研究,18(2):109~111
    水建国,柴锡周,张如良.2001.红壤坡地不同生态模式水土流失规律的研究.水土保持学报,15(2):33~36
    谢庭生,何英豪.2005.湘中紫色土丘岗区水土流失规律及土壤允许侵蚀量的研究.水土保持研究,12(1):87~90
    李德平,张玉梅,方继臣等.2001.研石山水土流失规律与防治措施的研究.水土保持研究,8(3):22~25
    彭培好,陈文德,彭俊生等.2004.川中丘陵区坡地防护林侵蚀产沙特征的研究.水土保持学报,18CS):39~42,53
    史东超,张金柱,郭索平.2003.太行山片麻岩区坡地水土流失规律研究.河北林果研究,18(1):13~19
    向万胜,梁称福,李卫红.2001.三峡库区花岗岩坡耕地不同种植方式下水土流失定位研究.应用生态学报,12(1):47~50
    杨一松,下兆赛,陈欣等.2004.南方红壤坡地不同利用模式的水土保持及生态效益研究.水土保持学报,18(5):84~87
    卢金伟,李占斌.2001.土壤侵蚀退化研究进展.土壤与环境,10(1):72~76
    王月玲,蔡进军,张源润.2007.半干旱退化山区不同生态恢复与重建措施下土壤理化性质的特征分析.水土保持研究,(1):11~14
    高富,沙丽清,许建初.2000.西庄河流域土地利用方式对土壤肥力影响的研究.土壤与环境,9(3):223~226
    李阳兵,高明,魏朝富.2003.土地利用对岩溶山地土壤质量性状的影响.山地学报,21(1):41~49
    范建容,宫奎方,唐家良.2010.土地利用方式对西藏东部河谷山地土壤肥力性质的影响.地理研究,29(8):1528~1536
    伏耀龙,张兴昌.2012.岷江干旱河谷区不同土地利用方式土壤抗冲性试验.农业机械学报,43(7):50~55
    陈晏,史东梅.2007.紫色土丘陵区不同土地利用类型土壤抗冲性特征研究.水土保持学报,21(2):24~27
    雷俊山,杨勤科,郑粉莉.2004.黄土坡面细沟侵蚀试验研究及土壤抗冲性评价.水土保持通报,24(2):l~4
    李勇,徐晓琴,朱显谟.1993.植物根系与土壤抗冲性.水土保持学报,7(3):11~18
    汪有科,吴钦孝,赵鸿雁,等.1993.林地枯落物抗冲机理研究.水土保持学报,7(1):75~80
    刘国彬.1997.黄土高原土壤抗冲性研究及有关问题.水土保持研究,4(5):91~101
    周佩华,武春龙.1993.黄土高原抗冲性的试验研究方法探讨.水土保持学报,7(1):29~34
    张振明,余新晓,吴海龙,等.2009.北京八达岭林场油松林地土壤抗冲性研究.林业资源管理,(6):80~83
    郑世清,周佩华,周保林.1994.黄土高原沟壑区土壤抗冲性研究—以黄委会西峰水土保持站为例.水土保持通报,14(1):12~16
    杨文元,张奇,张建华,等.1997.紫色丘陵区土壤抗冲性研究.土壤侵蚀与水土保持学报,3(2):22~28
    张光辉.2002.冲刷时间对土壤分离速率定量影响的实验模拟.水土保持学报,16(2):1~7
    丁文峰,李占斌,丁登山,等.2004.坡面细沟侵蚀产沙时空分布规律试验研究.水科学进展,15(1):19~23
    张建军,张宝颖,毕华兴,等.2004.黄土区不同植被条件下的土壤抗冲性.北京林业大学学报,26(6):25~29
    侯喜禄,白岗栓,曹清玉.1995.刺槐、柠条、沙棘林土壤入渗及抗冲性对比试验.水土保持学报,9(3):90~95
    曾信波.1995.贵州紫色土上植物根系提高土壤抗冲性能的研究.贵州农学院学报,14(2):20~24
    王忠林,李会科,贺秀贤,等.2000.渭北旱塬花椒地埂林土壤抗蚀抗冲性研究.水土保持研究,7(1):33~37
    胡维银,刘国彬,许明祥.2000.黄土丘陵沟壑区小流域坡耕地土壤抗冲性试验研究.水土保持通报,20(3):26~28
    王库.2001.芨芨草水土保持功能的初步研究.水土保持研究,8(2):157~159.
