用户名: 密码: 验证码:
大方坯SEN的设计优化与结晶器流场的物理模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代连铸生产普遍采用浸入式水口浇注技术。水口的结构参数与浇注工艺参数直接影响着结晶器内钢液的流场和温度场,进而决定了铸坯的表面质量和内部组织结构。因而,优化浸入式水口的结构参数和工艺参数意义重大。
     本文以某钢厂大方坯结晶器为研究对象,基于相似原理建立了1:1的水模型,结合示踪剂法和摄影法等实验技术,对使用单孔、四孔、五孔和八孔SEN浇注时,无M—EMS和有M—EMS两种情况下结晶器内钢液的流场进行了模拟研究。得出以下结论:
     1.在插入深度为h_1~h_2时,采用单孔喇叭型水口比采用单孔直筒型水口浇注时,冲击深度更浅,钢液在结晶器内温度和成分均匀化的效果更好,热中心更靠上,更有利于保护渣的熔化,可以获得高质量的铸坯。
     2.原四孔SEN四个出孔不正交,导致结晶器内流场不对称,从内弧侧向外弧侧看,液面左后角和右前角均出现漩涡。原四孔SEN合理的浇注工艺参数应为:α=α_2~α_3,h=h_3±10mm。
     3.五孔改进漏斗型SEN与原四孔SEN的情况相比,加大了冲击深度,不利于夹杂物的上浮。
     4.采用设计的八孔SEN浇注时,即使h=h_5,液面波动仍达2mm,且液面上有漩涡形成,容易发生卷渣。
     5.新四孔SEN最佳结构与工艺参数为:S=S_3,β=β_2,α=α_3,h=h_2±10mm。。将新四孔SEN、原四孔SEN和五孔改进型SEN各自最优结果进行比较,新四孔SEN的混均时间比后两者分别短了1Sec和0.54Sec,冲击深度变浅了19.7mm和31.4mm,上翻到液面时间缩短了0.92Sec和1.55Sec,液面波动几乎相同。
     6.当液面流速在0.30~0.60m/s之间时,电磁搅拌强度是合理的。在本水模型实验中,输入功率为0.4~1.2W。考虑到结晶器为一连续式反应器,输入功率取范围的上限值1.2W。
     7.启动M-EMS,采用原四孔SEN浇注时的最佳工艺参数与不启动M-EMS时相近。
     8.M-EMS下,新四孔SEN的最佳结构与工艺参数为:S=S_2,β=β_2,α=α_4,h=h_3~h_4。与启动电磁搅拌、采用原四孔SEN浇注时的最优水平相比,t_均缩短了5.63~9.33Sec,液面鼓起高度减小了0.83~1.03mm,液面波动减小了1.17~1.2mm,S_碰、V_液相差不大。可以预言,采用新四孔SEN浇注,铸坯的等轴晶会有所提高。
In modern continuous casting process, submerged entry nozzle (SEN) has been widely used, whose structural parameters and operating parameters affect the surface qualities and internal structure of the bloom by influencing the flow field and temperature distribution of molten steel in mold. So it is of great importance to study SEN.
    This paper based on studying a bloom mold of the No.1 Steel Plant of WISCO. According to the similarity theory, a water model in the ratio of 1 to 1 has been established. Applying tracing and photographing technology in the experiment, we studied the flow field in mold when different nozzle, such as the single-outlet-hole SEN, four-outlet-hole SEN, five-outlet-hole SEN and eight-outlet-hole SEN, is used, including starting M-EMS or not. As a result, the following results were found:
    l.When the immersion depth is hi~li2, the trumpet nozzle with single outlet hole is better than the straight nozzle with single outlet hole. When the former was used in casting, the impingement depth is shallower and the uniformity effect of temperature and component is better, at the same time, the heat center is upper which is propitious to the melt of mold powder, and then high quality bloom is acquired.
    2. The flow field in mold is not symmetrical because the four outlet holes' axes of the primary nozzle with four holes is not vertical. Observing from inner arc side, the vortex appeared in left behind corner and right forward corner in liquid surface. The reasonable operating parameters of the primary SEN with four holes is that setting angle is 2~ 3,the immersion depth is h3 10mm.
