非线性时滞系统最优输出跟踪控制律的近似设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
最优输出跟踪问题是最优控制学科的一个重要研究方面,该理论随着最优控制理论在二十世纪五十年代末六十年代初逐渐形成与发展而不断地发展起来。近年来,随着现代工业、国防等各个行业的发展,最优输出跟踪理论在海洋信息探测技术、空间技术、经济运行系统、智能机器人、化工等工业领域得到了越来越多的应用。另外,实际中普遍存在的非线性时滞系统由于其双重复杂性,相关的最优输出跟踪理论研究成果还不多见,因而对于该问题的研究具有重要的理论和现实意义。
     本文首先综述了国内外非线性、时滞系统最优输出跟踪问题的研究现状。然后针对一类参考输入信号由外系统给定的非线性、时滞系统,深入地研究了其最优输出跟踪问题,给出了系统控制律的存在唯一性条件及其近似设计方法,并讨论了其物理可实现问题。全文主要研究内容如下:
     1.首先介绍了输出跟踪的相关问题和当前的主要研究现状。详细介绍了当前国内外对于双线性系统、非线性系统、带状态时滞的非线性系统和受扰非线性时滞系统的最优输出跟踪问题研究现状。最后给出了课题的意义和本文的研究内容。
     2.讨论了一类特殊的非线性系统-双线性系统基于二次型性能指标的最优输出跟踪问题。对于由系统的状态向量和控制向量的乘积描述的双线性项,将其看成系统的摄动加以处理。通过引入一个伴随向量对此双线性项加以补偿,可以将由极大值原理的必要条件导致的非线性两点边值问题变换为由伴随向量方程和状态方程组成的新的两点边值问题。通过逐次逼近法将此问题转化为一族解耦的线性非齐次两点边值问题序列,从而通过求解该问题序列得到系统的前馈-反馈次优控制律。证明了该线性两点边值问题的解序列一致收敛于原最优输出跟踪问题的解。
     3.对于系统的参考输入信号的动态特性由外系统给定的最优输出跟踪问题,本文避开构造增广系统的思路,利用参考输入外系统的状态来构造前馈控制作用。前馈增益可以通过求解矩阵方程而精确得到,这样加入系统的前馈控制作用
The optimal output tracking (OOT) problem is one of the important application areas of the optimal control (OC) theory. The theory of OOT has made a development with the formulation and development of the OC theory at the end of 1950s and the start of 1960s. In recent years, Modern industries and national defenses have achieved great advancement, which results in more and more applications of the theory of OOT in the ocean information detection technique, space technique, economic systems, intelligent robot, and chemical industry and so on. Moreover, there are few results on the OOT problem of nonlinear time-delay systems. The reason generally arises from its double complexity. Therefore, the analysis of OOT problem for nonlinear time-delay systems is a significant research both in theory and in practice.
     Firstly, the relative studies on the OOT problem for nonlinear time-delay systems up to now are given in detail. Then, based on the maximum principle, this dissertation considers the OOT problem for a class of nonlinear, time-delay systems whose reference input to be tracked is produced by a general exosystem. The existence and uniqueness of the OOT control law are studied and an approximate design processdure of the law is given. The physical realization problem of the feedforward control is discussed. The main contents are given as follows.
     1. Some problems relative to OOT are presented with their main research methods at first. Then, a detail expression of studies is introduced on the OOT problem for bilinear systems, nonlinear systems, nonlinear systems with the time-delay in the state, and nonlinear time-delay systems under external disturbances. The objective and contents of this dissertation are given finally.
     2. The OOT problem for a class of bilinear systems with a quadratic index performance is studied. The bilinear term described by a product of the state vector and the control vector in the systems’equation is considered as the perturbation of systems. By introducing an adjoint vector, the nonlinear two-point boundary value (TPBV) problem derived form the necessary condition of the maximum principle is replaced by a new TPBV problem which is described by a state equation and an
引文
[1] A. K. Banerjee, V. N. Do. Deployment control of a cable connecting a ship to an underwater vehicle. Journal of Guidance, Control, and Dynamics, 1994, 17(6): 1327-1332.
