用户名: 密码: 验证码:
炼铁生产流程的分散协调优化方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在能源供给日益紧张的当今社会,节能降耗作为目前我国经济发展必须遵循的原则之一,有着特殊的重要地位。然而我国钢铁企业目前普遍采用的炼铁流程各工序各自为政的孤立优化控制模式,使得当原料成分波动以及各类运行故障发生时,炼铁流程的整体控制调节效果不佳,易造成不必要的能量耗费,难以实现炼铁过程的平稳运行。针对这一问题,本文提出了一种面向多时间尺度大规模互联系统的协调优化算法,并应用于炼铁流程的控制和优化,具有计算速度快、综合性能好等优点。
     本文的研究内容主要包括以下几个方面:
     1.提出一种互联大系统的分散化预测控制算法。该算法采用预测控制滚动优化的形式,利用反馈校正及时修正模型误差,在每个滚动窗口内,使用约减状态空间分解算法实现互联大系统的分散化控制,通过内外部状态分解减小优化问题求解规模,在保证优化性能的同时,显著提高了优化计算的实时性。
     2.在此基础上,提出了一种面向多时间尺度系统的分散化预测控制实现方法。通过虚拟改变快子系统(响应速度快的子系统)采样周期的方式解决由时间多尺度带来的问题,同时,预测窗口长度由参与该次优化的最慢子系统(响应速度最慢的子系统)决定,以解决计算实时性的问题。此外,通过对控制量实施滤波规则减少执行器的频繁调节动作,从而保证生产的平稳性。
     3.使用部分杭州钢铁股份有限公司炼铁厂(以下简称杭钢)的实际生产数据,对本论文提出的方法进行了仿真实验,并与现有的集中式预测控制算法、独立式分散化预测控制算法和常规分散式预测控制算法在计算时间、优化性能、动态响应等方面进行了比较。结果表明,本论文提出的方法很好地处理了计算实时性和优化性能之间的矛盾,综合性能最优。在此基础上,本文给出了杭钢炼铁过程的整体协调优化方案。
As one of the principles that must be followed in economy development of our country, reducing energy consumption is of great importance in modern society which is increasingly short of energy supply. However, in the present, steel enterprises in China commonly apply the isolated mode of optimization and control to sub-processes of iron-making flow, and when raw material content fluctuates and various operation disturbances take place, the overall control effect on iron-making flow may not be so satisfied, with unnecessary energy cost and non-smooth running. To solve the above problem, this thesis proposed a coordinated optimization algorithm oriented at multi-time-scale inter-connected large systems and applied it in optimization and control of the simulated iron-making flow system. Results show that this algorithm has the advantage of fine real-time computation ability and good combination property.
     The contents of this thesis are described as follows:
     1. A decentralized predictive control algorithm targeted at multi-time-scale inter-connected large systems was proposed. This algorithm operates in rolling-horizon optimization form, and implements feedback for model correction. In each rolling horizon, original reduced state-space decomposition algorithm is used to realize decentralized control of inter-connected large system, and the size of optimization problem is decreased through the decomposition of interior and exterior states, thus the real-time computation ability is greatly improved while optimization performance hardly deteriorates.
     2. Based on this, a decentralized predictive control realization oriented at multi-time-scale system was proposed. The problem that resulted from multi-time scale is solved by virtually changing the sampling period of fast sub-system, and the length of prediction horizon is determined by the slowest sub-system, in order to solve the problem of bad real-time computation ability. Besides, a filter rule is enforced upon control variables to reduce frequent regulation of actuators, thus to confirm the smoothness of production.
     3. Using partial actual production data of Hangzhou Steel and Iron Corporation, simulated experiment was carried out on the sub-system models of iron-making flow to test the effectiveness of algorithm of alterable horizon-decentralized predictive control, and contrast simulations with existed algorithms were made which included integrated predictive control algorithm, isolated decentralized predictive control algorithm and normal distributed predictive control algorithm, and the optimization effects were compared in indices of computation time, object function and responses. Results show that algorithm of alterable horizon decentralized predictive control deals extraordinarily well with performance index and real-time computation ability. Besides, the integral coordinated optimization solution to Hangzhou Steel and Iron Corporation ironmaking process is given in this thesis.