    骆仁祥,张春霞,王福升,等.2009.毛竹等3个竹种的根系分布特征及其与林地土壤抗冲性比较研究.竹子研究汇刊,28(4):23~26
    冉茂勇,赵允格,陈彦芹.2009.黄土丘陵水蚀区生物结皮土壤抗冲性试验研究.西北林学院学报,24(3):37~40
    文卓立,周飞.2008.缙云山典型植物群落次生演替中土壤抗冲性研究.水土保持研究,15(2):13~17
    沈晶玉,周心澄,张伟华,等.2004.祁连山南麓植物根系改善土壤抗冲性研究.中国水土保持科学,2(4):87~91
    邹翔,崔鹏,陈杰.2004.小江流域土壤抗冲性实验研究.水土保持学报,18(2):71~73
    周维,张建辉,李勇.2006.金沙江干暖河谷不同土地利用条件下土壤抗冲性研究.水土保持通报,26(5):26~30
    杨玉梅,郑子成,李廷轩.2010.不同土地利用方式下土壤抗冲性动态变化特征及其影响因素.水土保持学报,24(4):64~68
    郑江坤,吴黎军,魏天兴.2009.陕北不同地貌部位土壤抗冲性特征研究.水土保持学报,23(6):14~18
    张建军,朱金兆,查同刚,等.1998.晋西黄土区水土保持林地抗冲性研究.北京林业大学学报,20(6):20~24
    农业大词典编辑委员会.1998.农业大词典.北京:中国农业出版社:1687
    伏耀龙,张兴昌,王金贵.2012.岷江上游干旱河谷土壤粒径分布分形维数特征.农业工程学报,28(5):120~125
    曾志远,曹锦铎.1991.分数维几何学在地学和土壤制图学上的应用.土壤,23(3):117~122
    李保国.1994.分形理论在土壤科学中的应用及其展望.土壤学进展,22(1):1~10
    李德成,张桃林.2000.中国土壤颗粒组成的分形特征研究.土壤与环境,9(4):263~265
    石占飞,王力,王建国.2011.陕北神木矿区土壤颗粒体积分形特征及意义.干旱区研究,28(3):394~399
    李艳茹,梁运江,许广波.2006.分形理论及其在土壤物理学上的应用.安徽农业科学,34(20):5141~5145
    王德,傅伯杰,陈利顶.2007.不同土地利用类型下土壤粒径分形分析—以黄土丘陵沟壑区为例.生态学报,27(7):3081~3089
    曾宪勤,刘和平,路炳军.2008.北京山区土壤粒径分布分形维数特征.山地学报,26(1):65~70
    杨培岭,罗远培,石元春.1993.用粒径的重量分布表征的土壤分形特征.科学通报,38(20):1896~1899
    鲁植雄,张维强,潘君拯.1994.分形理论及其在农业土壤中的应用.土壤学进展,22(5):40~41
    贾晓红,李新荣.2007.干旱区植被恢复过程中土壤颗粒分形特征.地理研究,26(3):518~525
    牛占,和瑞勇,李静.2002.激光粒度分析仪应用于黄河泥沙颗粒分析的实验研究.泥沙研究,(5):6~15
    程先富,赵明松,史学正.2007.兴国县红壤颗粒分形及其与环境因子的关系.农业工程学报,23(12):76~79
    王国梁,周生路,赵其国.2005.土壤颗粒的体积分形维数及其在土地利用中的应用.土壤学报,42(4):545~550
    党亚爱,李世清,王国栋.2009.黄土高原典型土壤剖面土壤颗粒组成分形特征.农业工程学报,25(9):74~78
    董莉丽,郑粉莉.2010.陕北黄土丘陵沟壑区土壤粒径分布分形特征.土壤,42(2):302~308
    桂东伟,雷加强,曾凡江.2010.塔里木盆地南缘绿洲农田土壤粒径分布分形特征及影响因素研究.中国生态农业学报,18(4):730~735
    刘美龄,叶勇,曹长青.2008.海南东寨港红树林土壤粒径分布的分形特征及其影响因素.生态学杂志,27(9):1557~1561
    李毅,李敏,曹伟.2010.农田土壤颗粒尺寸分布分维及颗粒体积分数的空间变异性.农业工程学报,26(1):94~102
    文星跃,黄成敏,黄凤琴.2011.岷江上游河谷土壤粒径分形维数及其影响因素.华南师范大学学报,自然科学版,2(1):80~86
    宋孝玉,李亚娟,李怀有.2009.不同地貌类型及土地利用方式下土壤粒径的分形特征.西北农林科技大学学报:自然科学版,37(9):155~160
    王国梁,刘国彬,许明祥.2001.黄土丘陵区纸坊沟流域植被恢复的土壤养分效应.水土保持通报,22(1):1~5
    刘良梧.1995.全球土壤退化评价.自然资源.1:10~14
    胡克林,李保国,林启美.1999.农田土壤养分的空间变异性特征.农业工程学报,15(3):33~38
    刘纪辉,赖格英.2007.农业非点源污染研究进展.水资源与水工程学报,18(1):29~32
    段淑怀,路炳军,王晓燕.2007.浅谈北京市山区水土流失与非点源污染.中国水土保持,(9):10~11
    王百群,刘国彬.1998.黄土丘陵区流失泥沙养分富集特征及其与地形的关系.土壤侵蚀与水土保持学报,4(6):42~46
    王晓燕,高焕文,李洪文.等.2000.保护性耕作对农田地表径流与土壤水蚀影响的试验研究.农业工程学报,16(3):66~69
    苏涛,张兴昌,赵怀玉.2011.砒砂岩地区坡面径流水动力学特性研究.西北农林科技大学学报(自然科学版),39(8):203~209
    王清奎,汪思龙,高洪.等.2005.土地利用方式对土壤有机质的影响.生态学杂志,24(4):360~363