    [2] A. I. Makarenko, V. I. Poddubnyi, V. V. Kholopova. Study of the nonlinear dynamics of self-propelled submersibles controlled by a cable. International Applied Mechanics, 1997, 33(3): 251-257.
    [3] S.-H. Kim, H. Yamato. On the design of a longitudinal motion control system of a fully-submerged hydrofoil craft based on the optimal preview servo system. Ocean Engineering, 2004, 31(13): 1637-1653.
    [4] T. Cimen, S. P. Banks. Nonlinear optimal tracking control with application to super-tankers for autopilot design. Automatica, 2004, 40(10): 1845-1863.
    [5] K. D. Do, J. Pan. State- and output-feedback robust path-following controllers for underactuated ships using Serret-Frenet frame. Ocean Engineering, 2004, 31(5-6): 587-613.
    [6] T. S. No, B. M. Min, R. H. Stone, K. C. Wong. Control and simulation of arbitrary flight trajectory-tracking. Control Engineering Practice, 2005, 13(5): 601-612.
    [7] R. D. Barnard. Optimal-aim control strategies applied to large-scale nonlinear regulation and tracking systems. IEEE Transaction on Circuits and Systems, 1976, CAS-23(12): 800-806.
    [8] R. Sharma, A. Tewari. Optimal nonlinear tracking of spacecraft attitude maneuvers. IEEE Transactions on Control Systems Technology, 2004, 12(5): 677-682.
    [9] 阎九喜,程兆林. 奇异动态经济系统最优跟踪问题.自动化学报,1998, 24(3): 428-430.
    [10] M. T. Grabbe, D. M. Dawson. Application of optimal control theory to the trajectory tracking of rigid robot manipulators. Optimal Control Applications and Methods, 1994, 15(4): 237-249.
    [11] K. Kim, T. Ura. Fuel-optimally guidance navigation and tracking control of AUV under current interaction. Oceans Conference Record (IEEE), 2003, 2: 663-670.
    [12] P. Tomei. Tracking control of flexible joint robots with uncertain parameters and disturbances. IEEE Transaction on Automatic Control, 1994, 39(5): 1067-1072.
    [13] A. Satyanarayana, S. K. Biswas, J. S. Chen. Control system design for accelerated cooling process for optimized temperature-time tracking, American Society of Mechanical Engineers, Production Engineering Division (Publication) PED, Manufacturing Science and Engineering, 1994, 68(2): 663-674.
    [14] S. K. Biswas, S.-J. Chen, A. Satyanarayana. Optimal temperature tracking for accelerated cooling processes in hot rolling of steel. Dynamics and Control, 1997, 7(4): 327-340.
    [15] W. M. Wonham. Linear Multivariable Control: A Geometric Approach. Berlin: Sprin-Verlag, 1979.
    [16] I. R. Petersen, C. V. Hollot. Riccati equation approach to the stabilization of uncertain linearsystems. Automatica, 1986, 22(4): 397-411.
    [17] C. J. Mao, J. H. Yang. Decentralized output tracking for linear uncertain interconnected systems. Automatica, 1995, 31(1): 151-154.
    [18] N. C. Shieh, K. Z. Liang, C. J. Mao. Robust output tracking control of an uncertain linear system via a modified optimal linear-quadratic method. Journal of Optimization Theory and Applications, 2003, 117(3): 649-659.
    [19] 陈兵,刘粉林,张嗣瀛. 一类线性不确定组合系统的输出反馈分散输出跟踪控制. 自动化学报,2001, 27(1): 75-81.
    [20] R. Marino, P. Tomei. Robust adaptive regulation of linear time-varying systems. IEEE Transaction on Automatic Control, 2000, 45(7): 1301-1311.
    [21] R. Marino, P. Tomei. Output regulation for linear systems via adaptive internal model. IEEE Transaction on Automatic Control, 2003, 48(12): 2199-2202.
    [22] B. A. Francis, W. M. Wonham. Internal model principle of control theory. Automatica, 1976, 12(5): 457-465.