引文
[1]马竹梧,邱建平,李江.钢铁工业自动化(炼铁卷)[M].冶金工业出版社,2002.
    [2]余永富.国内外铁矿选矿技术进展及对炼铁的影响[J].矿冶工程,2004,24(1):26-29.
    [3]侯宗林.中国铁矿资源现状与潜力[J].地质找矿论丛,2005,第4期:242-247.
    [4]周春林,刘春明,董亚锋.国外炼铁状况及中国炼铁发展方向[J].钢铁,2008,43(12):1-6.
    [5]张寿荣,银汉.中国高炉炼铁的现状和存在的问题[J].钢铁,2007,42(9):1-8.
    [6]王泰昌,张媛媛,迟京东.我国钢铁工业节能降耗现状分析[J].中国钢铁业,2007,(4):16-19.
    [7]郑文华,刘洪春,周科.中国炼焦工业现状及发展[J].钢铁,2004,39(3):67-73.
    [8]郑文华.中国炼焦工业现状及其发展趋势[J].中国煤炭,2004,30(10):11-19.
    [9]李慧.钢铁冶金概论[M].冶金工业出版社,1993.
    [10]高尚敏,杨春节,宋执环.TRT系统过程控制研究[J].电站系统工程,2007,23(5):58-60.
    [11]张青.宝钢原料场技术进步展望[J].宝钢技术,2002年增刊:19-21.
    [12]夏世荣,尹作栋,汪海清.计算机管理系统在原料生产中的应用[J].冶金自动化,2007年增刊(S1):298-300.
    [13]韩亚玲,陶培军,王一韩.宣钢东区炼铁综合原料场自动控制系统[J].冶金自动化,2008年增刊(S1):521-523.
    [14]刘亚茹.石钢烧结混匀料场生产实践[J].河北冶金,2007,第4期:28-30.
    [15]范晓慧,申炳昕,陈许玲.烧结生产自动控制新技术(上)[J].烧结球团,2002,27(1):28-35.
    [16]范晓慧,申炳听,陈许玲.烧结生产自动控制新技术(下)[J].烧结球团,2002,27(2):20-26.
    [17]李富应,陶世钧.近年来广钢烧结生产的技术进步[J].河北冶金,2003,28(5):49-51.
    [18]赵红光.莱钢烧结生产新技术的应用与实践[J].山东冶金,2009,31(2):18-24.
    [19]朱宏晖,符雪桐.焦化过程的优化控制[C].中国控制会议论文集:庐山,1997.
    [20]王芳.焦化生产计算机主控系统[D].大连,大连理工大学,2006.
    [21]刘冰,胡煜,程乐意,袁正仲.焦炉控制和管理自动化的实践与选择[J].燃料与化工,2001,32(2):62-66.
    [22]周亚平,宁芳青,古述波.焦炉操作管理自动化系统[J].燃料与化工,2006,37(6):6-8.
    [23]王学武.焦化加热过程控制研究[D].大连,中国矿业大学,2003,北京.
    [24]阳春华,沈德耀,吴敏.焦炉配煤专家系统的定性定量综合设计方法[J].自动化学报,2000,26(2):226-232.
    [25]刘祥官,刘芳.高炉炼铁过程优化与智能控制系统[M].冶金工业出版社,2003.
    [26]李少东.高炉自动控制系统应用研究[D].合肥,合肥工业大学,2004.
    [27]Zhang, Fu-Ming. Study and innovation of the key technologies on modern large blast furnace[J]. Iron and Steel/Gangtie. Apr.2009, Vol.44, no.4, pp.1-5.
    [28]Choudhury A.R., Kothari A.K. Blast furnace process visualization and control models[C]. India:International conference on Process Innovation & Cost Optimisation in Iron & Steel Making,2010.
    [29]毕学工.高炉过程数学模型及计算机控制[M].冶金工业出版社,1996.
    [30]刘峰,魏晓东,杨学峰.高炉TRT控制工艺及实现[J].重型机械,2007年第二期:6-11.
    [31]李婷婷.正常工况下TRT系统高炉顶压动态建模及控制研究[D].杭州,浙江大学,2007.
    [32]衣梅圣,吕卫阳.热风炉自动控制系统设计[J].机械工程与自动化,2009年第二期:112-114.
