用户名: 密码: 验证码:
含缺陷和掺杂石墨烯纳米带电子学和光学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
最近几十年以来,研究者们在硅基电子器件取得了巨大成就并被广泛地应用到了计算机及其他应用领域中,在很多方面表明了电子器件的小型化是其发展的显著特点。实际上,我们是通过硅基晶体管持续的小型化得到更高度集成、功耗更低和更快的电路。现在,我们面对的挑战是器件小型化方法将达到科学和技术的极限。当前急切需要去寻找和开发替代的设备技术。由于碳基纳米材料,特别是准一维的石墨烯纳米带具有出色的电子学性能,因此,研究者认为石墨烯纳米带是制造下一代电子器件的理想候选材料。随着高性能计算能力的不断提高和计算中算法的不断改进,使得我们有可能利用基于第一性原理的计算模拟去了解材料中的电子结构并研究电子器件工程问题。尤为重要的是计算模拟已经成为理论上研究纳米电子学的重要手段。
     本文利用基于密度泛函理论的第一性原理,对石墨纳米带的取代掺杂、拓扑缺陷、空位缺陷及其复合型缺陷对电子结构和光学性能的影响进行了系统的研究,此外我们还讨论了有机分子吸附在石墨纳米带上,对其电子学性能的影响。研究结果对基于石墨烯纳米带的电子器件的实际制备和开发具有重要意义。
     在石墨烯纳米带中引入Stone-Wales(SW)缺陷,研究发现,对称SW缺陷引起了垂直石墨烯纳米带平面方向局部范围内的扭曲,而非对称SW缺陷只是导致了石墨烯平面内的晶格扭曲。由于七元环具有负曲率而五元环具有正曲率,两种SW缺陷的引入引起了石墨烯纳米带电荷的重新分布。引入SW缺陷后的石墨烯纳米带的吸收和反射谱也发生了明显的红移。含对称SW缺陷的石墨烯纳米带的第一吸收峰的峰值分别是理想和含非对称SW缺陷的石墨烯纳米带第一吸收峰峰值的两倍,且含对称SW缺陷的石墨烯纳米带的第一反射峰的峰值比理想和含非对称SW缺陷的石墨烯纳米带的第一反射峰的峰值大一个数量级,分析认为与含对称SW缺陷石墨烯纳米带出现的折皱构型有关。计入自旋的计算结果表明,非对称SW缺陷影响了不同自旋方向的态密度分布,在相同能量处出现了非对称分布,分析认为是非对称SW缺陷的引入破坏了石墨烯纳米带的对称性。
     本文系统地模拟了石墨烯纳米带中杂质原子和空位或者SW缺陷共存的复合情况。对于硼(氮)空位复合缺陷位于边缘的锯齿型石墨烯纳米带,这些复合缺陷很明显地改变了石墨烯纳米带的电子学和光学性能。根据对这些复合结构的能带分析可得,复合缺陷的存在没有改变石墨烯纳米带的金属特性。研究硼空位复合缺陷位于石墨烯纳米带边缘上的结构发现,第一吸收峰与只含有空位的石墨烯纳米带结构相比都出现了蓝移现象。而对于一个氮原子掺杂在石墨烯纳米带边缘的空位上的结构,掺杂氮原子位于边缘的石墨烯纳米带结构与只含有空位的石墨烯纳米带结构的第一吸收峰相比,发生了红移现象,而其他的氮原子掺杂复合缺陷结构的第一吸收峰都发生了蓝移现象。
     研究了硼(氮,硅)SW复合缺陷位于石墨烯纳米带上的结构发现,硅原子掺杂在SW缺陷上的石墨烯纳米带几何结构形变最大,分析认为与硅原子较大的原子半径有关。这些复合缺陷的出现对石墨烯纳米带的电子结构和光学性能产生了影响。对于邻近石墨烯纳米带边缘的硼(氮)空位复合缺陷结构对石墨烯纳米带的几何结构和能带结构有较大影响。这为含复合缺陷石墨烯纳米带的输运性能研究和器件设计提供了理论参考。
     研究了硼氮共掺杂的石墨烯纳米带发现,其电子能带结构伴随着掺杂原子位置的变化而变化。研究结果表明在没有外电场作用下,不同位置的硼氮共掺杂对应的石墨烯纳米带具有半导体性和半金属性。不同宽度的锯齿型石墨烯纳米带都具有这个特性。这为自旋电子器件的设计提供了理论参考。
     对于不同的石墨烯纳米带与三聚氰胺分子相互作用的结构,研究结果显示,三聚氰胺分子与有缺陷和没有缺陷的石墨烯纳米带都有较强的吸附作用。与其他的石墨烯纳米带相比,三聚氰胺分子更趋向于吸附在硅掺杂的石墨烯纳米带平面上。硅掺杂石墨烯纳米带与三聚氰胺分子相互作用结构的能带结构也与其他结构明显不同,Mulliken电荷分析也得到比较一致的结果。
     本文最后讨论了扶手椅型石墨烯纳米带中含空位﹑SW缺陷﹑掺杂和复合缺陷情况下的几何结构和电子能带结构的变化。结果显示这些不同类型的缺陷和掺杂对扶手椅型石墨烯纳米带的结构和电子学性能有明显的影响。这为以后扶手椅型石墨烯纳米带的输运性能的研究和电子器件设计提供了理论上的参考。
The researchers have made great progress in silicon-based electronic devices that have been widely used in computing and other applications during the recent several decades, and the miniaturization of electronic devices is the remarkable characteristic in many aspects. In fact, the denser, more power-efficient circuitry and faster is obtained through the approach of continuously silicon-based transistors miniaturizing. Nowadays, the challenge in face of us is that the miniaturization approach will soon encounter both scientific and technical limits. It is urgent for us to make an effort to look for and develop alternative device technologies. Owing to the excellent electrical properties of the carbon-based nanomaterials, such as qusi-one-dimensional (1D) graphene nanoribbons, are considered as the ideal candidates to make next generation electronic devices. With the development of high performance cluster computers and the improvement of algorithm for calculating, computational simulations based on the first-principles are able to be performed to understand the electronic structrue of these materials and to investigate the electronic device engineering issues. More importantly, computational simulation becomes the most important theoretical method to investigate the nanoelectronics.