    濮励杰,包浩生,彭补拙.1998.137Cs应用于我国西部风蚀地区土地退化的初步研究-以新疆库尔勒地区为例.土壤学报,35(4):441~449
    鲍士旦.2000.土壤农化分析.北京:中国农业出版社
    鲁如坤.1999.土壤农业化学分析方法.北京:中国农业科技出版社
    中国科学院南京土壤研究所.1978.土壤理化分析.上海:上海科学技术出版社:466~535
    骆东奇,白洁,谢德体.2002.论土壤肥力评价指标和方法.土壤与环境,11(2):202~205
    孙波,张桃林,赵其国.1995.我国东南丘陵山区土壤肥力的综合评价.土壤学报,32(4):362~369
    余新晓.1991.降雨入渗及产流问题的研究进展和评述.北京林业大学学报,13(4):88~94
    张科利.1998.坡面面径流冲刷及泥沙输移特征的试验研究.地理研究,17(2):165~174
    张科利,张竹梅.2000.黄土陡坡细沟侵蚀及其产沙特征的试验研究.自然科学进展,10(12):1136~1139
    陈洪松,邵明安,张兴昌.2005.野外模拟降雨条件下坡面降雨入渗产流试验研究.水土保持学报,19(2):5~8
    李鹏,李占斌,郑良勇.2005.坡面径流侵蚀产沙动力机制比较研究.水土保持学报,19(3):66~69
    王夙,孙三祥,胡清华.2004.国内坡面流研究现状.甘肃水利水电技术,40(4):331~334
    丁文峰,李占斌,崔灵周.2001.黄土坡面径流冲刷侵蚀试验研究.水土保持学报,15(2):99~101
    蒋忠善,王志强,刘志.1996.黄土丘陵区小流域土壤侵蚀空间变化定量研究.土壤侵蚀与水土保持学报,2(l):l~9
    郑粉莉,康绍忠.1998.黄土坡面不同侵蚀带侵蚀产沙关系及其机理.地理学报,53(5):422~428
    王万忠,焦菊英.1996.黄土高原降雨侵蚀产沙与黄河输沙.北京:科学出版社:27~61
    杨春霞,吴卿,杨剑锋.2003.人工模拟坡面产流试验研究.中国水土保持,6:24~26
    孔亚平,张科利.2003.黄土坡面侵蚀产沙沿程变化的模拟试验研究.泥沙研究,1:33~38
    吴普特,周佩华.1996.黄土坡面薄层水流侵蚀试验研究.土壤侵蚀与水土保持学报,1(2):14~19
    沙际德,蒋允德.1995.试论初生态侵蚀性坡面薄层水流的基本动力特性.水土保持学报,9(4):29~36
    张建军,毕华兴,张宝颖.2003.坡面水土保持林地地表径流挟沙能力研究明.北京林业大学学报,25(5):25~28
    杨武德,杨玉,宋晓彦.2003.黄土坡地不同利用方式土壤侵蚀的时空分布规律研究.水土保持学报,17(5):42~44
    吴普特.1997.动力水蚀实验研究.西安:陕西科学技术出版社:45~91
    姚文艺.1993.坡面流流速计算的研究.中国水土保持,(3):21~25
    沙际德,蒋允静1995.试论初生态侵蚀性坡面薄层水流的基本动力特性.水土保持学报,9(4):29~35
    邵学军.2001.坡面细沟流速与坡度关系的数值模拟.水土保持学报,15(5):1~5
    刘秉正,吴发启.1997.土壤侵蚀.西安:陕西人民出版社:53~57
    潘成忠,上官周平.2005.牧草对坡面侵蚀动力参数的影响.水利学报,36(3):371~374
    全国土壤普查办公室.1993.中国土壤.北京:中国农业出版社,95~839
    江忠善,宋文经.1988.坡面流速的试验研究.中国科学院西北水土保持研究所集刊,7:46~52
    查小春,唐克丽.2003.黄土丘陵林地土壤侵蚀与土壤性质变化.地理学报,58(3):464~470
    郑粉莉,张成娥.2002.林地开垦后坡面侵蚀过程与土壤养分流失的研究.水土保持学报,16(1):44~46
    邱莉萍,张兴昌.2006.子午岭不同土地利用方式对土壤性质的影响.自然资源学报,21(6):965~972
    王国梁,刘国彬,许明祥.2002.黄土丘陵区纸坊沟流域植被恢复的土壤养分效应.水土保持通报,22(1):1~5
    张春霞,郝明德,王旭刚.2003.黄土高原沟壑区小流域土壤养分分布特征.水土保持研究,,10(1):78~80
    郭旭东,傅伯杰,陈利顶.2001.低山丘陵区土地利用方式对土壤质量的影响—以河北省遵化市为例.地理学报,56(4):447~455
    史志华,蔡崇法,王天巍.2001.红壤丘陵区土地利用变化对土壤质量影响.长江流域资源与环境,10(6):537~543
    龙健,黄昌勇,李娟.2002.喀斯特山区土地利用方式对土壤质量演变的影响.水土保持学报,16(1):76~79
    王洪杰,史学正,李宪文.2004.小流域尺度土壤养分的空间分布特征及其与土地利用的关系.水土保持学报,18(1):15~18
    孔祥斌,张凤荣,齐伟.2003.集约化农区土地利用变化对土壤养分的影响—以河北省曲周县为例.地理学报,58(3):333~342
    刘秉正,李光录,吴发启.1995.黄土高原南部土壤养分流失规律.水土保持学报,9(2):77~86
    李光录,赵晓光,吴发启.1995.水土流失对土壤养分的影响研究.西北林学院学报,10(z):28~33
    李光录,吴发启,刘秉正.1997.黄土区侵蚀对土壤内在性质的影响.干旱区资源与环境,11(1):45~52
    康玲玲,朱小勇,王云璋.1999.不同雨强条件下黄土性土壤养分流失规律研究.土壤学报,36(4):536~543