    [33]张福明.我国大型顶燃式热风炉技术进步[J].炼铁,2002,21(5):5-9.
    [34]吴启常,张建梁,苍大强.我国热风炉的现状及提高风温的对策[J].炼铁,2002,21(5):1-4.
    [35]周传典.高炉炼铁生产技术手册[M].冶金工业出版社,2002.
    [36]http://knology.chinaccm.com/phrase-2006031016425100126.html.
    [37]陈美燕,马林东.国际铁矿石价格波动对我国宏观经济影响的实证研究[J],现 代商业,2009,第9期:187-189.
    [38]胡恒章,傅丽.分散递阶控制[M].宇航出版社,1991.
    [39]Cohen G.. Auxiliary problem principle and decomposition of optimization problems. Journal of Optimization Theory and Applications,1980,32(3):277-305.
    [40]Cohen G.. Optimization by decomposition and coordination:a unified approach.
    [41]辛格M.G.大系统的最优化和控制[M].机械工业出版社,1983.
    [42]Y. Takahara. A multi-level structure for a class of dynamical optimization pro-blems. Case Western Reserve University, Cleveland, USA,1965.
    [43](美)R.Horst,P.M.Pardalos,N.V.Thoai全局优化引论[M].清华大学出版社,2003.
    [44]席裕庚.预测控制[M].国防工业出版社,1993.
    [45]Dong J., Krogh B.H.. Distributed Model Predictive Control[C]. VA:Proceedings of the American Control Conference,2001.
    [46]Camponogara E, Jia D, Krogh B H. Distributed model predictive control. IEEE Control Systems Magazine,2002,22(1):44-52.
    [47]Du X. N., Xi Y.G., Li S.Y. Distributed Model Predictive Control for Large-scale Systems[C]. Arlington, VA:Proceedings of the American Control Conference,2001.
    [48]Du X.N.. Study and Analysis on New Optimization Strategy of Predictive Control [Ph. D. dissertation], Shang-hai Jiao Tong University,2001.
    [49]杜晓宁,席裕庚,李少远.分布式预测控制优化算法[J].控制理论与应用,2002,19(5):793-796.
    [50]Li S.Y., Z. Yan, Q.M. Zhu. Nash-optimization enhanced distributed model predictive control applied to the Shell benchmark problem [J]. Information Sciences 170 (2005):329-349.
    [51]Dong Jia, B. Krogh. Min-max feedback model predictive control for distributed control with communication [C]. American Control Conference,2002. Proceedings of the 2002 Vol.6.
    [52]Menighed, K., Aubrun, C., Yame, J.-J.. Distributed state estimation and model predictive control:Application to fault tolerant control[C]. Control and Automation, 2009. ICCA 2009. IEEE International Conference on Digital Object, Page(s): 936-941.
    [53]Wang L., C.L.Wen. Distributed model predictive control based on cooperation [C]. Control and Decision Conference,2008, Page(s):3526-3531.
    [54]Venkat A. N., J.B. Rawlings, S.J. Wright. Plant-wide optimal control with decentralized MPC. In:Proceedings of International Symposium on Dynamics and Control of Process Systems (DYCOPS2004). Cambridge, MA:Paper No.190. Elsevier Press; 2004. C.
    [55]Venkat A. N., J.B. Rawlings, S.J. Wright. Stability and optimality of distributed model predictive control[C]. Spain:Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference,2005.
    [56]Venkat A. N., J.B. Rawlings, S.J. Wright. Implementable distributed model predictive control with guaranteed performance properties[C]. USA:Proceedings of the 2006 American Control Conference,2006.
    [57]Venkat A. N. Distributed Model Predictive Control:Theory and Applications, [Ph. D. dissertation], University of Wisconsin Madison,2006.
    [58]Venkat A.N., J.B. Rawlings, S.J. Wright. Distributed Model Predictive Control of Large-Scale Systems[J]. Assessment and Future Directions, LNCIS 358, pp.591-605, 2007.
    [59]陈庆,李少远,席裕庚.一类串联生产过程的分布式解耦预测控制[J].
    [60]陈庆,李少远,席裕庚.基于全局最优的生产全过程分布式预测控制[J].上海交通大学学报,2005,39(3):349-352.
    [61]王磊,文成林.基于协作的分布式模型预测控制[C]. Chinese Control and Decision Conference,2008.