    [23] J. S. A. Hepburn, W. M. Wonham. Error feedback and internal models on differentiable manifolds. IEEE Transaction on Automatic Control, 1984, AC-29(5): 397-403.
    [24] W. E. Schmitendrof, B. R. Barmish. Robust asymptotically tracking for systems with unknown parameters. Automatica, 1986, 22(2): 355-360.
    [25] O. H. Seungrohk, K. K. Hassan. Nonlinear output feedback tracking using high-gain observer and variable structure control. Automatica, 1997, 33(10): 1845-1856.
    [26] 晁红敏,胡跃明,吴忻生. 高阶滑模控制在非完整移动机器人鲁棒输出跟踪中的应用.控制理论与应用,2002, 19(2): 253-257.
    [27] 李琳琳,赵长安,崔祜涛. 一类具有不匹配不确定性非线性系统鲁棒输出跟踪. 高技术通讯,2001, 8: 86-88.
    [28] 向峥嵘,陈庆伟,胡维礼. 非线性时变系统基于状态观测器的输出跟踪. 控制理论与应用, 2000, 17(4): 597-600.
    [29] 王新华,陈增强,袁著祉. 基于扩张观测器的非线性不确定系统输出跟踪. 控制与决策, 2004, 19(10): 1113-1116.
    [30] R. Marino, P. Tomei. Adaptive tracking and disturbance rejection for uncertain nonlinear systems. IEEE Transactions on Automatic Control, 2005, 50(1): 90-95.
    [31] 余凯,赵长安,李士勇. 一类不确定非线性系统的鲁棒输出跟踪控制器. 系统工程与电子技术,2002, 24(10): 42-49.
    [32] 刘亚,胡寿松. 基于自适应神经网络的不确定非线性系统的模糊跟踪控制. 控制理论与应用, 2004, 21(5): 770-775.
    [33] N. A. Ahmad, K. K. Hassan. A separation principle for the stabilization of a class of nonlinear systems. IEEE Transaction on Automatic Control, 1999, 44(9): 1672-1687.
    [34] W. Rabah, A. Ldhaheri, K. K. Hassan. Effect of unmodeled actuator dynamics on outputfeedback stabilization of nonlinear systems. Automatica, 2001, 37(9): 1323-1327.
    [35] 张严心,井元伟,张嗣瀛. 基于模糊逻辑系统的输出跟踪控制问题. 控制与决策,2003, 18(1): 13-18.
    [36] A. Isidori, C. I. Byrnes. Output regulation of nonlinear systems. Automatica, 1990, 35(2): 131-140.
    [37] A. Isidori. Nonlinear Control Systems. Third Edition. London: Springer-Verlag, 1995.
    [38] J. Huang. Asymptotic tracking and disturbance rejection in uncertain nonlinear systems. IEEE Transactions on Automatic Control, 1995, 40(6): 1118-1122.
    [39] J. Huang, Z. Y. Chen. A general framework for tackling the output regulation problem. IEEE Transactions on Automatic Control, 2004, 49(12): 2203-2218.
    [40] 解学书. 最优控制理论与应用. 第一版. 北京: 清华大学出版社, 1986.
    [41] B. D. D. Anderson, J. B. Moore. Optimal Control: Linear Quadratic Methods. NJ: Prentice-Hall, Englewood Cliffs, 1990.
    [42] 夏小华,高为炳. 非线性系统控制及解耦. 科学出版社, 1997.
    [43] R. A. Freeman, P. V. Kokotovic. Optimal nonlinear controllers for feedback linearizable systems. Proceedings of the American Control Conference, Seattle, Washington, 1995. 2722-2726.
    [44] E. Nagy. Nonlinear control through optimized trajectory tracking. Proceedings of the American Control Conference, Anchorage, AK, United states, 2002. 3980-3985.
    [45] R. Marino. Example of a nonlinear regulator. IEEE Transactions on Automatic Control, 1984, 29(3): 276-279.
    [46] L. Gao, L. Chen, Y. Fan, H. Ma. Nonlinear control design for power systems. Automatica, 1992, 28(5): 975-979.