    李松.1990.土壤养分与泥沙流失的初步试验分析.人民黄河,(4):64~67
    王百群,刘国彬.1999.黄土丘陵区地形对坡地土壤养分流失的影响.土壤侵蚀与水土保持学报,5(2):18~22
    郜文军,郜文军,王印传.2008.小流域自然土壤与耕作土壤养分比较及影响因素分析.山地学报,(5):632~638
    杜平,张恩生.1999.冀北山地华北落叶松人工林对土壤肥力的影响.河北林业科技,(2):6~8
    刘纪辉,赖格英.2007.农业非点源污染研究进展.水资源与水工程学报,18(1):29~32
    刘世梁,傅伯杰,陈利.2002.顶卧龙自然保护区土地利用变化对土壤性质的影响,地理研究,21(6):682~687
    刘义,关继义.2002.不同森林类型土壤肥力的差异分析.东北林业大学学报,(3):76~78
    段淑怀,路炳军,王晓燕.2007.浅谈北京市山区水土流失与非点源污染.中国水土保持,(9):10~11
    张中杰.2007.农业非点源污染来源及其防治措施.地下水,29(5):98~100
    王全九,邵明安,李占斌.1999.黄土区农田溶质径流过程模拟方法分析.水土保持研究,6(2):67~71
    王全九,张江辉,丁新利.1999.黄土区土壤溶质径流迁移过程影响因素浅析.西北水资源与水工程,10(1):9~13
    张亚丽,张兴昌,邵明安.2004.降雨强度对黄土坡面矿质氮素流失的影响.农业工程学报,20(3):55~58
    邵明安,张兴昌.2001.坡面土壤养分与降雨、径流的相互作用机理及模型.世界科技研究与发展,23(2):7~13
    康玲玲,朱小勇,王云璋.1999.不同雨强条件下黄土性土壤养分流失规律研究.土壤学报,36(4):536~543
    李裕元.2002.坡地磷素与水分迁移试验研究.[博士学位论文].杨凌:西北农林科技大学:23~24
    王文龙,李占斌,李鹏.2004.神府东胜煤田开发建设弃土弃渣冲刷试验研究.水土保持学报,18(5):68~71
    王文龙,李占斌,李鹏.2005.神府东胜煤田原生地面放水冲刷试验研究.农业工程学报,21(z):59~61
    王文龙,王兆印,李占斌.2006.神府东胜煤田开发中扰动地面径流泥沙模拟研究泥沙研究,(2):60~64
    奚成刚,杨成永.2002.铁路工程施工期路堑边坡面产流产沙规律研究.中国环境科学,22(2):174~178
    史东梅.2006.高速公路建设中侵蚀环境及水土流失特征的研究.水土保持学报,20(2):5~9
    黄丽,张光远,丁树文.1999.侵蚀紫色土土壤颗粒流失的研究.水土保持学报,13(1):35~39
    张兴昌,刘国彬,刘文兆.2000.不同土壤颗粒组成在水蚀过程中的流失规律.西北农业学报,9(3):55~58
    张兴昌,邵明安.2000.水蚀条件下不同土壤氮素和有机质流失规律.应用生态学报,11(2):231~234
    张兴昌.2000.水蚀条件下硝酸铵施用对黄绵土氮素流失的影响.农业工程学报,16(2):58~63
    张兴昌,邵明安,黄占斌.2000.不同植被对土壤侵蚀和氮素流失的影响.生态学报,20(6):1038~1044
    张兴昌,邵明安.2001.侵蚀泥沙、有机质和全氮富集规律研究.应用生态学报,12(4):541~544
    张兴昌.2002.耕作及轮作对土壤氮素径流流失的影响.农业工程学报,18(1):70~73
    叶芝菡,刘宝元.2009.土壤侵蚀过程中的养分富集率研究综述.中国水土保持科学.7(1):124~130
    彭浩,张兴昌,邵明安.2002.黄土区土壤钾素径流流失规律研究.水土保持学报,16(1):47~49
    彭浩,张兴昌,邵明安.2004.雨强对黄土区土壤钾素径流流失的影响.生态环境,13(3):369~372
    Ahuja L R.1990.Modelling soluble chemical transfer to runoff with rainfall impact as a diffusion process.Soil Science Society of America Journal,54(2):312~321
    Anderson T H.2003.Microbial eco-physiological indicators to assess soil quality.Agriculture, Ecosystemsand Environment,9(1-3):285~293
    Andrews S S, Karlen D L,Cambardella C A.2004.The soil management assessment f ramework: Aquantitative soil quality evaluation method.Soil Sci. Soc. Am. J,68:1945~1962
    Arshad D F,Coen G M.1992. Characterization of soil quality: Physical and chemical criteria. AmericanJournal of Alternative Agriculture,7:25~31