    3. Compared with the primary nozzle with four holes , the improved funnel nozzle with five holes increased the impingement depth, which is not benefit for the inclusion floation.
    4. When we used the nozzle of eight holes in casting, even the immersion depth is h5, the surface fluctuation of liquid steel is still 2mm and there are some vortexes, which easily arosed entrapping slag.
    5. The optimum parameters for the new nozzle with four holes include that the nozzle's outlet area ratio is S3, inclination of the SEN is 3 2, setting angle is 3 and the immersion depth is h2 10mm. Compared the new nozzle with four holes with the primary nozzle with four holes and the unproved nozzle with five holes, the former uniformity time decreased 1 second and 0.54 second, the impingement depth lowered 19.7mm and 31.4mm, the response time of surface reduced 0.92 second and 1.55 seconds, and the surface fluctuation of liquid steel is merely equal.
    6. When the flow velocity in the meniscus region is 0.30-0. 60m/s, the intensity of M-EMS is reasonable. In this experiment, the requisite power is 0.4-1. 2 W. In view of the mold being a
    
    
    
    continuous reactor, the input power about 1.2W was selected.
    7. When the M-EMS was started, the optimum parameters for the primary nozzle with four holes are similar to the former parameters.
    8. When the M-EMS was started, The optimum parameters for the new nozzle with four holes includes that the nozzle's outlet area ratio is S2, inclination of the SEN is 3 2, setting angle is 4 and the immersion depth is h3-h4. Compared this optimum level with that of the primary nozzle with four holes, the former uniformity time decreased 5.63 ~ 9.33 seconds, the protuberance height of the surface of liquid steel lowered 0.83 ~ 1.03mm, the surface fluctuation of liquid steel reduced 1.17 ~ 1.2mm, and the impact-point and the flow velocity in the meniscus region is almost equivalent. It could be concluded that the percentage of equiaxial crystal would increased when the new nozzle with four holes is used in casting.
引文
[1] 蔡开科.浇注与凝固.北京:冶金工业出版社,1987:32~34
    [2] 史宸兴.连铸钢坯质量.北京:冶金工业出版社,1980
    [3] 蔡开科,程士富.连续铸钢原理与工艺.北京:冶金工业出版社,1999
    [4] 张兴中,倪满森.连铸技术的发展概况及高效连铸.中国冶金,2003,N0.3:17~21
    [5] S. YOKOYA, Y. ASAKO, S. HARA, J. SZEKELY. Control of Immersion Nozzle Outlet Flow Pattern through the Use of Swirling Flow in Continuous Casing. ISIJ, 1994, No. 11: 883~888
    [6] Shinichiro YOKOYA et al.. Swirling Effect in Immersion Nozzle on Flow and Heat Transport in Billet Continous Casting Mold. ISIJ,1998, No. 8:pp827~833