    [47] M. Zaheer-uddin, R. V. Patel. Optimal tracking control of multi-zone indoor environmental spaces. ASME Journal of Dynamic Systems, Measurement and Control, 1995, 117(3): 292-303.
    [48] Z. Ahmad. Optimal robot tracking controller with application in the finite horizon case. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Nashville, TN, USA, 2000. 3277-3281.
    [49] K. D. Young, V. I. Utkin, U. Ozguner. Control engineer’s guide to sliding mode control. IEEE Transaction on Control Systems Technology, 1999, 7(3): 328-342.
    [50] R. A. Freeman, P. V. Kokotovic. Inverse optimality in robust stabilization. SIAM Journal of Control Optimization, 1996, 34(4): 1365-1391.
    [51] R. Sepulchre, M. Jankovic, P. V. Kokotovic. Constructive Nonlinear Control. Springer-Verlag, New York, 1997.
    [52] Z. H. Li, M. Krstic. Optimal design of adaptive tracking controllers for non-linear systems. Automatica, 1997, 33(8): 1459-1473.
    [53] Z. Artstein, A. Leizarowitz. Tracking periodic signals with the overtaking criterion. IEEETransactions on Automatic Control, 1985, AC-30(11): 1123-1126.
    [54] A. Leizarowitz. Tracking nonperiodic trajectories with the overtaking criterion. Applied Mathematics and Optimization, 1986, 14(1): 155-171.
    [55] H. Tan, W. J. Rugh. On overtaking optimal tracking for linear systems. Systems and Control Letters, 1998, 33(1): 63-72.
    [56] A. Haurie, A. Leizarowitz. Overtaking optimal regulation and tracking of piecewise diffusion linear systems. SIAM Journal of Control and Optimization, 1992, 30(4): 816-837.
    [57] M. Zaheer-uddin, R. V. Patel. Optimal tracking control of multi-zone indoor environmental spaces. ASME Journal of Dynamic Systems, Measurement and Control, 1995, 117(3): 292-303.
    [58] Z.-H. Li M. Krstic. Optimal design of adaptive tracking controllers for nonlinear systems. Automatica, 1997, 33(8): 1459-1473.
    [59] A. Rahmouni, G. Lachiver. Optimal speed tracking control of induction motor using artificial intelligence techniques. PESC Record IEEE Annual Power Electronics Specialists Conference, 2003, 3: 1445-1448.
    [60] J. M. Lin, C. H. Chang, H. L. Tsai. Optimal trajectory tracking system design by LEQG/LTR method. Journal of the Chinese Institute of Electrical Engineering, Transactions of the Chinese Institute of Engineers, Series E, 1997, 4(1): 15-26.
    [61] Y. M. Park, M. S. Choi, K. Y. Lee. Optimal tracking controller for nonlinear dynamic systems using multilayer neural networks. Proceedings of the American Control Conference, Seattle, WA, USA, 1995. 4280-4284.
    [62] E. Nagy. State tracking through optimized trajectory tracking. Proceedings of the American Control Conference, San Diego, CA, USA, 1999. 1807-1811.
    [63] W. L. Garrard. Suboptimal feedback control for nonlinear systems. Automatica, 1972, 8: 219-221.
    [64] J. Georige, J. Valasek. Selection of longitudinal desired dynamics for dynamic inversion controlled re-entry vehicles. Proceedings of the AIAA Guidance, Navigation, and Control Conference, Montreal, Canada, August, 2001. 6-9.
    [65] A. Wernli, G. Cook. Suboptimal control for the nonlinear quadratic regulator problem. Automatica, 1975, 11(1): 75-84.
    [66] C. J. Goh. On the nonlinear optimal regulator problem. Automatica, 1993, 29(3): 751-756.
    [67] W. L. Garrard, D. F. Enns, S. A. Snell. Nonlinear feedback control of highly manoeuvrable Aircraft. International Journal of Control, 1992, 56(4): 799-812.
    [68] N. J. Krikelis, K. I. Kiriakidis. Optimal feedback control of the non-linear systems. International Journal of Systems Science, 1992, 23: 2141-2153.
