用户名: 密码: 验证码:
新型WC基纳米复合刀具材料及其切削性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速、高效切削加工技术是先进实用的制造技术,已成为切削加工的主流,而高性能刀具材料对实现高效加工具有重要的影响。众所周知,高效加工对刀具材料的要求比普通加工更加苛刻,要求刀具材料的性能更高、可靠性更好。虽然目前已有多种多样的高效加工刀具材料,但刀具材料不可能是万能的,各有其特点和应用范围。目前,刀具材料有PCBN、PCD、陶瓷、金属陶瓷、硬质合金刀具和涂层刀具等。但加工铸铁类工件材料还缺乏一类力学性能介于硬质合金刀具材料和陶瓷刀具材料之间的非TiC(N)基金属陶瓷刀具材料。因此,本文探讨研究开发新一类适于高效加工铸铁类工件材料的高性能新型WC基纳米复合刀具材料,以扩大刀具材料的品种。
     本文系统研究了纳米复合刀具材料的设计、组分配比、制备工艺及其优化、力学性能与显微组织结构之间的关系、刀具材料的断裂机制、刀具材料的摩擦磨损特性以及刀具的切削性能和磨损破损机理等。
     提出了基于界面增强的纳米复合刀具材料设计方法,并根据界面的损坏机制,建立了基于界面脱粘和断裂的强度模型,并对纳米复合刀具材料增强相含量与界面强度之间的关系进行了分析与研究。
     建立了纳米复合刀具材料的设计理论框架,利用界面脱粘极限体积含量模型及内应力作用下径向裂纹不贯穿条件的极限体积含量模型,确定增强相的最大极限体积含量。利用界面断裂条件下材料承受最大载荷,设计基体相与增强相的粒径配比。此外,利用界面增强条件,建立了纳米复合刀具材料致密化模型。确定了刀具材料的基体相为WC,增强相为ZrO_2,弥散相为Al_2O_3。
     基于热力学原理,分析并计算了WC基纳米复合刀具材料体系内各相间的化学热力相容性。同时,将工件材料的组成元素视为纳米复合刀具材料的一种相,分析了刀具材料各相与工件材料组成元素间的化学热力相容性,确定了合适的刀工匹配关系。
     研究了WC基纳米复合刀具材料的制备工艺,并对纳米添加相进行了分散试验研究,探讨了纳米粉末分散的影响因素。研究了分散介质温度对分散体系的影响,并系统分析了分散温度对纳米颗粒分散的稳定机制。结果表明,在分散介质温度100℃下分散可获得良好的分散效果。
     研究了WC基纳米复合刀具材料的致密化机理,通过对纳米复合刀具材料烧结温度和保温时间的优化设计,确定了WZ10A纳米复合刀具材料较为合适的烧结温度为1600℃、保温时间为30min、烧结压力为32MPa~35MPa,制备的WZ10A纳米复合刀具材料的密度为12.8g/cm~3,维氏硬度为19.8GPa,抗弯强度为996MPa,断裂韧性为9.2 MPa.m~(1/2),导热系数为38W/(m·K)。
     研究了WC基纳米复合刀具材料增韧补强机理。结果表明,纳米复合刀具材料的主要增强增韧机制为纳米晶粒的细化机制,裂纹扩展中的偏转、弯曲、分支、桥连以及增强相的相变增韧作用等。此外,纳米相的多尺度效应和弥散强化效应以及纳米晶粒的钉扎作用等促进了材料裂纹的微细化并提高了材料的抗弯强度和断裂韧性。
     研究了WC基纳米复合刀具材料的显微组织结构,利用透射电镜和扫描电镜对纳米复合刀具材料显微结构及界面结构特征进行了分析研究。结果表明,WC基纳米复合刀具材料界面所占比例较大,材料内部主要以晶间型组织结构为主,部分存在晶内型结构。
     研究了WC基纳米复合刀具材料裂纹扩展形式和断裂机制,结果表明,烧结制备工艺(特别是烧结温度)对刀具材料的断裂形式和断裂机制影响较为明显。在烧结温度低于1600℃时,WC基纳米复合刀具材料主要以沿晶断裂为主,当烧结温度高于1650℃时,WC基纳米复合刀具材料以穿晶断裂方式为主。
     基于分形理论,建立了沿晶断裂、穿晶断裂和沿晶/穿晶混合断裂三种断裂形式下的分形模型,并依据能量耗散原理,对分形模型进行了分析与计算。结果表明,沿晶断裂的能量消耗最大,穿晶断裂的能量消耗最小,并依据该结论,结合纳米复合刀具材料的显微组织结构,验证了优化的制备工艺。
     研究了WC基纳米复合刀具材料WZ10A高效切削灰铸铁和球墨铸铁的切削性能,并对刀具切削加工中的切削力、切削温度与切削参数之间的关系进行了系统研究与分析。结果表明,在同等切削条件下,WZ10A纳米复合刀具产生的切削力、切削温度等均比YG8硬质合金刀具低,特别适于在200m/min~300m/min的切削速度范围内切削球墨铸铁,刀具寿命比YG8普通硬质合金提高60%~125%。通过对刀具磨损和破损区域微观形貌观察与分析,揭示了WC基纳米复合刀具材料的摩擦磨损特性和磨损机理以及刀具的破损机制。
High performance machining(HPM) is one of the advanced manufacturing technologies and is going to be the mainstream due to its advantages.The tool material is indispensable and more important for high performance machining.It's well known that the requirements of tool material for HPM are more stringent than traditional processing in mechanical properties and reliability to tool materials.Currently,there are more comprehensive types of tool materials,such as PCBN,PCD,ceramics,cermet, cemented carbide and coated tool materials,etal,each of which has different peoperties and is suitable for machining the difinite workpiece materials.However,there is no tool material that the mechanical properties is between cemented carbide tool material and ceramic tool materials,which is suitable for high performance machining cast iron. For example,the TiC(N) based cermet which is suitable for high performance machining steel.In this paper,a novel WC based nanocomposite tool material is developed that is suitable for high performance machining cast iron and expand the variety of tool material.