    Aryal M, Paris J F.1981.A physicoempirical model to predict soil moisture characteristic from particle sizwdistribution and bulkdensity data.Soil Sci Soc Am J,(45):1023~1030
    Bergtrom D W,Monreal C M, Millette J A. et al.1998. Spatial dependence of soil enzyme activities along aslope. Soil Science Society of America Journal,62:1302~1308
    Boers Paul C M.1996. Nutrient emissions from agriculture in the Netherlands,causes and remedies. WaterScience and Technology,33(4-5):183~189
    Burrough P H.1993. Soil variability: a late20th century view. Soils and Fertilizers,56(5):529~562
    Carter M R,Gregorich E G,Angers D A.1997.Interpretation of soil microbial biomass measurements for soilquality assessment in eastern Canada and New Zealand,Canadian Journal of Soil Sciencd,79:507~520
    Catroux G, Schnit zer M.1987. Chemical, spectroscopic, and biological charact erist ics of the organic mat ter in part icle size f ract ions separated f rom an Aquoll. Soi l S ci S oc Am J,51:1200~1207
    Corwin D L, Loague K, Ellsworth T R.1998. GIS2based modeling of nonpoint source pollutants in thevadose zone. Soil and Water Cons,53(1):34~38
    Doran J W, Parkin T B.1994. Defining and assessing soil quality. SSSA special publication.(35):3~21
    Dumanski J, Pieri C.2000. Land quality indicator: research plan Agriculture. Ecosystems and Environment,81:93~102
    Ericksen P J, Ardon M.2003. Similarities and differences between farmer and scientist views on soil qualityissues in central Honduras.Geoderma,111:233~248Romig D E, Garlynd M J, Harris R E.1995. Howfarmers assess soil health and quality. Journal of Soil and Water Conservation,50:229~236
    Ersahin S, Gunal H, Kutlu T, et al.2006. Estimating specific surface area and cation exchange capacity insoils using fractal dimension of particle-size distribution.Geoderma,136(3-4):588~597
    Filgueira R, Fournier L, Cerisola C, et al.2006.Particle-size distribution in soils: A critical study ofthefractal model alidation. Geoderma,134(3-4):327~334
    Foster G R.1968. Close-from soil erosion equation for upland areas. Water Resources Research,6:1170~1187
    Goovaerts P.1999. Geostatistics in soil science: state-of-the-art and perspectives. Geoderma,89(1-2):1~45
    Gregory F.1991. Nitrogen and phosphorus in eroded sediment from corn and soybean tillage system. J.Enviorn. Qual,20:663~670Yang Jinling, Zhang Ganlin.2003. Quantitative relationship between landuse and phosphorus discharge in subtropicalhilly regions of China. Pedosphere,13(1):67~74