    [69] 唐功友,曲海鹏,高延铭,一类非线性系统次优控制的灵敏度法. 中国海洋大学学报,2002, 32(4): 615-620.
    [70] G.-Y. Tang, N. Xie, P. Liu. Sensitivity approach to optimal control for affine nonlineardiscrete-time systems. Asian Journal of Control, 2005, 7(4): 448-454.
    [71] R. J. Leake, R. W. Liu. Construcion of suboptimal control sequences. ASME Journal on Control and Optimization, 1967, 5: 54-63.
    [72] G. N. Saridis, C.-S. G.. Lee. Approximation theory of optimal control for trainable manipulators. IEEE Transactions on Systems, Man, and Cybernetics, 1979, SMC-9(3): 152-159.
    [73] R.W. Beard, G. N. Saridis, J. T. Wen. Galerkin approximation of the generalized Hamilton-Jacobi-Bellman equation. Automatica, 1997, 33(12): 2159-2177.
    [74] R. W. Beard, G. N. Saridis, J. T. Wen. Approximate solutions to the time-invariant Hamilton-Jacobi-Bellman equation. Journal of Optimization Theory and Applications, 1998, 96(3): 589-626.
    [75] T. W. Mclain, C. A. Bailey, R. W. Beard. Synthesis and experimental testing of a nonlinear optimal tracking controller. Proceedings of the American Control Conference, San Diego, CA, USA, 1999. 2847-2851.
    [76] D. Mahayana, R. J. Widodo. Optimal tracking of time varying linear systems via general orthogonal polynomials. IECON Proceedings (Industrial Electronics Conference), Kobe, Jpn, 1991. 2188-2192.
    [77] 吴斌,程鹏,广义正交多项式在时变系统跟踪问题中的应用. 北京航空航天大学学报, 1999, 25(4): 414-417.
    [78] J.-H. Chou, C.-H. Hsieh, J.-H. Sun On-line optimal tracking control of continuous-time systems. Mechatronics, 2004, 14(5): 587-597.
    [79] Y. F. Chang, T. T. Lee. Application of general orthogonal polynomials to the optimal control of linear systems. International Journal of Control, 1986, 43(4): 1283-1304.
    [80] M.-L. Wang, R.-Y. Chang, S.-Y. Yang. Analysis and optimal control of time-varying systems via generalized orthogonal polynomials. International Journal of Control, 1986, (44)4: 895-910.
    [81] M. Razzaghi, A. Arabshahi. Solution of linear two-point boundary-value problems via polynomial series. International Journal of Systems Science, 1989, 20(3): 375-384.
    [82] J. D. Pearson. Approximation methods in optimal control. Journal of Electronics and Control, 1962, 13: 453-465.
    [83] S.-J. Wu, C.-T. Lin. Optimal fuzzy tracking controller design for discrete-time fuzzy systems. Acta Automatica Sinica, 2001, 27(4): 477-494.
    [84] H. Khaloozadeh, A. Abdollahi. An iterative procedure for optimal nonlinear tracking problem. Proceedings of the 7th International Conference on Control, Automation, Robotics and Vision, ICARCV 2002, Singapore, Singapore, 2002. 1508-1512.
    [85] S. N. Balakrishnan, M. Xin. Robust state dependent Riccati equation based guidance law. Proceedings of the American Control Conference, Arlington, VA, 2001. 3352-3357.
    [86] J. R. Cloutier, P. H. Zipfel. Hypersonic guidance via the State-Dependent Riccati Equationcontrol method. IEEE Conference on Control Applications-Proceedings, 1999, 1: 219-224.
    [87] J. R. Cloutier, D. T. Stansbery. Nonlinear Hybrid bank-to-turn/skid-to-turn autopilot design. Proceedings of the Guidance, Navigation, and Control Conference, Montreal, Canada, August, 2001.
    [88] C. P. Mracek, J. R. Cloutier. Missile longitudinal autopilot design using the state-dependent Riccati equation method. Proceedings of the Nonlinear Problems in Aviation and Aerospace, Daytona Beach, FL, May, 1996.