     In this paper,the design theory for nanocomposite tool materials,the composition of the tool material,the toughening and strengthing mechanisms,hot pressing technology,mechanical properties,microstructure,fracture mechanisms,tribological behaviors and the cutting performance of the tool material are investigated.
     A design methodology for nanocomposite tool material(NTM) is developed based on interface-enhanced theory.An intensity model is developed based on interfacial debonding and interfacial fracture mechanisms.Meanwhile,the effect of reinforcing phase content on grain boundariy strength is discussed also.
     Theoretical frame for the design of NTM is established.The critical volume content of reinforcing phase is determinated based on interface-enhanced theory and toughening mechanism of residual thermal stresses in nanocomposite tool material. Grain diameter rate between the matrix and reinforcing grain is determined based on the maximum loading when interface fractured Densification model is built based on the interface toughening mechanism.Based on thermo-dynamics theory,the composition system for the tool material is decided as tungsten carbide matrix,two reinforcing phases-zirconia and alumina.
     Chemical compatability between the phases in the tool material is considered based on chemical comparability theory when designing the tool materials.Meanwhile, the chemical compatability between the tool material and the workpiece material must be considered.An appropriate matching relation between the tool materials and the workpiece is determined.
     Fabrication technique of NTM is studied and a dispersion experiments is carried out to investigate the dispersivity of nano additives.The factors for influencing the dispersion processing are also explored.The dispersion experiments indicated that a good quality,re-agglomerated composite powder can be obtained by the optimization of the molecular weight and concentration of dispersant,especially the adjustment of the media temperature is the most important.Results show that 100℃is the best temperature to achieve a good dispersion mixture.
     The densification mechanism of the nanocomposite tool materials is studied and the sintering parameters,for example,the sintering temperature and soaking time,are optimized.The optimal results show that the best mechanical properties of WZ 10A are obtained under the condition of the sintering temperature 1600℃,soaking time 30min and pressure 32MPa~35MPa.The mechanical properties are:density 12.8g/cm~3, Vicker's hardness 19.8GPa,bending strength 996MPa,fracture toughness 9.2MPa.m~(1/2) and heat conductivity coefficient 38W/(m·K),respectively.
     Strengthening and toughening mechanisms for NTM were thoroughly studied. Results show that the main strengthening and toughening mechanisms of the materials include the effect of grain fining and grain boundary strengthening caused by nano-scale particles,residual stress toughening and the phase transition toughening effect caused.Additionally,the multi-scale effect,the dispersion strengthening effect and nano-grain pinning effect are emphasized on the toughening and strengthening the nanocomposite tool materials.
     Microstructure of WC matrix nanocomposite tool material is studied.By TEM and SEM,it reveals that grain boundaries have a large proportion in nanocmposite tool materials and inter granular microstructure is the main structure.Meanwhile,a few small intra granular structures are involved in the tool materials.
     In this paper,much effort is paid on the microcrack propagation and fracture mechanism of the nanocmposite tool material.Results reveal that sintering parameters have great influence on the fracture mode and fracture mechanisms.It shows that intergranular fracture is the main fracture mode when sintering temperature is lower than 1600℃while intragranular fracture appeared when sintering temperature is higher than 1650℃in WC based nanocomposite tool materials.
     Three fractal fracture models(including intergranular fracture,intragranular fracture and the mixture fracture of intergranular and intragranular) are proposed based on the fractal theory.Analysis and calculation is accomplished to fractal fracture models based on the principle of energy dissipation.Results show that energy consumption of intergranular fracture is the most while intragranular fracture is the least.Preparation technology can be optimized based on the combination of fracture fractal models and microstructure analysis.
     Cutting performance of WC based nanocomposite tool materials in machining cast irons and nodular cast iron are studied.The relationship between cutting parameters and cutting forces or cutting temperature is discussed.Results show that cutting force and cutting temperature of WZ10A nanocomposite tool materials is smaller than YG8 cemented carbide tool material.WZ10A tool material is more suitable for cutting nodular cast iron in the cutting speed of 200m/min to 300m/min and the tool life is prolonged more than 60%~125%.Wear mechanisms and failure mechanisms of the WZ1 0A tool materials are studied based on the wear morphologies of the tool.
引文
1.Miguel Adzmendi,Justino Fernandez,Alain Gil,et al.Effect of tool setting error on the topography of surfaces machined by peripheral milling[J].International Journal of Machine Tools & Manufacture,2009,(49):36-52.
    2.O E K K Omar,T EI-Wrdany,E Ng,et al.An improved cutting force and surface topography prediction model in end milling[J].International Journal of Machine Tools & Manufacture,2007,(46):1263-1275.
    3.艾兴,萧虹.陶瓷刀具切削加工[M].北京:机械工业出版社,1988.
    4.Schulz H,Moriwaki T.High-speed machining[J].Annuals of the CIRP,1993,(42):733-738.
    5.Simranpreet Singh Gill,RupinderSingh,HarpreetSingh,et al.Wear behaviour of cryogenically treated tungsten carbide inserts under dry and wet turning conditions[J].International Journal of Machine Tools & Manufacture,2009,(49):256-260.
    6.A Pramanik,L C Zhang,J A Arsecularatne.Machining of metal matrix composites:Effect of ceramic particles on residual stress,surface roughness and chip formation[J].International Journal of Machine Tools & Manufacture,2008,(48):1613-1625.
    7.艾兴.高速切削加工技术[M].北京:国防工业出版社,2003.