     Using the first principles based on density functional theory, the paper systematically investigates the effects of the substitutive doping, topological defect, vacancy defect and these complex defects on the electronic structures and optical properties of graphene nanoribbons, moreover, we also have explored the electronic properties of graphene nanoribbons with the adsorption of the Melamine molecule. These results is significant for the practical preparation and development of graphene nanoribbon-based electronic devices.
     The investigation of graphene nanoribbon with introducing Stone-Wales(SW) defect show that the symmetrical SW defect lead to the local distortion perpendicular to the plane of the graphene nanoribbon, but the asymmetrical SW defect only lead to the distortion in the plane of the graphene nanoribbon. The two SW defects arose the redistribution of the charge, it is the reason that the 7-fold ring has the negative curvature and 5-fold ring has the positive curvature. The absorption and reflectance spectrum of the graphene nanoribbon appear distinctly redshift after introducing the SW defect. The intensity of the first absorption peak of the graphene nanoribbon with symmetrical SW defect is the twice of the first absorption peak of the perfect graphene nanoribbon or the graphene nanoribbon with asymmetrical SW defect, and the first reflectance peak of the graphene nanoribbon with symmetrical SW defect is one magnitude bigger than that of the perfect graphene nanoribbon and the graphene nanoribbon with asymmetrical SW defect, it is considered that it is related with the ripple of the graphene nanoribbon with symmetrical SW defect. After taking the spin polarized into account, the calculated results show that asymmetrical SW defect affect the distribution of density of state of the different spin directions, and it appears the asymmetrical distribution at the same energy site, it is considered that the asymmetrical SW defect breaks the symmetry of the graphene nanoribbon.
     The paper has also made systematic simulations of graphene nanoribbon with impurity atom-vacancy (or SW defect) present contemporarily. When the boron (nitrogen)-vacancy complex defects locate on the edge of the zigzag graphene nanoribbon, these complex defects have changed the electronic and optical properties of the graphene nanoribbons distinctly. According to the band structures of these complex configurations, the presence of complex defect doesn’t change the metallic character of the graphene nanoribbon. The first absorption peak of the graphene nanoribbon with boron-vacancy complex defect on the edge of the graphene nanoribbon appears blueshift compared with the graphene nanoribbon with only one vacancy. And the first absorption peak of the graphene nanoribbon with one nitrogen atom doping on the edge appears redshift compared with the graphene nanoribbon with only one vacancy, but other nitrogen-vacancy complex configurations appear blueshift.
     The geometry structure of the graphene nanoribbon with silicon substitutional doping on the SW defect has more changes among the graphene nanoribbons with boron (nitrogen or silicon)-SW complex defects, it is considered that it is related to larger silicon atomic radius. These complex defects affect the electronic and optical properties of the graphene nanoribbons. The boron (nitrogen)-vacancy complex defects near the edge of the graphene nanoribbon affect the geometry and electronic structures of the graphene nanoribbon distinctly. it may supply the theoretical reference for the investigation of electronic transport and the design of electronic device of the graphene nanoribbons.
     Doping positions regulate the electronic structure among the graphene nanoribbons with boron/nitrogen codoping. The investigation results exhibit both semiconducting and half-metallic behavior in response to the boron/nitrogen co-doping at different sites without an applied electronic field. The zigzag graphene nanoribbons with different widths have this character. It supplies the theoretical reference for the design of spin electronic devices.