    [62]Camponogara E., S. N. Talukdar. Distributed Model Predictive Control: Synchronous and Asynchronous Computation[J]. IEEE Transactions on Systems, Man, and Cybernetics--Part A:Systems and Humans,2007,37(5):732-745.
    [63]H. R. Riverfront, St. Louis, MO. Distributed Model Predictive Control of Nonlinear Systems with Input Constraints[C]. American Control Conference:USA, June 10-12,2009.
    [64]X.N. Wang, X.S. Wu, X.G. Yang, X.W. Zai, C. Li, Y.P. Fan. Distributed Model Predictive Control Employing Trajectory Sensitivities for Cascading Failures[C]. Power and Energy Engineering Conference,2009. Asia-Pacific 2009, Page(s):1-4.
    [65]Talukdar, S., Dong Jia, Hines P., Krogh, B.H.. Distributed Model Predictive Control for the Mitigation of Cascading Failures[C]. Decision and Control,2005 and 2005 European Control Conference. Publication Year:2005, Page(s):4440-4445.
    [66]Trodden, P., Richards, A.. Robust distributed model predictive control using tubes[C]. American Control Conference,2006. Digital Object Identifier, Publication Year:2006.
    [67]Venkat A. N., J.B. Rawlings, S.J. Wright. Distributed MPC strategies for Automatic Generation Control[C]. Canada:IFAC Symposium on Power Plants and Power Systems Control,2006.
    [68]Venkat A. N., J.B. Rawlings, S.J. Wright. Distributed Output Feedback MPC for Power System Control[C]. USA:Proceedings of the 45th IEEE Conference on Decision & Control,2006. Venkat A. N., J.B. Rawlings, S.J. Wright. Distributed MPC Strategies With Application to power system automatic control[J]. IEEE Transactions on Control Systems Technology,2008,16(6):1192-1205.
    [69]J.S. Fu, Y.T. Liu, Z.Z. Sun, J.O. Zhou, H. Dong. Applications of Distributed Model Predictive Control in Supply Chain Management[C]. Information Management, Innovation Management and Industrial Engineering,2008. Volume:2, Publication Year:2008, Page(s):63-67.
    [70]Negenborn, R.R., De Schutter, B..A distributed model predictive control approach for the control of irrigation canals[C]. Infrastructure Systems and Services:Building Networks for a Brighter Future (INFRA),2008 First International Conference, Publication Year:2008, Page(s):1-6.
    [71]Fawal H.E., Georges D., Bornard G.. Optimal control of complex irrigation systems via decomposition-coordination and the use of augmented Lagrangian[C]. In: Proceedings of 1998 IEEE International Conference on Systems, Man and Cyber-netics,1998.
    [72]Camponogara E., Scherer H.F., Moura L.V.. Distributed optimization for predictive control with input and state constraints:Preliminary theory and application to urban traffic control[C]. Systems, Man and Cybernetics,2009. SMC 2009. IEEE International Conference on Digital Object Identifier:10.1109/ICSMC.2009.5346887 Publication Year:2009,Page(s):3726-3732.
    [73]T.W. Chen, B.A. Francis, Optimal Sampled-data control Systems, London, Spinger,1995.
    [74]J.D. Wang, T.W. Chen, B. Huang. Multirate sampled-data systems:Computing fast-rate models[J]. Journal of Process Control,2004, Vol.44, pp.79-88.
    [75]R Kalman, J Bertram. Control system analysis and design via the second method of lyapunov:(I) continuous-time systems (II) discrete time systems[J]. Automatic Control, IRE Transactions on,1959.
    [76]P.P. Kahargonekar, K. Poolar, A. Tannenbaum, Robust Control of linear time-invariant plants using periodic compensation[J]. IEEE Trans. Automat. Contr, 1985,30(11):1088-1096.
    [77]W. Lu, D.G. Fisher. Output estimation with multirate sampling[J]. Int. J. Control, 1988, Vol.48, No.1, pp149-160.
    [78]D.Doi, S.M. Philips. Multirate identification:a multiple model parameterization [C]. Proc. Of American Control Conf,1993.
    [79]R.D. Gudi, S.L. Shah, M.R. Gray. Multirate state and parameter estimation in an antibio tic fermentation with delayed measurements. biltechnology and bioengi-neering,1994,Vol.44, pp.1271-1278.