    8.万熠.高速铣削航空铝合金刀具失效机理及刀具寿命研究[D].济南:山东大学博士学位论文,2006.
    9.E Ng,D K Aspinwall.The effect of workpiece hardness and cutting speed on the machinability of AlSIH13 hot work die steel when using PCBN tooling[J].Transaction of the ASME,2002,(124):588-594.
    10.F Klocke,G Eisenblatter.Dry cutting[J].Annals of the CIRP,1997,46(2):519-526.
    11.Y Sun.Response of cast austenitic stainless steel to low temperature plasma carburizing[J].Materials and Design,2009,(30):1377-1380.
    12.J Rech,C Claudin,E D Eramo.Identification of a friction model-Application to the context of dry cutting of an AISI 1045 annealed steel with a TiN-coated carbide tool[J].Tribology International,2009,42(5):738-744.
    13.Rech J,et al.Identification of a friction model-Application to the context of dry cutting of an AISI 1045 annealed steel with a TiN-coated carbide tool.Tribol Int(2008),doi:10.1016/j.triboint.2008.10.007)
    14.X M Meng,W Z Tang,L F Hei,et al.Application of CVD nanocrystalline diamond films to cemented carbide drills[J].International Journal of Refractory Metals & Hard Materials,2008, (26):485-490.
    15.K Bonnya,P De Baetsa,J Vleugels,et al.Reciprocative sliding wear of ZrO_2-TiCN composites against WC-Co cemented carbide[J].Wear,2008,(265):1767-1775.
    16.Nobom Gretta Hashe,Susanne M Norgren,Hans-Olof Andren,et al.Characterization of WC-(W,V) C-Co made from pre-alloyed(W,V) C[J].International Journal of Refractory Metals & Hard Materials,2009,(27):229-233.
    17.A V Shatov,S S Ponomarev,S A Firstov.Modeling the effect of flatter shape of WC crystals on the hardness of WC-Ni cemented carbides[J].International Journal of Refractory Metals &Hard Materials,2009,27(2):189-197.
    18.T I Selinder,E Coronel,E Wallin,et al.α-Alumina coatings on WC/Co substrates by physical vapor deposition[J].International Journal of Refractory Metals & Hard Materials,2009,(27):507-512.
    19.A Upadhyaya,D Sarathy,G Wagner.Advances in alloy design aspects of cemented carbides[J].Materials & Design,2001,22(6):511-517.
    20.邱关明.新型陶瓷[M].北京:兵器工业出版社,1993.
    21.邓建新,赵军.数控刀具材料选用手册[M].北京:机械工业出版社,2007.
    22.J T Chen,J Wang,F Zhang,et al.Characterization and temperature controlling property of TiAIN coatings deposited by reactive magnetron co-sputtering[J].Journal of Alloys and Compounds,2009,472(1-2):91-96.
    23.Chemg-Yuh Su,Cheng-Tang Pan,Tai-Pin Liou,et al.Investigation of the microstructure and characterizations of TiN/CrN nanomultilayer deposited by unbalanced magnetron sputter process[J].Surface and Coatings Technology,2008,203(5-7):657-660.
    24.M Fallqvist,M Olsson,S Ruppi.Abrasive wear of texture-controlled CVD α-A1_2O_3 coatings[J].Surface and Coatings Technology,2007,202(4-7):837-843.
    25.M Failqvist,M Olsson,S Ruppi.Abrasive wear of muitilayer κ-Al_2O_3-Ti(C,N) CVD coatings on cemented carbide[J].Wear,2007,26(1-6):74-80.
    26.Fanghong Sun,Yuping Ma,Bin Shen,et al.Fabrication and application of nano-microcrystalline composite diamond films on the interior hole surfaces of Co cemented tungsten carbide substrates[J].Diamond & Related Materials,2009,(18):276-282.
    27.Ashis Kumar Dey,Koushik Biswas.Dry sliding wear of zirconia-toughened alumina with different metal oxide additives[J].Ceramics International,2009,35(3):997-1002.
    28.Hui Chen,Guoqing Gou,Mingjing Tu,et al.Characteristics of nano particles and their effect on the formation of nanostructures in air plasma spraying WC-17Co coating[J].Surface and Coatings Technology,2009,203(13):1785-1789.
    29.K Bobzin,N Bagcivan,P Immich,et al.Mechanical properties and oxidation behaviour of(Al,Cr)N and(Al,Cr,Si)N coatings for cutting tools deposited by HPPMS[J].Thin Solid Films,2008,517(3):1251-1256.
    30.Luca Settineri,Mafia Giulia Faga,Beatriz Lerga.Properties and performances of innovative coated tools for turning inconel[J].International Journal of Machine Tools & Manufacture,2008,(48):815-823.
    31.Evans A G.Perspective on the development of high toughness ceramics[J].Journal of American Ceramics Society,1990,73(2):187-192.
    32.Alida Bellosi.Preparation and properties of Al_2O_3 based composites[J].Journal of European Ceramics Society,1992,(10):307-312.
    33.Steinbrech R W.Toughening mechanisms for ceramic materials[J].Journal of European Ceramics Society,1992,(10):131-136.
    34.Y H Liu,R J Ji,X P Li,et al.Effect of machining fluid on the process performance of electric discharge milling of insulating Al_2O_3 ceramic[J].International Journal of Machine Tools &Manufacture,2008,(48):1030-1035.
    35.J Paulo Davim,Luis Figueira.Machinability evaluation in hard turning of cold work tool steel (D2) with ceramic tools using statistical techniques[J].Materials & Design,2007,28(4):1186-1191.
    36.Millet P,Hwang T.Preparation of TiB_2 and ZrB_2 influence of a mechano-chemical treatment on the borothermic reduction of titania and zirconia[J].Journal of Materials Science,1996,31(2):351-355.