     The investigation results of the interaction of Melamine molecule with both defected and defect free graphene nanoribbons show that the Melamine molecules are rather strongly bound to the graphene nanoribbon. It can also be found that Melamine molecules prefer to be adsorbed on Si-doped graphene nanoribbon compared with other configurations. And the band structures of the interaction of Melamine molecule with Si-doped graphene nanoribbon are different from other configurations, which is in accordance with the Mulliken analyses.
     In the end, the changes of the geometry and electronic band structures of the armchair graphene nanoribbons with vacancy, SW defect, dopant and complex defects are mainly discussed. The calculated results show that the different kinds of defect and dopant affect the geometry structure and electronic properties distinctly. It supplies the theoretical reference for the investigation of electronic transport and the design of electronic devices based on the armchair graphene nanoribbons.
引文
[1] Iijima S. Helical Microtubules of Graphitic Carbon. Nature, 1991, 354 (6348): 56-58
    [2] Novoselov K S, Geim A K, Morozov S V, et al. Electric Field Effect in Atomically Thin Carbon Films. Science, 2004, 306(5696): 666-669
    [3] Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.;de Heer, W. A. Electronic Confinement and Coherence in Patterned Epitaxial Graphene. Science 2006, 312(5777):1191-1196
    [4] Yang L, Anantram M P, Han J, et al. Band-gap change of carbon nanotubes: Effect of small uniaxial and torsional strain. Phys. Rev. B, 1999, 60(19):13874-13878
    [5] Mintmire J W, White C T. Universal density of states for carbon nanotubes. Phys. Rev. Lett., 1998, 81(12):2506-2509
    [6] A. K. Geim, K. S. Novoselov, The rise of graphene. Nat. Mater. 2007, 6: 183-191
    [7] M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, Peculiar Localized State at Zigzag Graphite Edge. J. Phys. Soc. Jpn. , 1996, 65(7):1920-1923
    [8] K. Nakada, M. Fujita, G. Dresselhaus, and M. S.Dresselhaus. Edge state in graphene ribbons: Nanometer size effect and edge shape dependencePhys. Rev. B 1996, 54(24): 17954-17961
    [9] K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist. Electronic and magnetic properties of nanographite ribbons. Phys.Rev. B, 1999, 59(12):8271-8282
    [10] M. Ezawa. Peculiar width dependence of the electronic properties of carbon nanoribbons. Phys. Rev. B, 2006, 73:045432-1-045432-8
    [11] L. Brey and H. A. Fertig. Electronic states of graphene nanoribbons studied with the Dirac equation. Phys. Rev. B 2006, 73:235411-1-235411-5
    [12] K.-I. Sasaki, S. Murakami, and R. Saito. Gauge Field for Edge State in Graphene. J. Phys. Soc. Jpn., 2006, 75(7):074713-074720
    [13] D. A. Abanin, P. A. Lee, and L. S. Levitov. Spin-Filtered Edge States and Quantum Hall Effect in Graphene. Phys. Rev. Lett., 2006, 96:176803- 1- 176803-4
    [14] S. Park, R. S. Ruoff, Chemical methods for the production of graphemes. Nat. Nanotechnol. 2009, 4(4):217-24
    [15] K. A. Ritter, J. L. Lyding. Characterization of nanometer- sized, mechanically exfoliated graphene on the H-passivated Si (100) surface using scanning tunneling microscopy. Nanotechnology 2008, 19: 015704-1-015704-6
    [16] A. N. Sidorov, M. M. Yazdanpanah, R. Jalilian, P. J. Ouseph, R.W. Cohn, G. U. Sumanasekera. Electrostatic deposition of graphene. Nanotechnology 2007, 18(13), 135301-1-135301-4
    [17] E. Rollings, G.-H. Gweon, S. Y. Zhou, B. S. Mun, J. L.McChesney, B. S. Hussain, A. V. Fedorov, P. N. First, W. A.de Heer, A. Lanzara. Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate. J. Phys. Chem. Solids 2006, 67:2172-2177
    [18] K. Kim, H. Lee, J. Choi, H. K. Lee, T. Kang, B. Kim, S. Kim. Temperature dependent structural changes of graphene layers on 6H-SiC (0001) surfaces. J. Phys. Condens. Matter 2008, 20(22): 225017-1-225017-5
    [19] M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, Z. Wang, I. T. McGovern, G. S. Duesberg, J. N. Coleman. Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions. J. Am. Chem. Soc. 2009, 131(10):3611-3620