    [7] N. A. Macpherson. Continuous Cast Clean Steel. Steelmaking Conference Proceedings, 1985: pp 13~25
    [8] Hua Bai, B.G. Thomas. Turbulent Flow of Liquid Steel and Argon Bubbles Side—gate Tundish Nozzles:Part Ⅱ Effect of Operation Conditions and Nozzle Design. Metallurgical and Materials Transactions B, 2001:pp269~284
    [9] 文光华,唐萍,何俊范等.板坯连铸结晶器伸入式水口数理模拟研究及应用.炼钢,2002,No.1:44~47
    [10] Shinichiro YOKOYA et al.. Swirling Flow Effect in Off-center Immersion Nozzle on Bulk Flow in Billet Continous Casting Mold. ISIJ, 2001, No. 10:pp1215~1220
    [11] Yuji MIKI et al.. Internal Defects of Continuous Casting Slabs Caused by Asymmetric Unbalanced Steel Flow in Mold. ISIJ, 2003, NO. 10:pp1548~1555
    [12] 王建军等.高拉速下板坯浸入式水口参数的数模研究.包头钢铁学院学报,2002,No.3:255~259
    [13] Yeong-ho HO, Weng-sing HWANG. The Analysis of Molten Steel Flow in Billet Continuous Casting Mold. ISIJ, 1996, No. 8:1030~1035
    [14] 何俊范,文光华,雷霆.方坯连铸结晶器壁面速度分布规律的研究.重庆大学学报,1994,(1):84~88
    [15] 文光华,唐萍等.大方坯连铸结晶器伸入式水口结构类型研究.钢铁钒钛,2002,No.3:21~24
    [16] W.K. Schlichting et al..Commissioning of USS/Kobe's NO. 2 Bloom Caster Facility. Iron & Steelmaker, 1996, NO. 6: pp35~39
    [17] 通过向连铸机结晶器供给涡流钢水降低钢的中心偏析.世界钢铁,2001,(2):66
    [18] H.H dl K.Frauenhuber.奥钢联不锈钢连铸技术的最新发展.钢铁,2001,NO.4:27~30
    [19] Lehman A F, Tailback G R, Kollberg S G. Hackl H R.Fluid Flow Control in Continuous Casting Using Various Configurations of Static Magnetic Field. Int Symposium On EPM'94, Nagoya, ISIJ, 1994, pp372~377
    [20] Idogawa A, Tozawa H, Takeuchi S, Soricachi K. Control of Molten Steel Flow in Continuous Casting Mold by Two Static Magnetic Fields Imposed on Whole Width. Int Symposium On EPM'94, Nagoya, ISIJ, 1994, pp378~383
    [21] L. Beitelman, ABB Inc.. Effects of Casting Parameters on Stirring Flow Velocity and its Control in Continuous Casting Molds. Iron & Steelmaker, 2003, No. 2: pp17~23
    [22] Raihle C M et al. Improving inner Quality in Continuous Caster Billet. Ironmaking and Steelmaking, 1994, 21 (6): 487~495
    [23] 雷方,赫冀成,李宝宽.连铸结晶器内钢液流动与传热过程的计算.东北大学学报,1994,No.4:408~412
    [24] 张宏丽,王恩刚,贾光霖等.电磁搅拌提高铸坯等轴晶比率的数值模拟.东北大学学报,2001,No.5:535~538
    
    
    [25] 周伟,韩海鹰,贾斌等.小方坯连铸结晶器电磁搅拌磁场和流场的模拟仿真.包头钢铁学院学报,1999,No.2:139~142
    [26] 雷建明,宋卫平,崔小朝.小方坯连铸电磁搅拌流场和温度场三维耦合数值分析,机械工程学报,2001,No.7:74~78
    [27] 毛斌.方坯连铸电磁搅拌技术的若干问题.连铸,1999,No.5:36~42
    [28] 王明顺,译.在结晶器内采用电磁搅拌提高铸坯质量.大连特殊钢,1991,No.2:107~114
    [29] S. Hintikka, J. Konttinen, K. Leiviska. Optimization of Molten Steel Flow in Continuous Casting Mold. Steelmaking Conference Proceedings, 1992, (3): 887~891