    37.Brach M,Sciti D,Balbo A,et al.Short-term oxidation of a ternary composite in the system AlN-SiC-ZrB_2[J].Journal of European Ceramic Society,2005,25(10):1771-1780.
    38.赵军.新型梯度功能陶瓷刀具材料的设计制造及其切削性能研究[M].高等教育出版社,2003.
    39.周建强.陶瓷-硬质合金复合刀片的研制及其破损机理研究[D].济南:山东工业大学博士学位论文,1998.
    40.袁训亮.Al_2O_3/TiC/WC纳米复合陶瓷刀具的研制及切削性能[D].济南:山东大学硕士学位论文,2008.
    41.Wang L,Shi JL,Hua ZL,et al.The influence of addition of WC particles on mechanical properties of alumina-matrix composite[J].Material Letters,2001,50(2-3):179-182.
    42.Laarz E,Carlsson M,Vivien B,et al.Colloidal processing of Al_2O_3-based composites reinforced with TiN and TiC particulates,whiskers and nanoparticles[J].Journal of European Ceramic Society,2001,21(8):1027-1035.
    43.V Rahimi Dizaji,M Rahmani,M Faghihi Sani,et al.Microstructure and cutting performance investigation of Ti(C,N)-based cermets containing various types of secondary carbides[J].International Journal of Machine Tools & Manufacture,2007,(47):768-772.
    44.吕志杰.高性能Si_3N_4/TiC纳米复合陶瓷刀具材料的研制与性能研究[D].济南:山东大学博士学位论文,2005.
    45.邹斌.新型自增韧氮化硅基纳米复合陶瓷刀具及性能研究[D].济南:山东大学博士学位论文,2006.
    46.肖诗纲.现代刀具材料[M].重庆:重庆大学出版社,1992.
    47.Weijie Li,Xinghong Zhang,Changqing Hong,et al.Preparation,microstructure and mechanical properties of ZrB_2-ZrO_2 ceramics[J].Journal of the European Ceramic Society,2009,(29):779-786.
    48.S G Huang,K Vanmeensel,O Van der Biest,J Vleugels.Development of ZrO_2-WC composites by pulsed electric current sintering[J].Journal of the European Ceramic Society,2007,(27):3269-3275.
    49.Dongtao Jiang,Omer Van der Biest,Jef Vleugels.ZrO_2-WC nanocomposites with superior properties[J].Journal of the European Ceramic Society,2007,(27):1247-1251.
    50.T Venkateswaran,D Sarkar,B Basu.WC-ZrO_2 composites:processing and unlubricated tribological properties[J].Wear,2006,(260):1-9.
    51.A K Chattopadhyay,P Roy,A Ghosh,et al.Wettability and machinability study of pure aluminium towards uncoated and coated carbide cutting tool inserts[J].Surface and Coatings Technology,2009,203(8):941-951.
    52.J M Cordoba,J C Sanchez-Lopez,M A Aviles,et al.Properties of Ti(C,N) cermets synthesized by mechanically induced self-sustaining reaction[J].Journal of the European Ceramic Society,2009,29(6):1173-1182.
    53.B V Manoj Kumar,Bikramjit Basu.Mechanisms of material removal during high temperature fretting of TiCN-Ni based cermets[J].International Journal of Refractory Metals and Hard Materials,2008,26(6):504-513.
    54.Abhijeet S More,Wenping Jiang,W D Brown,et al.Tool wear and machining performance of cBN-TiN coated carbide inserts and PCBN coMPact inserts in turning AISI 4340 hardened steel [J].Journal of Materials Processing Technology,2006,180(1-3):253-262.
    55.D P Xiang,Y Liu,M J Tu,et al.Mechanochemical synthesis of ultrafine Ti(C,N)-Al_2O_3composite powders and phase transformation[J].Journal of Alloys and Compounds,2009,473(1-2):453-457.
    56.J Pirso,M Viljus,K Juhani,et al.Two-body dry abrasive wear of cermets[J].Wear,2009,266, (1-2):21-29.
    57.Yah Li,Ning Liu,Xiaobo Zhang,et al.Effect of carbon content on the microstructure and mechanical properties of ultra-fine grade(Ti,W)(C,N)-Co cermets[J].Journal of Materials Processing Technology,2008,206(1-3):365-373.
    58.Ping Feng,Yuehui He,Yifeng Xiao,et al.Effect of VC addition on sinterability and microstructure of ultrafine Ti(C,N)-based cermets in spark plasma sintering[J].Journal of Alloys and Compounds,2008,4600-2):453-459.
    59.H.Gleiter.Nanostructured Materials[J].Acta Metallurgica Sinica,1997,32(2):165-174.
    60.K.Niihara.New Design Concept of Structural Ceramics-Ceramic Nanocomposites[J].Journal of Ceramics Society of Japan,1991,99(10):974-982.
    61.Xiaobo Zhang,Ning Liu,Chunlan Rong,et al.Microstructure and mechanical properties of TiC-TiN-Zr-WC-Ni-Co cermets[J].Ceramics International,2009,35(3):1187-1193.
    62.Ning Liu,Xuesong Liu,Xiaobo Zhang,et al.Effect of carbon content on the microstructure and mechanical properties of superfine Ti(C,N)-based cermets[J].Materials Characterization,2008,59(10):1440-1446.
    63.Wang J et al.,Effect of VC and nano-TiC addition on the microstructure and properties of...,J Mater Design(2008),doi:10.1016/j.matdes.2008.08.017.
    64.Yong Zheng,Weihao Xiong,Wenjun Liu,et al.Effect of nano addition on the microstructures and mechanical properties of Ti(C,N)-based cermets[J].Ceramics International,2005,31(1):165-170.