    Halvorson J J, Smith J L, Papendick R I.1997. Issues of scale for evaluating soil quality.Soil and WaterCons.,52(1):26~30
    Huggett R T.1998. Soil chronosequences, soil development and soil wvolution: a critical review.CATENA.32:155~175
    Kronvang B, Graesboll P, Larsen S E.1996. Diffuse nutrient losses in Denmark. Water Science andTechnology,33(4-5):81~88
    Laws.J.O.1940. Recent Studies in Raindrops and Erosion. Agricultural Engineering,24:431~433
    Lu L Q, Fang X M, Lu H Y,et al.2004. Millennial-scale climate change since the last glaciationrecorded by grain sizes of loess deposits on the northeastern Tibetan Plateau.Chinese Science Bulletin,49(11):1157~1164
    Lowery B, Swan J, Schumacher T, Jones A.1995. Physical Properties of selected soils by erosion classJournal Soil and water Conservation,50(3):306~311
    McKeague J A.1971. Organicmatter in particle size and specific gravity fractions of some A h Ho rizons.Can. J. Soil Sci,51:299~505
    Meyer L D, Foter G R, Nikolov S.1975. Effect of flow rate and canopy on rill erosion. Trans. ASAE,18:905~911
    Meyer L.D, Wischmeier W.H.1969. Mathematical Simulation of the Process of Soil Erosion byWater.Trans.Am.Soc.Agric.Engrs,12:754~758
    Miller W P.1987. Particle size of int errill-eroded sediments from hilly weathered soils. J Soil Sci Soc Am,51:1610~1615
    Morgan R P C, Quinton J N, Smith R E, etc.1998. The European Soil Erosion Model(EUROSEM):Adynamic approach for predicting sediment transport from fields and small catchments. Earth SurfaceProcesses and landforms,23:527~544
    Narendra Kumar Tuteja, Geoffrey Beale, Warrick Dawes, et al.2003. Predicting the effects of landusechange on water and salt balance—a case study of a catchment affect-ed by dryland salinity in NSW.Australia. Journal of Hydrology,283(1-4):67~90
    Neibling W H, Moldenhauer W C andHolmes B M.1983. Evaluation and comparison of two methods forcharacterizat ion of sediment size distribution. Trans A SA E,27(2):472~480
    Parisi V, Menta C, Gardi C,et al.2005. Microarthropod communities as a tool to assess soil quality andbiodiversity: a new approach in Italy.Agriculture, Ecosystems and Environment,105:323~333
    Peng L, Wang J, Yu C.1995. Nutrient losses in soils Loess Plateau. Pedosphere,5(1):83~92