    [20] X. Lu, M. Yu, H. Huang, R. S. Ruoff, Tailoring graphite with the goal of achieving single sheets. Nanotechnology, 1999, 10(3):269-272
    [21] A. G. Cano-Marquez, F. J. Rodr_guez-Macias, J. Campos-Delgado,C. G. Espinosa-Gonzalez, F. Tristan-Lopez, D. Ram_rezGonzalez, D. A. Cullen, D. J. Smith, M. Terrones, Y. I. VegaCantu. Ex-MWNTs: Graphene Sheets and Ribbons Produced by Lithium Intercalation and Exfoliation of Carbon Nanotubes. Nano Lett. 2009, 9(4): 1527-1533
    [22] M. Choucair, P. Thordarson, J. A. Stride. Gram-Scale Productiontion of Graphene Based on Solvothermal Synthesis and Sonication. Nat. Nanotechnol.2009, 4:30-33
    [23] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S.De, I. T. Mcgovern, B. Holland, M. Byrne, Y. K. Gun’ko, J. J.Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue,J. Hutchison, V. Scardaci, A. C. Ferrari, J. N. Coleman. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat.Nanotechnol., 2008, 3:563-568
    [24] X. Yang, X. Dou, A. Rouhanipour, L. Zhi, H. J. Rader, K.M_llen.Two-Dimensional Graphene Nanoribbons. J. Am. Chem. Soc. 2008, 130 (13): 4216-4217
    [25] X. Li, G. Zhang, X. Bai, X. Sun, X.Wang, E.Wang, H. Dai. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat.Nanotechnol. 2008, 3:538-542
    [26] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov and A. K. Geim. Two-dimensional atomic crystals. Proc.Natl. Acad. Sci. USA, 2005, 102(30): 10451-10453
    [27] J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth and S. Roth. The structure of suspended graphene sheets. Nature, 2007, 446:60-63
    [28] J. C. Meyer, C. Kisielowski, R. Erni, M. D. Rossell, M. F. Crommie and A. Zettl. Direct Imaging of Lattice Atoms and Topological Defects in Graphene Membranes. Nano Lett., 2008, 8(11):3582-3586
    [29] E. Stolyarova, R. K. Taeg, S. Ryu, J. Maultzsch, P. Kim, L. E. Brus, T. F. Heinz, M. S. Hybertsen and G. W. Flynn. High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proc. Natl. Acad. Sci., USA, 2007, 104(22):9209-9212
    [30] P. Blake, E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth and A. K. Geim. Making graphene visible. Appl. Phys. Lett., 2007, 91(6):063124-1-063124-3
    [31] S. Roddaro, P. Pingue, V. Piazza, V. Pellegrini and F. Beltram. The Optical Visibility of Graphene: Interference Colors of Ultrathin Graphite on SiO2. Nano Lett., 2007, 7(9):2707-2710
    [32] A. Gupta, G. Chen, P. Joshi, S. Tadigadapa and P. C. Eklund. Raman Scattering from High-Frequency Phonons in Supported n-Graphene Layer Films. Nano Lett., 2006, 6(12):2667-2673
    [33] A. C. Ferrari. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun., 2007, 143(1-2): 47-57
    [34] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri,S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett., 2006, 97(18): 187401- 1- 187401-4
    [35] M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. A. Cancado, A. Jorio and R. Sato. Studying disorder in graphite-based systems by Raman spectroscopy.Phys. Chem. Chem. Phys., 2007, 9(11):1276-1290
    [36] D. Graft, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold and L. Wirtz. Spatially Resolved Raman Spectroscopy of Single- and Few-Layer Graphene. Nano Lett., 2007, 7(2): 238-242
    [37] I. Calizo, A. A. Balandin, W. Bao, F. Miao and C. N. Lau. Temperature Dependence of the Raman Spectra of Graphene and Graphene Multilayers. Nano Lett., 2007, 7(9): 2645-2649
    [38] G. W. Semenoff. Condensed-Matter Simulation of a Three-Dimensional Anomaly. Phys. Rev. Lett., 1984, 53(26): 2449-2452
    [39] F. D. M. Haldane. Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly". Phys. Rev. Lett., 1988, 61(18): 2015-2018
    [40] M. I. Katsnelson, K. S. Novoselov and, A. K. Geim. Chiral tunnelling and the Klein paradox in graphene. Nature Phys., 2006, 2: 620-625
    [41] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438: 197-200
    [42] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler,J. C. Maan, G. S. Boebinger, P. Kim and A. K. Geim. Room-Temperature Quantum Hall Effect in Graphene. Science, 2007, 315(5817): 1379.