    [30] B. G. Thomas et al. Simulation of Fluid Flow inside a Continuous Slab -Casting Machine. Metallurgical & Materials Transactions B, 1990, No. 2:387~400
    [31] Huang X., Thomas B. G., Najjar F. M.. Modeling Superheat Removal during Continuous Casting of Steel Slabs. Metallurgical & Materials Transactions B, 1992, No. 2:pp339~356
    [32] P. J. Flint. A Three-dimensional Finite Difference Model of Heat Transfer, Fluid Flow and Solidification in the Continuous Slab Caster. Steelmaking Conference Proceedings, 1990:pp481~490
    [33] 文光华,李刚,张建春等.薄板坯连铸结晶器三维流场和温度场的数值模拟.炼钢,1997,No.4:25~29
    [34] 于会香,张炯明,王万军.板坯连铸浸入式水口出口速度对结晶器流场影响的数值模拟.北京科技大学学报,2002,No.5:pp492~496
    [35] 包燕平,张涛,蒋伟等.板坯连铸结晶器内钢液流场的三维数学模型.北京科技大学学报,2001,No.2:106~110
    [36] 雷霆,何俊范.不锈钢方坯连铸结晶器内夹杂物行为的研究.云南冶金,1989,No.6:30~37
    [37] 张胤,贺友多,白学军等.水口插入深度对连铸机结晶器内钢液流动的影响.炼钢,2001,No.4:52~54
    [38] 雷洪,朱苗勇,邱同榜等.板坯连铸结晶器流场优化.炼钢,2000,No.3:29~31
    [39] 干勇,仇圣桃,萧泽强.连续铸钢过程数学物理模拟.冶金工业出版社,2001
    [40] 曲英,刘今.冶金反应工程学导论.北京:冶金工业出版社,1991
    [41] 张先倬.冶金传输原理.北京:冶金工业出版社,1991
    [42] X. K. LAN, J. M. KHODADI, F. SHEN. Evaluation of Six k-ε Turbulence Model Prediction of Flow in a Continuous Casting Billet-Mold Water Model Using Laser Doppler Velocimeter Measurements. Metallurgical & Materials Transactions B, 1997, No.2:pp321~332
    [43] 杨洪涛.浅析连铸坯中的非金属夹杂物.包钢科技,2001,增刊:53~57
    [44] 张胤,贺有多,白学军等.水口插入深度对连铸机结晶器内钢液流动的影响.炼钢,2001,No.2:52~54
    [45] 陈永范,陈德杰,李权.大板坯连铸结晶器内流场实验研究.炼钢,1998,No.2:25~29
    [46] 文光华,李刚,张建春.高速板坯连铸结晶器内流场、温度场的数值模拟.重庆大学学报,1997,No.6:23~29
    [47] 韩至成.电磁冶金学.北京:冶金工业出版社,2001
    [48] 雷霆,何俊范.特殊钢方坯连铸结晶器内的速度场及水口形式的研究.昆明工学院学报,1993,(4):80~86
    [49] 吴建忠.超低头板坯连铸机浸入式水口研究.连铸,2000,No.1:14~16
    [50] 包燕平,田乃媛,徐保美.薄板坯连铸新型浸入式水口.北京科技大学,2002,No.3:262~265
    [51] 段崇雯,朱英雄等.浸入式水口结构与工艺参数配合优化的物理模拟.上海工程技术大学学报,2002,(1):29~32
    [52] 周一平,杨素波等.攀钢板坯连铸机结晶器流场优化的水模拟研究.钢铁钒钛,2002,No.1:1~5
    [53] 张胤,贺有多,刘建辉等.水口倾角对连铸机结晶器内流动过程的影响.连铸,2001,No.4:3~4
    
    
    [54] 岑永权,季文豪.连铸钢水过热度对铸坯凝固的影响.上海金属,1999,No.6:21~24
    [55] 郑沛然.连续铸钢工艺及设备.北京:冶金工业出版社,1991
    [56] Najjar F M, Thomas B G, Hershey D E. Numerical Study of Steady Turbulence Flow through Bifurcated Nozzle in Continuous Casting. Metallurgical & Materials Transactions B, 1995, 26B: pp749~765
    [57] 万晓光,韩传基,蔡开科等.连铸板坯结晶器浸入式水口实验研究.钢铁,2000,No.9:20~23
    [58] 崔小朝,王宥宏,马崇山.结晶器内钢水自旋转搅拌数值模拟与实验研究.太原重型机械学院学报,2002,No.3:221~225
    [59] 曾慧.阶梯式浸入式水口的水模拟试验.国外耐火材料,2001,No.4:39~43
    [60] 高文芳等.连铸中包用瓶式水口的研究与应用.炼钢,1992,(6):6~10
    [61] S. Yokya et al. Development of New Type Nozzle to prevent a Biased Flow inside the Mold for Continuous Casting of Steel. Steelmaking Conference Proceedings, 1996:217~224

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700