    65.徐立强,王随莲,黄传真等.纳米Al_2O_3对Ti(C,N)基金属陶瓷性能的影响[J].稀有金属材料与工程,2008,37(4):732-735.
    66.Chengliang Han,Mingguang Kong.Fabrication and properties of TiC-based cermet with intra/intergranular microstructure[J].Materials & Design,2009,30(4):1205-1208.
    67.K Niihara.New Design Concept of Structural Ceramics-Ceramic Nanocomposites[J].Journal of Ceramic Society Japan,1991,(99):974-982
    68.李勇.纳米复相陶瓷[J].现代技术陶瓷,1995,(3):28-31.
    69.金正爱,邱向东.纳米陶瓷复合材料的制备及特性[J].中国有色金属学报,1998,8(2):124-128.
    70.Steams L C,Zhao J,Harmer M P.Processing and microstructure development in Al_2O_3/SiC nanocomposite[J].Journal of European Ceramic Society,1992,(10):473-477.
    71.Z Zak Fang,Xu Wang,Taegong Ryu,et al.Synthesis,sintering,and mechanical properties of nanocrystalline cemented tungsten carbide-A review[J].International Journal of Refractory Metals and Hard Materials,2009,27(2):288-299.
    72.Zheng Y,Xiong W H,Liu W J,et al.Effect of Nano Addition on the Microstructure and Mechanical Properties of Ti(C,N) based cermets[J].Ceramics International,2005,(31):165-170.
    73.韩成良.纳米改性Ti(C,N)基纳米复合材料及铣刀性能的研究[D].合肥:合肥工业大学博士学位论文,2004.
    74.Z L Hong,H Yoshida,T Sakuma,et al.A new Interpretation of stress relaxation behavior in Si_3N_4 Ceramics[J].Key Engineering Materials,2003,(247):279-282.
    75.李理,杨丰科,侯耀永.纳米颗粒复合陶瓷材料[J].材料导报.1996,(4):67-73.
    76.杨辉,张大海,葛曼珍.纳米复合陶瓷研究进展[J].陶瓷学报,1998,(1):48-51.
    77.Shiquan Zhou,Wei Zhao,Weihao Xiong.Microstructure and properties of the cermets based on Ti(C,N)[J].International Journal of Refractory Metals and Hard Materials,2009,27(1):26-32.
    78.S Q Zhou,W Zhao,W H Xiong,et al.Effect of Mo and Mo_2C on the microstructure and properties of the cermets based on Ti(C,N)[J].Acta Metallurgica Sinica(English Letters),2008,21(3):211-219.
    79.J F Yang,T Ohji,T Sekino,et al.,Phase Transformation,Microstructure and Mechanical Pr operties of Si_3N_4/SiC Composites[J].Journal of European Ceramic Society,2001,(21):2179-2183.
    80.K T Hwang,C SKim,K H Auk,et al.,Influence of SiC Particle Size and Drying Method on Mechanical Properties and Microstructure of Si_3N_4/SiC Nanocomposite[J].Materials Leters,1997,9(32):251-257.
    81.高春华,黄新友.纳米陶瓷的性能及制备技术[J].云南大学学报(自然科学版),2002,IA:49-52.
    82.Hall EO.The deformation and ageing of mild steel:Ⅲ Discussion of results[J].Proceedings of the Royal Society of London,Series B,1951,(64):747-753.
    83.K T Hwang,K H Auh,C SKim,et al.Influence of SiC particle size and drying method on mechanical properties and microstructure of Si_3N_4/SiC nanocomposite[J].Materials Letters,1997,32(4):251-257.
    84.Paul H Mayrhofer,Christian Mitterer,Lars Hultman,et al.Microstructural design of hard coatings[J].Progress in Materials Science,2006,(51):1032-1114.
    85.H T Yang,L Gao,R Z Yuan.Effect of Residual Stress on the Bending Strength of Ground Al_2O_3/TiCN Ceramic[J].Materials Chemistry and Physics,2003,(80):305-308.
    86.J H Zhao,L C S teams,M P Harmer,et al.Mechanical Behavior of Alumina-Silicon Carbide "Nanocomposites"[J].Journal of American Ceramic Society,1993,76(2):503-510.
    87.E C Borsa,I R Todd.Mechanical Strength of Alumina Reinforced by SiC Nanocomposites[J]. Journal of Ceramics,1997,43(208):84-87.
    88.Farid Akhtar.Synthesis,microstructure and mechanical properties of Al_2O_3 reinforced Ni_3Al matrix composite[J].Materials Science and Engineering:A,2009,499(1-2):415-420.
    89.W Blum,X H Zeng.A simple dislocation model of deformation resistance of ultrafine-grained materials explaining Hall-Perch strengthening and enhanced strain rate sensitivity[J].Acta Materialia,2009,57(6):1966-1974.
    90.W D金格瑞.陶瓷导论[M].北京:中国建筑工业出版社,1982.
    91.Feng Luo,Chun-Hua Yan.Anti-phase boundaries pinned abnormal positive magnetoresistance in Mg doped nanocrystalline zinc spinel ferrite[J].Chemical Physics Letters,2008,452(4-6):296-300
    92.潘敏元,赵高扬,陈宇航等.金属粘结补强复合陶瓷刀具材料的研究[J].硅酸盐学报,1994,22(5):440-446.
    93.A Reyes-Rojas,H Esparza-Ponce,S D De la Torre,et al.Compressive strain-dependent bending strength property of Al_2O_3-ZrO_2(1.5mol%Y_2O_3) composites performance by HIP[J].Materials Chemistry and Physics,2009,114(2-3):756-762.
    94.吴引江,兰涛,周廉.材料设计与现代科学技术发展[J].材料导报,1998,(12):24-27.