    [43] J. S. Bunch, A. M. V. D. Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead and P. L. McEuen. Electromechanical Resonators from Graphene Sheets. Science, 2007, 315(5811): 490-493
    [44] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson and K. S. Novoselov. Detection of individual gas molecules adsorbed on graphene. Nature Mater., 2007, 6: 652-655
    [45] K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin and A. K. Geim. Unconventional quantum Hall effect and Berry's phase of 2πin bilayer graphene. Nat. Phys., 2006, 2: 177-180
    [46] B. Partoens and F. M. Peeters. From graphene to graphite: Electronic structure around the K point. Phys. Rev. B, 2006, 74(7): 075404-1-075404-11
    [47] E. McCann. Asymmetry gap in the electronic band structure of bilayer graphene. Phys. Rev. B, 2006, 74(16): 161403-1-161403-4
    [48] E. V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. Lopes dos Santos, J. Nilsson, F. Guinea, A. K. Geim and A. H. Castro Neto. BiasedBilayer Graphene: Semiconductor with a Gap Tunable by the Electric Field Effect. Phys. Rev. Lett., 2007, 99(21): 216802-1-216802-4
    [49] Young-Woo Son , Marvin L. Cohen & Steven G. Louie , Half-metallic graphene nanoribbons, Nature (London), 2006, 444: 347-349
    [50] Oded Hod, Verónica Barone, Juan E. Peralta, and Gustavo E. Scuseria. Enhanced Half-Metallicity in Edge-Oxidized Zigzag Graphene Nanoribbons. Nano Lett., 2007, 7(8): 2295-2299
    [51] Er-jun Kan, Zhenyu Li, Jinlong Yang, and J. G. Hou. Half-Metallicity in Edge-Modified Zigzag Graphene Nanoribbons. J. Am. Chem. Soc., 2008, 130(13): 4224-4225
    [52] Narjes Gorjizadeh, Amir A. Farajian, Keivan Esfarjani, and Yoshiyuki Kawazoe. Spin and band-gap engineering in doped graphene nanoribbons. Phys. Rev. B, 2008, 78(15): 155427-1-155427-6
    [53] N. M. R. Peres, F. D. Klironomos, S.-W. Tsai, J. R. Santos 1, J. M. B. Lopes dos Santos and A. H. Castro Neto. Electron waves in chemically substituted graphene. Europhys. Lett., 2007, 80(6): 67007-p1-67007-p6
    [54] T. B. Martins, R. H. Miwa, Ant?nio J. R. da Silva, and A. Fazzio. Electronic and Transport Properties of Boron-Doped Graphene Nanoribbons. Phys. Rev. Lett., 2007, 98(19): 196803-1-196803-4
    [55] Sudipta Dutta, Arun K. Manna, and Swapan K. Pati. Intrinsic Half-Metallicity in Modified Graphene Nanoribbons. Phys.Rev.Lett., 2009, 102(9): 096601-1- 096601-4
    [56] Er-Jun Kan, Xiaojun Wu, Zheny Li, X. C. Zeng, Jinlong Yang, and J. G. Hou. Half-metallicity in hybrid BCN nanoribbons. J. Chem. Phys., 2008, 129(8): 084712-1-084712-5
    [57] Hubert B. Heersche, Pablo Jarillo-Herrero, Jeroen B. Oostinga, Lieven M. K. Vandersypen & Alberto F. Morpurgo. Bipolar supercurrent in graphene. Nature, 2007, 446:56-59
    [58] Editorial.Graphene calling. Natural Material, 2007, 6: l 69
    [59] Parr R G, Yang W. Density-Functional Theory of Atoms and Molecules. New York: Oxford University Press, 1989:47-69
    [60] Emberley E G, Iiirczenow G. Electron standing wave formation in atomic wires. Phys. Rev. B, 1999, 60(8): 6028-6033
    [61] Hohenberg P, Kohn W. Inhomogeneous Electron Gas. Phys. Rev., 1964, 136(3B): B864-B871
    [62] Jones R O, Gunnarsson O. The density functional formalism, its applications and prospects. Rev. Mod. Phys., 1989, 61(3):689-746
    [63] Squires G L, Introduction to the Theory of Thermal Neutron Scattering. Mineola: Dover Publications, 1996:25-77
    [64]曾晖.缺陷对单壁碳纳米管和石墨烯电子输运特性影响的研究:[湖南大学博士学位论文].长沙:湖南大学,2009,23
    [65] JoséM Soler , Emilio Artacho , Julian D Gale , Alberto García , Javier Junquera , Pablo Ordejón and Daniel Sánchez-Portal, The SIESTA method for ab initio order-N materials simulation. J.Phys.:Condens.Matter, 2002, 14(11): 2745-2779
    [66] Y.-W. Son, M. L. Cohen, and S. G. Louie. Energy Gaps in Graphene Nanoribbons. Phys. Rev. Lett., 2006, 97(21): 216803-1-216803-4
    [67] Q. M. Yan, B. Huang, J. Yu, F. W. Zheng, J. Zang, J. Wu, B. L. Gu, F. Liu,and W. H. Duan. Intrinsic Current?Voltage Characteristics of Graphene Nanoribbon Transistors and Effect of Edge Doping. Nano Lett., 2007, 7(6): 1469-1473
    [68] L. Pisani, J. A. Chan, B. Montanari, and N. M. Harrison. Electronic structure and magnetic properties of graphitic ribbons. Phys. Rev. B., 2007, 75(6): 064418-1-064418-9
    [69] M. Y. Han, B. Oezyilmaz, Y. Zhang, and P. Kim, 2007 Phys. Rev. Lett. 98, 206805.