    Perfect E, Kay B D.1995. Application of fractal in soil and tillage research: a review. Soil and TillageResearch,36(1-2):1~20
    Pulido J S, Bocco G.2003.The t raditional farming system of a Mexican indigenous community: the caseof Nuevo San Juan Parangaricutiro, Michoacan, Mexico.Geoderma,111:249~265
    Qiao Y S, Guo Z T, Hao Q Z, et al.2006. Grain-size featuresof a Miocene loess-soil sequence at Qinan:Inplications on its origin. Science in China, Series D,49(7):731~738
    Rieu M, Sposito G.1991.Fractal fragmentation、soil prosity and soilwater properties:Ⅰ.Theory. Soil Sci SocAm J,(55):1231~1238
    Rieu M, Sposito G.1991. Fractal fragmentation、soil prosity and soil water properties: Ⅱ.Applications. SoilSci Soc Am J,(55):1239~1244
    Shaohui Xu, Jianli Liu.2002.Applicability of fractal models in estimating soil water retentioncharacteristics from particle-size distribution data.Pedosphere,12(4):301~308
    Schnitzer M, Ivarson K C.1982. Different forms of nitrogen in particle size fractions separated from twosoils. Plant and Soil,69:383~389
    Smith J L, Halvorson J J, Papendick R I.1994.Multiple variable indicator kriging: a procedure forintegrating soil quality indicators.SSSA special publication,35:149~157
    Tiessen H, Stewart J W B.1983. Particle size fractions and their use in soil organic matter. II. Cultivationeffects on o rganic matter composition in size fractions. Soil Sci. Soc. Am. J,47:509~514
    Tyler S W, Wheatcraft S W. Fractal scaling of soil particle size distribution: Analysis and limitations. SoilSci Soc Am J,1992,56(2):362~369
    Tyler S W, Wheatcraft S W.1989. Application of fractal mathematics to soil water retention estimation. SoilSci Soc Am J,53(4):987~996
    Wang Jun, Fu Bojie, Qiu Yang. et al.2001. Geostatistical analysis of soil moisture variability on Da Nangoucatchment of the loess plateau. China Environmental geology,41:113~120
    Wang jun, Fu Bojie, Qiu Yang.et al.2002. Analysis on soil nutrient characteristics for sustainable land usein Da Nangou catchment of the loess Plateau. China. CATENA
    WE Larson, FJ Pierce.1994. Defining Soil Quality for a Sustainable Environment.Soil Science Society ofAmerica,37~52
    Zhang Jianhui, Liu Gangcai, Ni Shijun, et al.2003.Anti-scourability of purple soil on hillslopes withdifferent land uses. Science in China Ser. E Technological Sciences,46(S1):133~141

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700