    95.Bikramjit Basu,Devesh Tiwari,Debasis Kundu,et al.Is Weibull distribution the most appropriate statistical strength distribution for brittle materials?[J].Ceramics International,2009,35(1):237-246
    96.郭景坤,诸培南.复相陶瓷材料的设计原则[J].硅酸盐学报,1996,24(1):7-13.
    97.施剑林.先进结构陶瓷材料的制备与设计[J].中国科学基金,1998,(2):83-87.
    98.许崇海.复相陶瓷刀具材料设计、仿真及其应用研究[D].济南:山东工业大学博士学位论文,1998.
    99.Y K Jeong,K Niihara.Microstructure and Mechanical Properties of Pressureless Sintered Al_2O_3/TiC Nanocomposites[J].Nanostructure Materials,1997,9:193-196.
    100.闻立时.固体材料界面研究的物理基础[M].北京:科学出版社,1991.
    101.郭景坤.陶瓷晶界应力设计[J].无机材料学报,1995,10(1):27-30.
    102.H Abdoos,H Khorsand,A R Shahani.Fatigue behavior of diffusion bonded powder metallurgy steel with heterogeneous microstructure[J].Materials & Design,2009,30(4):1026-1031.
    103.郭景坤.材料设计的发展新趋势-材料设计计算方法[J].材料科学与工艺,2000,8(4):57-62.
    104.金宗哲,张国军,包亦望等.复相陶瓷增强颗粒尺寸效应[J].硅酸盐学报,1995,23(6):610-617.
    105.刘继富,沈仰云.颗粒弥散强化复相陶瓷临界晶粒尺寸的优化设计[J].材料科学与工艺, 1995,3(3):52-55.
    106.张国军,岳雪梅,金宗哲.颗粒增韧陶瓷裂纹扩展微观过程[J].硅酸盐学报,1995,23(4):365-369.
    107.Qingfeng Zeng,Litong Zhang,Yongdong Xu,et al.A unified view of materials design:Two-element principle[3].Materials & Design,2009,30(3):487-493.
    108.Y K Jeong,M C Kang,S H Kwon,et al.Tool life of nanocomposite Ti-Al-Si-N coated end-mill by hybrid coating system in high speed machining of hardened AISI D2 steel[J].Current Applied Physics,2009,9(1):S141-S144.
    109.Haitao Yang,Fuliang Shang,Ling Gao.Microstructure and mechanical properties of gas pressure sintered Al_2O_3/TiCN composite[J].Ceramics International,2007,33(8):1521-1524.
    110.尹双增.断裂、损伤理论及应用[M].北京:清华大学出版社,1992.
    111.Wook Jo,Doh-Yeon Kim,Nong-Moon Hwang.Effect of Interface Structure on the Microstructural Evolution of Ceramics[J].Journal of American Ceramic Society,2006,89(8):2369-2380.
    112.S J L Kang.Sintering:Densification,Grain Growth & Microstructure[M].Elsevier,Oxford,2005.
    113.王水兵,李春红,程南璞等.界面特征对颗粒增强金属基复合材料弹性模量和界面阻尼的影响[J].两南大学学报(自然科学版),2008,30(7):371-378.
    114.S G Kim,W S Chu,W K Jung,et al.Evaluation of mechanical and electrical properties of nanocomposite parts fabricated by nanocomposite deposition system(NCDS)[J].Journal of Materials Processing Technology,2007,(187-188):331-334.
    115.邵雪娇,康国政,郭素娟.界面性能对SiCp/6061Al复合材料棘轮行为的影响[J].复合材料学报,2008,25(4):119-125.
    116.姜芳.颗粒增强钛基复合材料的力学性能研究[D].北京:北京理工大学博士学位论文,2006.
    117.赵燕茹,邢永明,雷振坤等.力、热载荷作用下纤维在复合材料中的界面应力传递行为[J].复合材料学报,2008,25(4):187-192.
    118.Sayman O.Thermal-plastic stress analysis of symmetric aluminum metal-matrix composite laminated plates under linearly distributed temperature[J].Journal of Thermal Stress,2003,26(1):1-12.
    119.F C Zhang,H H Luo,T S Wang,et al.Stress state and fracture behavior of alumina-mullite intragranular particulate composite[J].Composites Science and Technology,2008,(68):3245-3250.
    120.杜鹃.四方相纳米氧化锆低温稳定机制的研究现状[J].功能材料,2006,11(37):1691-1696.
    121.Shihua Nie,Cemal Basaran.A Micromechanical Model for Effective Elastic Properties of Particulate Composites with imperfect Interfacial Bounds[J].International Journal of Solids and Structures,2005,42:4179-4191.
    122.周玉.陶瓷材料学[M].北京:科学出版社,2004.
    123.S K Sahoo,M Mohapatra,Brajesh Pandey,et al.Preparation and characterization of α-Fe_2O_3-CeO_2 composite[J].Materials Characterization,2009,60(5):425-431.
    124.V Kosalathip,A Dauscher,B Lenoir,et al.Preparation of conventional thermoelectric nanopowders by pulsed laser fracture in water:application to the fabrication of a pn hereto-junction[J].Applied Physics A:Materials Science & Processing,2008,93(1):235-240.
    125.M H Enayati,G R Aryanpour,A Ebnonnasir.Production of nanostructured WC-Co powder by ball milling[J].International Journal of Refractory Metals & Hard Materials,2009,(27):159-163.
    126.Koch CC.The synthesis and structure of nanocrystalline materials produced by mechanical attrition:a review[J].Nanostruct Materials,1993,(2):109-129.
    127.李县辉,孙永安,张永乾等.陶瓷材料的烧结方法[J].陶瓷学报,2003,24(2):120-124.