    [70] Sun Jia-Tao, Du Shi-Xuan, Xiao Wen-De, Hu Hao, Zhang Yu-Yang, Li Guo and Gao Hong-Jun. Effect of strain on geometric and electronic structures of graphene on a Ru (0001) surface. Chin. Phys. B, 2009, 18(7): 3008-3013
    [71]韦勇,童国平.拉伸作用对单层石墨片电子能隙的影响.物理学报, 2009, 58(3): 1931-1935
    [72]胡海鑫张振华刘新海等.石墨烯纳米带电子结构的紧束缚法研究.物理学报, 2009, 58(10): 7156-7161
    [73]金子飞,童国平蒋永进.非近邻跳跃对扶手椅型石墨烯纳米带电子结构的影响.物理学报, 2009, 58(12): 8537-8543
    [74] Zhang, Y.; Tan, J. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 2005, 438: 201-204
    [75] Byoung Wook Jeong, Jisoon Ihm, Gun-Do Lee. Stability of dislocation defect with two pentagon-heptagon pairs in graphene. Phys. Rev. B., 2008, 78(16): 165403-1-165403-5
    [76] Peng Lu, Zhuhua Zhang, Wanlin Guo. Electronic and magnetic properties of zigzag edge graphene nanoribbons with Stone-Wales defects. Physics Letters A, 2009, 373(37): 3354-3358
    [77] P. Ordejón, E. Artacho, J.M. Soler. Self-consistent order-N density-functional calculations for very large systems. Phys. Rev. B, 1996, 53(16): R10441- R10444
    [78] J.P. Perdew, K. Burke, M. Ernzerhof. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett., 1996, 77(18): 3865-3868
    [79] J.P. Perdew, K. Burke, M. Ernzerhof. Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett., 1997, 78(7): 1396-1396
    [80] Bing Huang, Qimin Yan, Gang Zhou, et al. Making a field effect transistor on a single graphene nanoribbon by selective doping. Appl.Phys.Lett., 2007, 91(25): 253122-1-253122-3
    [81] S. Costamagna, O. Hernandez, and A. Dobry. Spectral gap induced by structural corrugation in armchair graphene nanoribbons. Phys. Rev. B, 2010, 81(11): 115421-1-115421-4
    [82] Alberto Cortijo and Mar′?a A. H. Vozmediano. Electronic properties of curved graphene sheets. Eur. Phys. Lett., 2007, 77(4): 47002-p1-47002-p5
    [83] A. Cortijo,a and M.A.H. Vozmediano. A cosmological model for corrugated graphene sheets. Eur. Phys. J. Special Topics, 2007, 148: 83-89
    [84] Dresselhaus, G.; Dresselhaus, M. S.; Eklund, P. C. Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications;Academic: New York, 1996
    [85] McEuen, P. L.; Fuhrer, M. S.; Park, H. Single-Walled Carbon Nanotube Electronics. IEEE Trans. Nanotechnol., 2002, 1(1): 78-85
    [86] Stankovich, S.; Dmitriy A Dikin; and Geoffrey H B Dommett; et al. Graphene-based composite materials. Nature (London), 2006, 442(7100): 282-286
    [87] Miyamoto, Y.; Nakada, K.; Fujita, M. First-principles study of edge states of H-terminated graphitic ribbons. Phys. ReV. B, 1999, 59(15): 9858-9861
    [88] Kawai T, Miyamoto Y, Sugino O, et al. Graphitic ribbons without hydrogen-termination: Electronic structures and stabilities. Phys. ReV. B, 2000, 62(24): R16349-R16352
    [89] F. Ding. Theoretical study of the stability of defects in single-walled carbonnanotubes as a function of their distance from the nanotube end. Phys. Rev. B, 2005, 72(24): 245409-1-245409-7
    [90] F.J. Ribeiro, J.B. Neaton, S.G. Louie, et al. Mechanism for bias-assisted indium mass transport on carbon nanotube surfaces. Phys. Rev. B, 2005, 72(7): 075302 -1-075302-8
    [91] G.-D. Lee, C.Z. Wang, E. Yoon, et al. Diffusion, Coalescence, and Reconstruction of Vacancy Defects in Graphene Layers. Phys. Rev.Lett., 2005, 95(20): 205501-1-205501-4
    [92] E.J. Duplock, M. Scheffler, P.J.D. Lindan. Hallmark of Perfect Graphene. Phys. Rev. Lett., 2004, 92(22): 225502-1-225502-4
    [93] M.T. Lusk, L.D. Carr. Nanoengineering Defect Structures on Graphene. Phys. Rev. Lett., 2008, 100(17): 175503-1-175503-4
    [94] S.C. Pradhan, J.K. Phadikar. Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models. Phys. Lett. A, 2009, 373(11): 1062-1069
    [95] M. Topsakal, E. Aktürk, H. Sevincli, et al. First-principles approach to monitoring the band gap and magnetic state of a graphene nanoribbon via its vacancies. Phys. Rev. B, 2008, 78(23): 235435-1-235435-6
    [96] E. Kaxiras and K. C. Pandey. Energetics of defects and diffusion mechanisms in graphite. Phys. Rev. Lett., 1988, 61(23): 2693-2696