    [80]D. Li, S.L. Shah, T.W. Chen. Identification of fast-rate models from multirate data[J]. Int. J. Control,2001, Vol.74, No.7, pp.680-689.
    [81]丁峰, 陈通文,萧德云.一般双率随机系统状态空间模型及其辨识[J].自动化学报,2004,30(5):652-663.
    [82]丁峰,谢新民.系统参数和状态联合估计[J].控制和决策,1994,9(3):223-225.
    [83]F. Ding, T.W. Chen. Hierarchical identification of lifted stated-space models for general dual-rate systems[J]. IEEE.Trans. On Circuits and Systems,2005, Vol.52, No.6, pp.1179-1-188.
    [84]B.A. Francis, T.T. Georgiou. Stability theory for linear time invariant plants with periodic digital controllers[J]. IEEE. Trans. Automat. Contr,1988, Vol.33, No.9, pp.820-832.
    [85]周立芳,钱积新.改进的多频自校正广义预测控制算法石油化工自动化,1999,6(25):25-27.
    [86]邹媛媛,刘晓华.多速率单值广义预测控制系统及稳定性分析[J].青岛大学学报(工程技术版),2005,Vol.20,No.4.
    [87]罗杰,刘晓华.基于多速率采样系统的网络预测控制算法[J].鲁东大学学报,2008,24(2):122-126.
    [88]董卿霞,王萍.多速率采样系统的研究和仿真[J].天津工业大学学报,2006,Vol.25,No.1.
    [89]郭呈贺,钱文瀚.机器人多传感器多速率采样控制系统研究[J].上海变通大学学报,1997,Vol.33,No.9.
    [90]邹媛媛,刘晓华,李少远.满足因果约束的多速率单值广义预测控制[J].控制与决策,2005,20(7):827-829.
    [91]王树青.工业过程控制工程[M].化学工业出版社,2003.
    [92]Holger Voos. Market-based algorithms for optimal decentralized control of complex dynamic systems[C]. USA:Proceedings of the 38th Conference on Decision & Control 1999.
    [93]Holger Voos. Market-based control of complex dynamic systems[C]. Proceedings of the 1999 IEEE International Symposium on Intelligent Control/Intelligent Systems and Semiotics,1999.
    [94]赵均,徐祖华,钱积新.复杂工业过程的预测控制理论及其应用[J].自动化与信息工程,2009,第3期:1-6.
    [95]#12
    [96]钱积新,赵均.预测控制[M].化学工业出版社,2007.
    [97](苏)格姆克列里兹最优控制理论基础[M].复旦大学出版社,1988.
    [98]胡寿松.自动控制原理[M].科学出版社,2001.
    [99]陈绍绵,赵均,钱积新.多时标分散预测控制算法[J].自动化学报,2007,33 (9):993-996.
    [100]黄鹤,汪国安,邱爱兵.多尺度建模在预测控制中的应用[J].江南大学学报(自然科学版),2006,5(4):394-398.
    [101]黄鹤.基于多尺度理论的预测控制方法研究[D].河南,河南大学,2007.
    [102]陆培文,调节阀实用技术[M].机械工业出版社,2006.
    [103]毕学工,何环宇,胡志刚.铁矿石混匀过程模拟模型[C].1997中国钢铁年会论文集(上),1997.
    [104]M.H. Wagner, Michael H.. Supply-demand decomposition of the national coal model[J]. Operations Research,1981,29(6):1137-1153.
    [105]Li Z.Y..Study of Prediction Model of R in Sintering Process Based on Multisensor Data Fusion[J]. Journal of Anyang Institute of Technology,2006-01.
    [106]A. Niaeib, J. Towfighia, S. M. Sadrameli. The combined simulation of heat transfer and pyrolysis reactions in industrial cracking furnaces[J]. Applied Thermal Engineering,2004,24(14-15):2251-2265.
    [107]T. Notsu, M. Konishi. Temperature Distribution Control of Reactor Furnace by State Space Method using FEM Modeling[J]. Memoirs of the Faculty of Engineering,2008,Vol.42, pp.79-90.
    [108][美]J.P.霍尔曼.传热学[M].机械工业出版社.2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700