    128.K S Tun,M Gupta.Effect of heating rate during hybrid microwave sintering on the tensile properties of magnesium and Mg/Y_2O_3 nanocomposite[J].Journal of Alloys and Compounds,2008,(466):140-145.
    129.Anoop N Samant,Narendra B Dahotre.Laser machining of structural ceramics-A review[J].Journal of the European Ceramic Society,2009,29(6):969-993.
    130.Ibram Ganesh,Paula M C Tortes,J M F Ferreira.Densification ability of combustion-derived Al_2O_3 powders[J].Ceramics International,2009,35(3):1173-1179.
    131.J Gurt Santanach,C Estournes,A Weibel,et al.Spark plasma sintering as a reactive sintering tool for the preparation of surface-tailored Fe-FeAl_2O_4-Al_2O_3 nanocomposites[J].Scripta Materialia,2009,(60):195-198.
    132.X Ai,Z Q Liu,J X Deng.DeveloPment and Perspective of Advanced Ceramic Cutting Tool Material[J].Key EngineeringMaterials,1995,(108-110):53-66.
    133.Horacio D Espinosa,Pablo D Zavattieri.A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials,Part Ⅱ:Numerical examples[J].Mechanics of materials,2003,35(3-6):365-394.
    134.G Q Shao,X L Duan,J R Xie,et al.Sintering of nanocrystalline WC-Co composite powder[J].Advanced material science,2003,5(4):281-286.
    135.E Lassner,W D Schubert.Tungsten-properties,Chemistry,Technology of the Element,Alloys and Chemical Compounds[M].Kluwer Academic Publishers/Plenum Press,London,2000.
    136.Chengchang Jia,Lan Sun,Hua Tang,et al.Hot pressing of nanometer WCoCo powder[J].International Journal of Refractory Metals & Hard Materials,2007,25:53-56.
    137.J F Bartolome,C F Gutierrez-Gonealez,C Pecharroman.Synergistic toughening mechanism in 3Y-TZP/Nb composites[J].Acta Materialia,2007,55:5924-5933.
    138.T Y Kosolapova.Carbides:Properties,Production and Applications[M].Olenum,New York,1971.
    139.M.Montazerian,P.Alizadeh,B.Eftekhari Yekta.Pressureless sintering and mechanical properties of mica glass-ceramic/Y-PSZ composite[J].Journal of the European Ceramic Society,2008,28(14):2693-2699.
    140.Xuelian Du,Yanqin Wang,Xinghua Su,et al.Influences of pH value on the microstructure and phase transformation of aluminum hydroxide[J].Powder Technology,2009,192(1):40-46.
    141.梁在国.纳米复合Ti(C,N)基金属陶瓷的研究[D].武汉:华中科技大学硕士学位论文,2005.
    142.杨发展,赵军,艾兴等.Al_2O_3弥散相对WC基复合材料力学性能和微观结构的影响[J].中国机械工程,2008,18(19):2241-2244.1
    43.许金泉.界面力学[M].北京:科学出版社,2006.
    144.许并社.材料界面的物理与化学[M].北京:化学工业出版社,2006.
    145.姜芳,陈涛,宁建国.部分界面脱黏时颗粒增强金属基复合材料的弹塑性性能[J].北京理工大学学报,2008,28(8):741-744.
    146.N Shi,R J Arsenaudt.The effect of External Mechanical Loading on the change of the matrix Residual Stresses[J].In:Proceedings of ICCM-7,EIservier Sequoia,1990,2:171-176.
    147.Borwen Lin,Takayoshi lseki,Effect of thermal residual stress on mechanical properties of SiC/TiC composites[J].British Ceramic Transactions,1992,(91):1-5.
    148.权高峰,柴东朗,宋余九等.颗粒增强复合材料中微观热应力和残余应力分析[J].应用力学学报,1995,12(2):125-133.
    149.南策文.非均质材料物理-显微结构-性能关联[M].科学出版社,2005.
    150.M Hasanuzzaman,A Rafferty,A G Olabi.Sintering and characterisation of nano-sized yttria-stabilised zirconia[J].International Journal of Nanoparticles,2008,1(1):50-65.
    151.Krishanu Biswas,Bikramjit Basu,Ashok Kumar Suri,et al.A TEM study on TiB_2-20%MoSi_2composite:Microstructure development and densification mechanism[J].Scripta Materialia,2006,(54):1363-1368.
    152.Mehdi Mazaheri,A Simchi,M Dourandish,et al.Master sintering curves of a nanoscale 3Y-TZP powder coMPacts[J].Ceramics International,2009,(35):547-554.
    153.H Su,DL Johnson.Master Sintering Curve:A Practical Approach to Sintering[J].Journal of the Amedcan Ceramic Society,1996,(79):3211-3217.
    154.朱流.金属.陶瓷复合粉体制备与机理及其应用研究[D].杭州:浙江大学博士学位论文,2006.
    155.任萍萍,刘宁,许育东等.TiC/TiN/Al_2O_3复合陶瓷的研究进展[J].合肥工业大学学报(自然科学版),2004,27(1):75-79.
    156.Krstic V V,Nichollson P S,Hoagland R G.Toughening of glasses by metallic particles[J].Journal of the American Ceramic Society,1981,64(9):499.
    157.邓建新.添加TiB_2的新型陶瓷刀具材料的开发及其摩擦磨损行为和应用研究[D].济南:山东工业大学博士学位论文,1995.
    158.Taya M.Toughening of a particulate reinforced ceramic matrix composite by thermal residual stress[J].Journal of American Society,1990,73(5):1382-1387.
    159.杨云鹏,徐更生.莫来石基复相陶瓷的晶界应力及其设计[J].现代技术陶瓷,1996(增刊):511-514.
    160.奚同庚.无机材料热物性学[M].上海:上海科学技术出版社,1981.