    [97] M. Sammalkorpi, A. Krasheninnikov, A. Kuronen, et al. Mechanical properties of carbon nanotubes with vacancies and related defects. Phys. Rev. B, 2004, 70(24): 245416-1-245416-8
    [98] A. A. El-Barbary, R.H. Telling, C. P. Ewels, et al. Structure and energetics of the vacancy in graphite. Phys. Rev. B, 2003, 68(14): 144107-1-144107-7
    [99] Castro N A H, Guinea F, Peres N M R, et al. The electronic properties of graphene. Rev. Mod. Phys., 2009, 81(1): 109-162
    [100] Nakabayashi J, Daisuke Y and Susumu K. Band-Selective Filter in a Zigzag Graphene Nanoribbon. Phys. Rev.Lett., 2009, 102(6): 066803-1-066803-4
    [101] Qiao Z H, Wang J, Wei Y D, et al. Universal Quantized Spin-Hall Conductance Fluctuation in Graphene. Phys. Rev.Lett., 2008, 101(1): 016804-1-016804-4
    [102] Wang X R, Li X L, Zhang L, et al. N-Doping of Graphene Through Electrothermal Reactions with Ammonia. Science, 2009, 324(5928): 768–771
    [103] Blanca B, Blase X, Francois T, et al. Anomalous Doping Effects on Charge Transport in Graphene Nanoribbons. Phys.Rev. lett., 2009, 102(9): 096803- 1-096803-4
    [104] Wakabayashi K. Peculiar Electronic Transport Properties of Nano-Graphenes. J. Phys. Chem. Solids, 2008, 69: 1162-1164
    [105] A. Grüneis, C. Attaccalite, L. Wirtz, et al. Tight-binding description of the quasiparticle dispersion of graphite and few-layer graphene. Phys. Rev. B, 2008, 78(20): 205425-1-205425-16
    [106] A. Peigney, C. Laurent, E. Flahaut, et al. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon, 2001, 39(4): 507-514
    [107] A. Ghosh, K. S. Subrahmanyam, K. S. Krishna, et al. Uptake of H2 and CO2 by Graphene. Phys. Chem. C, 2008, 112(40): 15704-15707
    [108] S.S. Wong, E. Joselevich, A.T. Woolley, et al. Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology. Nature (London), 1998, 394(6688): 52-55
    [109] S.S. Wong, A.T. Woolley, E. Joselevich, et al. Covalently-Functionalized Single-Walled Carbon Nanotube Probe Tips for Chemical Force Microscopy. J. Am. Chem.Soc., 1998, 120(33): 8557-8558
    [110] J. Chen, M.A. Hamon, H. Hu, et al. Solution Properties of Single-Walled Carbon Nanotubes. Science, 1998, 282(5386): 95-98
    [111] M.A. Hamon, J. Chen, H. Hu, et al. Dissolution of single-walled carbon nanotubes. Adv. Mater. , 1999, 11(10): 834-840
    [112] K.D. Ausman, R. Piner, O. Lourie, et al. Organic Solvent Dispersions of Single-Walled Carbon Nanotubes: Toward Solutions of Pristine Nanotubes. J. Phys. Chem. B, 2000, 104(38): 8911-8915
    [113] M.D. Ganji , A.Afsari. Interaction of alkanethiols with single-walled carbon nanotubes: First-principles calculations. Physica E, 2009, 41(9): 1696-1700
    [114] S. Roh, J. Oh, Y. Choi. Adsorption of alkanethiol molecules onto carbon nanotube surface. J. Vac. Sci. Technol. B, 2004, 22(3): 1411-1415
    [115] Wehling T O, Novoselov K S, Morozov S V, et al. Molecular Doping of Graphene. Nano Lett., 2008, 8(1): 173-177
    [116] O. Leenaerts, B. Partoens, F. M. Peeters. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study. Phys. Rev. B, 2008, 77(12): 125416-1-125416-6
    [117] B. Huang, Z. Li, Z. Liu, et al. Adsorption of Gas Molecules on Graphene Nanoribbons and Its Implication for Nanoscale Molecule Sensor. J. Phys. Chem. C, 2008, 112(35): 13442-13446
    [118] D. J. Collins, H. C. Zhou. Hydrogen storage in metal–organic frameworks. J. Mater. Chem., 2007, 17(30): 3154-3160
    [119] N. L. Rangel, J. M. Seminario. Graphene Terahertz Generators for Molecular Circuits and Sensors. J. Phys. Chem. A, 2008, 112(51): 13699-13705
    [120] J. D. Fowler,M. J. Allen,V. C. Tung, et al. Practical Chemical Sensors from Chemically Derived Graphene. ACS Nano, 2009, 3(2): 301-306
    [121] Z. M. Ao, J. Yang, S. Li, et al. Enhancement of CO detection in Al doped graphene. Chem. Phys. Lett., 2008, 461(4-6): 276-279