    [89] R. R. Harman, I. Y. Bar-itzhack. Pseudolinear and state-dependent Riccati equation filters for angular-rate estimation. Journal of Guidance, Control and Dynamics, 1999, 22(5): 723-725.
    [90] D. T. Stansbery, J. R. Cloutier. Position and attitude control of a spacecraft using the state-dependent Riccati equation technique. Proceedings of the American Control Conference, Chicago, IL, 2000. 1867-1871.
    [91] E. B. Erdem, A. G. Alleyne. Experimental real-time SDRE control of an underactuated robot. Proceedings of the IEEE Conference on Decision and Control, Orlando, FL, 1999. 2986-2991.
    [92] S. P. Banks, D. McCaffrey. Lie algebras, structure of nonlinear systems and chaotic motion. International Journal of Bifurcation and Chaos, 1998, 8(7):1437-1462.
    [93] S. P. Banks, Exact boundary controllability and optimal control for a generalized Korteweg de Vries equation. Nonlinear Analysis, Theory, Methods and Applications, 2001, 47(8): 5537-5546.
    [94] S. P. Banks, K. Dinesh. Approximate optimal control and stability of nonlinear finite- and infinite-dimensional systems. Annals of Operations Research, 2000, 98(7): 19-44.
    [95] T. Cimen, S. P. Banks. Global optimal feedback control for general nonlinear systems with nonquadratic performance criteria. Systems and Control Letters, 2004, 53(5): 327-346.
    [96] G.-Y. Tang, Suboptimal control for nonlinear systems: a successive approximation approach. Systems and Control Letters, 2005, 54(5): 429-434.
    [97] G.-Y. Tang, H.-H. Wang. Successive approximation approach of optimal control for nonlinear discrete-time systems. International Journal of Systems Science, 2005, 36(3): 153-161.
    [98] G.-Y. Tang, H. Ma, B.-L. Zhang. Successive approximation approach of optimal control for bilinear discrete-time systems. IEE Proceedings of Control Theory and Applications, 2005, 152(6), 639-644.
    [99] 唐功友,高德欣. 带有持续扰动非线性系统的前馈-反馈最优控制. 控制与决策, 2005, 20(4): 366-371.
    [100] Gong-You Tang, De-xin Gao. Approximation design of optimal controllers for nonlinear systems with sinusoidal disturbances. Nonlinear Analysis, in press.
    [101] R. R. Mohler, W. J. Kolodziej. Overview of bilinear system theory and applications. IEEE Transactions on Systems, Man, and Cybernetics, 1980, SMC-10(10): 683-688.
    [102] R. R. Mohler, W. J. Kolodziej. Overview of stochastic bilinear control processes. IEEETransactions on Systems, Man, and Cybernetics, 1980, SMC-10(12): 913-918.
    [103] C. Bruni. Bilinear systems: an appealing class of “nearly linear” systems in theory and applications. IEEE Transactions on Automatic Control, 1974, 19(4): 334-348.
    [104] 华向明. 双线性系统建模与控制. 上海:华东化工学院出版社,1990.
    [105] 张克进,俞金寿. 焦化塔双线性建模及变结构控制. 华东理工大学学报, 2000, 26(5): 462-465.
    [106] 孙西, 金以慧, 方崇智. 双线性系统的自适应控制及其在谷氨酸 pH 值控制中的应用. 自动化学报, 1995, 21(2): 209-213.
    [107] M. De La Sen, J. C. Soto. Adaptive control for a D. C. motor controlled by a group of amplidynes using bilinear models. International Journal of Systems Science, 1988, 19(7): 1245-1280.
    [108] R. R. Mohler. Nonlinear systems: Applications to Bilinear Control, Volume 2. Englewood Cliffs, New Jersey: Prentice Hall, 1991.
    [109] W. A. Cebuhar, V. Costanza. Approximate procedures for the optimal control of bilinear and nonlinear systems. Journal of Optimization Theory and Applications, 1984, 43(4): 615-627.