    161.Cahn RW,Haasen P.Physical metallurgy[M].4th ed.Cambridge:University Press,1996.
    162.Porter DA,Easteding KE.Phase transformations in metals and alloys[M].Cornwall:Stanley Thornes,2000.
    163.叶大伦,胡建华.实用无机物热力学数据手册[M].第二版.北京:冶金工业出版社,2002.
    164.T Landete-Castillejos,J D Currey,J A Estevez,et al.Influence of physiological effort of growth and chemical composition on antler bone mechanical properties[J].Bone,2007,4(5):794-803.
    165.Deng Jianxin,Liu Jianhua,Zhao Jinlong,et al.Friction and wear behaviors of the PVD ZrN coated carbide in sliding wear tests and in machining processes[J].Wear,2008,264(3-4):298-307
    166.Chen Haoshenga,Li Jiang.A ring area formed around the erosion pit on 1Cr18Ni9Ti stainless steel surface in incipientcavitation erosion.Wear(2008),doi:10.1016/j.wear.2008.08.002
    167.Quanzu Yang,Tom Troczynski.Dispersion of Alumina and Silicon Carbide Powders in Alumina Sol[J].Journal of the American Ceramic Society,1999,82(7):1928-1930.
    168.Q Liu,L Gao,D S Yan,et al.The effect of heat-treatment on the performance of sub-Micro SiCp-Reinforeed α-β Sialon Composites:I.Preparation of Agglomerate-Free Starting Powders [J].Journal of European Ceramics Society,1997,(17):581-585.
    169.Mahrnoodan M,Aliakbarzadeh H,Gholamipour R.Microstructural and mechanical characterization of high energy ball milled and sintered WC-10wt%Co-xTaC nano powders.International Journal of Refractory Metals & Hard Materials(2009),doi:10.1016/j.ijrmhm.2009.02.001.
    170.肖锋,叶建东,王迎军等.超声技术在无机材料合成与制备中的应用[J].硅酸盐学报,2002,30(6):615-619.
    171.石霖.合金热力学[M].北京:机械工业出版社,1992.
    172.果世驹.粉末烧结理论[M].北京:冶金工业出版社,2007.
    173.崔国文.缺陷、扩散与烧结[M].北京:清华大学出版社,1990
    174.李继光,孙旭东,王雅蓉等.α-Al_2O_3纳米粉的烧结动力学[J].金属学报,1998,34(2):195-199
    175.Fukuhara M,Fukuhara K,Fukuhara A.Physical Properties and Cutting Performance of Silicion Nitride Ceramic[J].Wear,1985,(102):195-207.
    176.中华人民共和国国家技术监督局.GB6596-1986.中华人民共和国国家标准-工程陶瓷弯曲强度试验方法[S].北京:中国标准出版社,1986
    177.中华人民共和国国家技术监督局.GB/T 16534-1996.中华人民共和国国家标准-工程陶瓷维氏硬度试验法[S].北京:中国标准出版社,1996
    178.J Spislak,M Hartmanova,G G Kanb,etal.Thermal properties of yttria-stabilized zirconia(YSZ)[J].Journal of European Ceramics Society,1993,11(6):509-514.
    179.B Basu,T Venkateswaran,D Sarkar.Pressureless sintering and tribological properties of WC-ZrO_2 composites[J].Journal of the European Ceramic Society,2005,(25):1603-1610.
    180.徐明霞,段仁官.Al_2O_3添加量对Y-TZP陶瓷烧结及力学性能的影响[J].硅酸盐通报,1997,(4):13-15.
    181.Luis Olmos,Christophe L,Martin,et al.Sintering of mixtures of powders:Experiments and modeling[J].Powder Technology,2009,(190):134-140.
    182.梁开明,顾扣芬,顾守义等.ZTA陶瓷ZrO_2的韧化机制与断裂特征[J].硅酸盐学报,1995,23(5):477-487.
    183.阚艳梅,靳喜海.复相陶瓷的内在增韧机制及其影响因素[J].陶瓷学报,1998,19(4):221-224.
    184.程经毅,周光泉.一种新的位错运动理论及对材料动态力学性能的描述[J].金属学报,1995,31(10):431-437.
    185.Green D J,H annink R H,Swain M V.Transformation toughening of ceramics[M].New York:CRC Press,1989.
    186.Zhang T Y,Li J C M.Interaction of an edge dislocation with an interfacial crack[J].Journal of Applied Physics,1992,72(6):2215-2222.
    187.Z Chen,J J Mecholsky Jr,T Joseph,et al.The fracture geometry of Si_3N_4 wear and fracture surfaces[J].Journal of materials science,1997(32):6317-6323.
    188.J J Mecholsky,D E Passoja,K S Feinberg-Ringel.Quantitative Analysis of Brittle Fracture Surfaces Using Fractal Geometry[J].Journal of American Ceramics Society,2005,72(1):60-65.
    189.Mi Jin Kim,Young Kyu Cho,Duk Yong Yoon.Facet-Defacet Transition of Grain Boundaries in Alumina[J].Journal of the American Ceramic Society,2004,87(3):455-460.
    190.李伯奎,杨凯,刘远伟.分形理论及分形参数计算方法[J].工具技术,2004,2(8):80-84.
    191.辛厚文.分形理论及其应用[M].合肥:中国科学技术出版社,1993.
    192.褚武扬.材料科学中的分形[M].北京:化学工业出版社,2004.
    193.尹双增.断裂·损伤理论及应用[M].北京:清华大学出版社,1992.
    194.李栋.稻谷干燥应力裂纹生成扩展及抑制的试验研究和机理分析[D].北京:中国农业大学博士学位论文,2001.
    195.褚武扬.断裂力学基础[M].北京:科学出版社,1979.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700