    [122] N. Mohanty, V. Berry. Graphene-Based Single-Bacterium Resolution Biodevice and DNA Transistor: Interfacing Graphene Derivatives with Nanoscale and Microscale Biocomponents. Nano Lett., 2008, 8(12): 4469-4476
    [123] R. Arsat, M. Breedon, M. Shafiei, et al. Graphene-like nano-sheets for surface acoustic wave gas sensor applications. Chem. Phys. Lett., 2009, 467(4-6): 344-347
    [124] A. Sakhaee-Pour, M. T. Ahmadiana, A. Vafai. Applications of single-layered graphene sheets as mass sensors and atomistic dust detectors. Solid State Commun., 2008, 145(4): 168-172
    [125] J. Lu, I. Do, L. T. Drzal, et al. Nanometal-Decorated Exfoliated Graphite Nanoplatelet Based Glucose Biosensors with High Sensitivity and Fast Response. ACS Nano, 2008, 2(9): 1825-1832
    [126] C. Shan, H. Yang, J. Song, et al. Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene. Anal. Chem. 2009, 81(6): 2378-2382
    [127] P. K. Ang, W. Chen, A. T. S. Wee, et al. Solution-Gated Epitaxial Graphene as pH Sensor. J. Am. Chem. Soc., 2008, 130(44): 14392-14393
    [128] Hugo E Romero, Prasoon Joshi, Awnish K Gupta, et al. Adsorption of ammonia on graphene. Nanotechnology, 2009, 20(24): 245501-1-245501-8
    [129] Michael Thompson, Linda Owen, Kate Wilkinson, et al. Testing for bias between the Kjeldahl and Dumas methods for the determination of nitrogen in meat mixtures, by using data from a designed interlaboratory experiment. Meat Science, 2004, 68(4): 631-634
    [130] K. Andre Mkhoyan, Alexander W. Contryman, John Silcox, et al. Graphene- Silica Composite Thin Films as Transparent Conductors. Nano Lett., 2007, 7(7): 1888-1892
    [131] Levente Tapasztó, Gergely Dobrik, Philippe Lambin, et al. Tailoring the atomicstructure of graphene nanoribbons by scanning tunnelling microscope lithography. Nature Nanotech., 2008, 3(7): 397-401
    [132] S. S. Datta, D. R. Strachan, S. M. Khamis, et al. Crystallographic Etching of Few-Layer Graphene. Nano Lett., 2008, 8(7): 1912-1915
    [133] Claire Berger, Zhimin Song, Tianbo Li, et al. Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics. J. Phys. Chem. B, 2004, 108(52): 19912-19916
    [134] S. Dutta and S. K. Pati. Half-Metallicity in Undoped and Boron Doped Graphene Nanoribbons in the Presence of Semilocal Exchange-Correlation Interactions. J. Phys. Chem. B, 2008, 112(5): 1333-1335
    [135] Shan Sheng Yu, Wei Tao Zheng, and Qing Jiang. Electronic Properties of Nitrogen-/Boron-Doped Graphene Nanoribbons With Armchair Edges. IEEE Transactions on Nanotechnology, 2010, 9(1): 78-81
    [136] S. Okada and A. Oshiyama. Magnetic Ordering in Hexagonally Bonded Sheets with First-Row Elements. Phys. Rev. Lett., 2001, 87(14): 146803-1-146803-4
    [137] H. Lee, Young-Woo Son, Noejung Park, et al. Magnetic ordering at the edges of graphitic fragments: Magnetic tail interactions between the edge-localized states. Phys. Rev. B, 2005, 72(17): 174431-1-174431-8
    [138] Yun Ren and Ke-Qiu Chen. Effects of symmetry and Stone–Wales defect on spin-dependent electronic transport in zigzag graphene nanoribbons. J. Appl. Phys., 2010, 107(4): 044514-1-044514-6
    [139] Alireza Saffarzadeh. Modeling of gas adsorption on graphene nanoribbons. J. Appl. Phys., 2010, 107(11): 114309-1-114309-7
    [140] H. Zheng, Z. F. Wang, T. Luo, et al. Analytical study of electronic structure in armchair graphene nanoribbons. Phys. Rev. B, 2007, 75(16): 165414- 1-6
    [141] M. Topsakal, V. M. K. Bagci, and S. Ciraci. Current- voltage (I-V) characteristics of armchair graphene nanoribbons under uniaxial strain. Phys. Rev. B, 2010, 81(20): 205437-1-205437-5
    [142] C. T.White, J. Li, D. Gunlycke, et al. Hidden one-electron interactions in carbon nanotubes revealed in graphene nanostrips. Nano Lett., 2007, 7(3): 825–830
    [143] S. S.Yu, Q. B.Wen, W. T. Zheng, et al. Effects of doping nitrogen atoms on the structure and electronic properties of zigzag single-walled carbon nanotubes through first-principles calculations. Nanotechnology, 2007, 18(16): 165702- 1–165702-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700