    [110] E. Hofer, B. Tibken. An iterative method for the finite-time bilinear quadratic control problem. Journal of Optimization Theory and Applications, 1988, 57(3): 411-427.
    [111] Z. Aganovic, Z. Gajic. Successive approximation procedure for finite-time optimal control of bilinear systems. IEEE Transactions on Automatic Control, 1994, 39, 1932-1935.
    [112] Z. Aganovic, Z. Gajic. Successive approximation procedure for steady state optimal control of bilinear systems. Journal of Optimization Theory and Applications, 1995, 84, 273-291.
    [113] B.-S. Kim, M.-T. Lim. Near-optimal control for singularly perturbed bilinear systems using the method of successive approximations. Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications and Algorithms, 2002, 9: 153-162.
    [114] Y.-J. Kim, B.-S. Kim, M-T. Lim. Composite control for singularly perturbed bilinear systems via successive Galerkin approximation. IEE Proceedings of Control Theory and Applications, 2003, 150(5): 483-488.
    [115] 刘永清,唐功友. 大型动力系统的理论与应用-滞后、稳定与控制. 第一版. 广州:华南理工大学出版社,1992.
    [116] J.-P. Richard. Time-delay systems: an overview of some recent advances and open problems. Automatica, 2003, 39(10): 1667-1694.
    [117] M. N. Oguztoreli. A time optimal control problem for systems described by differential difference equations. SIAM Journal of Control, 1963, 1: 290-310.
    [118] N. N. Krasovskii, Optimal processes in systems with time-lag. Proceedings of 2nd IFAC Congress. Basel, Switzerland, 1963. 327-332.
    [119] G. L. Kharatashvili. A maximum principle in external problems with delays. Mathematical Theory of Control. New York: Academic Press, 1967.
    [120] M. N. Oguztoreli, Time-Lag control systems. New York: Academic Press, 1966.
    [121] D. H. Eller, J. K. Aggarwal, H. T. Banks. Optimal control of linear time-delay systems. IEEE Transactions on Automatic Control, 1969, 14: 678-687.
    [122] Y. Alekal, P. Brunovsky, D. H. Chung, B. E. Lee. The quadratic problem for systems with time delays. IEEE Transactions on Automatic Control, 1971, 16: 673-687.
    [123] H. Tamro. Decentralized optimization for distributed-lag models of discrete systems. Automatica, 1975, 11(3): 595-602.
    [124] M. C. Delfour. The linear quadratic control problem with delays in space and control variables: a state space approach. SIAM Journal of Control Optimization, 1986, 24: 835-883.
    [125] K. Uchida, E. Shimemura, T. Kubo, N. Abe. The linear-quadratic optimal control approach to feedback control design for systems with delay. Automatica, 1988, 24(6): 773-780.
    [126] I. V. Kolmanovsky, T. L. Maizenberg. Optimal control of continuous-time linear systems with a time-varying, random delay. Systems and Control Letters, 2001, 44(2): 119-126.
    [127] M. Malek-Zavarei, M. Jashmidi. Time-delay systems: Analysis, optimization and applications. Amsterdam: North-Holland, 1987.
    [128] J. M. Dion, J. L. Dugard, M. Filess. Linear time-delay systems. London: Pergamon, 1999.
    [129] E.-K. Boukas, Z.-K. Liu. Deterministic and stochastic time-delay systems. Babel: Birkhauser, 2002.
    [130] G.-P. Cai, J.-Z. Huang, S. X. Yang. An optimal control method for linear systems with time delay. Computer and Structures, 2003, 81(15): 1539-1546.
    [131] M. Basin, J. Rodriguez-Gonzalez, R. Martinez-Zuniga. Optimal control for linear systems with time delay in control input. Journal of the Franklin Institute, 2004, 341(3): 267-278.
    [132] M. Basin, J. Rodriguez-Gonzalez. A closed-form optimal control for linear systems with equal state and input delays. Automatica, 2005, 41(5): 915-920.
    [133] 刑继祥,宋申民. 单叶 Walsh 级数用于求解双线性系统的最优控制. 哈尔滨工业大学学报,1995, 27(1): 13-17.
    [134] 唐功友,刘毅敏. 时滞离散系统最优输出跟踪控制的灵敏度法. 控制与决策,2005, 20(11):1279-1282.
    [135] G.-Y. Tang, P.-L. Fu. A suboptimal control approach of linear time-delay systems. Proceedings of 14th World Congress of IFAC. Beijing P. R. China, 1999. 99-104.
    [136] 苏宏业,褚健,王骥程. 基于分步变换的离散时滞系统控制器设计及应用. 自动化学报,1996, 22(2): 197-202.
    [137] 解三明,吴沧浦,赵纯钧. 离散时滞大系统的最优跟踪递阶控制方法. 控制与决策,1996, 11(6): 659-671.
    [138] 褚健,胡协和,钟锷,陈虹. 离散时滞系统最优跟踪控制及应用. 自动化学报,1995, 21(1): 25-32.
    [139] 潘颖,王超,蔡国平. 线性时滞系统的离散最优控制. 计算力学学报, 2004, 21(2): 177-184.
    [140] R. T. Yanushevsky. A class of nonlinear time-delay systems and related optimal problems. Computers and Mathematics with Applications, 1999, 37(4-5): 73-78.
    [141] 李俊民,孙群,万百五. 具有模型和实际差异的非线性离散时滞系统最优控制. 系统工程与电子技术,1999, 21(10): 58-60.
    [142] 李俊民,邢科义,万百五. 离散时间非线性时滞系统最优控制的 DISOPE 算法. 控制理论与应用,2000, 17(4): 579-582.
    [143] T.-L. Chien, C.-C. Chen, C.-Y. Hsu. Tracking control of nonlinear automobile idle-speed time-delay system via differential geometry approach. Journal of the Franklin Institute, 2005, 342(7): 760-775.
    [144] A. Miele. Optimal trajectories and guidance trajectories for aircraft flight through windshears. Proceedings of 29th Conference Decision and Control. Honolulu, 1990. 737~746.
    [145] S. Bittanti, F. Lorito, S. Strada. An LQ approach to active control of vibrations in helicopters. ASME Journal on Dynamical Systems, Measurement and Control, 1996, 118(3): 482~488.
    [146] H. J. Li, S. J. Hu, Z. Cheng. Multiple-step predictive control for offshore structures. China Ocean Engineering, 1999, 13(3): 231~246.
    [147] W. Wang, G.-Y. Tang. Feedback and feedforward optimal control for offshore jacket platforms. China Ocean Engineering, 2004, 18(4): 515-526.
    [148] A. Serrani, A. Isidori, L. Marconi. Semiglobal nonlinear output regulation with adaptive internal model. IEEE Transactions on Automatic Control, 2001, 46(8): 1178-1194.
    [149] R. Marino, G. L. Santosuosso, P. Tomei. Robust adaptive compensation of biased sinusoidal disturbances with unknown frequency. Automatica, 2003, 39(10): 1755~1761.
    [150] L. J. Brown, Q. Zhang. Periodic disturbance cancellation with uncertain frequency. Automatica, 2004, 40(4): 631~637.
    [151] R. Marino, P. Tomei. Output regulation for linear system via adaptive internal model. IEEE Transactions on Automatic Control, 2003, 48(12): 2199-2202.
    [152] A. Lindguist, V A. Yakubovich. Optimal damping of forced oscillations in discrete-time systems. IEEE Transactions on Automatic Control, 1997, 42(6): 786-802.
    [153] G.-Y. Tang. Feedforward and feedback optimal control for linear systems with sinusoidal disturbances. High Technology Letters, 2001, 7(4): 16-19.
    [154] P. Lancaster, L. Lerer, M. Tismenetsky, Factored forms for solutions of AX – XB = C and X – AXB = C in companion matrices. Linear Algebra and Its Applications 1984, 62: 19–49.
    [155] M. S. Chen, Y. R. Huang. Linear time-varying system control based on the inversion transformation. Automatica, 1997, 33(4): 683-688.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700