用户名: 密码: 验证码:
金属切削过程优化中多约束描述与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代切削技术发展趋势是高效、精密、智能和环保,因而对切削过程中的刀具与被加工工件材料都提出苛刻要求。刀具应该满足高效、高精度、高可靠性和专用化要求,而工件材料应该满足良好切削加工性和环保要求。随着零件使用性能的日益提高,高性能工件材料应用越发广泛,零件结构也越发复杂,这就给切削过程优化带来挑战。同时高性能切削的要求使得刀具和工件材料之间在某些方面产生矛盾,如工件材料较差的切削性能将导致刀具耐用度低和工件加工质量与精度难以保证、薄壁结构件的加工变形对刀具和加工工艺要求苛刻等等,使得切削过程优化越来越迫切。在切削过程优化中,追求的目标及影响切约束随加工方式和加工条件不同而变化,切削过程呈现多目标和多约束特点。针对这一问题,本文应用灰色系统理论,通过构建多约束模型,开展一系列切削过程优化研究,在高效专用刀具开发与应用、高性能工件材料研制、高性能切削中毛刺主动控制及薄壁构件加工变形控制等方面取得创新性成果。主要工作如下:
     1.首次对切削过程中的多约束描述方法进行了详细分析,解决了如何针对不同的切削条件判断约束对切削过程的影响程度的问题。创新性地利用灰色理论研究切削加工过程中约束描述,分析切削加工过程中多约束的作用机理,建立多约束分析模型。
     2.首次将多约束描述和切削过程仿真建模以及标准试验的手段结合,研究多约束条件下实际加工过程中工艺和刀具设计可行性,构造工艺参数和刀具参数的可行空间,提出工艺过程和刀具参数的优化策略,为高性能切削提供指导;
     3.通过对刀具设计进行多约束描述,结合仿真手段和标准试验手段,为刀具结构、涂层以及切削参数提供优化策略,并在淬硬模具钢专用高效铣刀和不锈钢专用高效钻头的设计开发中进行了应用。在此基础上推出了系列涂层模具钢专用高效铣刀和系列不锈钢专用高效钻头,并在市场上获得成功。
     4.对影响无铅低碳硫系易切削钢切削加工性的元素成分进行多约束描述,研究了材料元素成分及其分布对切削过程的影响,提出有利于材料切削加工性改善的材料设计优化方法。该研究成果应用于某大型钢铁企业,研制出具有良好切削性能的新型易切削钢材料,并推向国内外市场。
     5.以铝合金铣削加工过程为对象,通过对切削过程中多约束的研究,分别提出针对铝合金切削过程中毛刺和薄壁件加工变形的优化控制策略,并在生产现场进行了成功应用。研究成果应用于某型战斗机铝合金雷达结构件加工和某飞机制造厂平尾梁间整体肋系列零件加工生产线上,使得产品质量和生产效率得到明显提升。
The trends of cutting technology are high-efficiency, precision, intelligent and environmental-protection; therefore rigorous requirement has been brought for the cutting tools and workpiece materials. Cutting tools must have the characteristic of high-efficiency, high-precision, well-reliability and specialization; materials with good machinability and less polluted of environment should be guaranteed at the same time. With the development of the manufacturing industry, high performance workpiece materials and complex parts have been widely used, which are becoming a huge challenge to the optimization of cutting process. In particular, the high performance cutting process leads inevitably to the contradiction between the cutting tools and workpieces in some extent, such as: the decrease of tool life, loss of precision and deformation of thin part due to the poor machinability of the workpiece material. Thus optimum cutting process is becoming a critical issue. Goals and constrains of the cutting process change with the cutting conditions, so multi-goals and multi-constrains are the basic characteristic of the cutting process. In this dissertation, gray-system theory is introduced to establish multi-constrained model for cutting optimization. Innovative results have been achieved with the help of this theory, especially in exploitation and utilization of high performance tools, development of high performance materials, initiative-control of burr generation in high speed machining and limitation of deformation in machining thin parts. The main works of this dissertation include:
     1. The concept of multi-constrained analysis in the cutting process is presented for the first time in the dissertation. The dissertation applies a method to solve an important problem which is how to judge the influence of constraines during cutting processs. The mathematic models of the multi-constrained analysis are built by grey theory, and the multi-constrained system in the cutting process is analyzed in the dissertation.
     2. The multi-constrained analysis, the simulation of the cutting process and the method of standard experiments are combined in the dissertation for the first time. Focusing on the practical machining process, by means of analysis of different constrains, the feasibility of tool design and technology in the practical machining process are studied. The feasible spaces of the process parameters and tool parameters are constructed and the optimized models are presented, that provided the theoretical basis for the high-performance manufacturing of intricate parts.
     3. On the basis of the multi-constrained analysis of tool design combined with methods of simulations and standard experiments, the optimum methods are provided for structure, coating and cutting parameters of cutting tools. The research results are applied for development of special milling tools for hardened steel and drills for stainless steel. These products were introduced to the market.
     4. The multi-constrained analysis of the machinability of nonleaded low carbon sulphur free-cutting steel is studied. The influence of elements to machinability of nonleaded low carbon sulphur free-cutting steel is analysed. The feasible spaces of optimum machinability were constructed, which provided the theoretical basis for the development of new nonleaded low carbon sulphur free-cutting steel. On the basisi of the research results, new free-cutting steels were developed by a large steel company.
     5. By means of the method of combining the multi-constrained analysis, simulation and standard experiments, the optimum methods for avoiding bur and deformation during milling of aluminum alloy are presented respectively. The optimized instructions are applied successfully in the cutting process of aluminum radar framework of battleplane and rib parts of even tail.
引文
[1]艾兴.高速切削加工技术.北京:国防工业出版社, 2003.
    [2] Oxley P.L.B.,The mechanics of machining:An analytical approach to assessing machinability,Ellis Horwood, U.K.,1989.
    [3] Johnson G.R., Cook W.H., Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 1985,21(1):31-48.
    [4] H.Schulz, Scientific Fundametals of HSC. Munich: Carl Hanser Verlag, 2001.
    [5] Arsecularatne J.A., Mathew P.,The Oxley modeling approach, its applications and future directions. International J. of Machining Science and Technology, 2002,4(3):363-397.
    [6] Arild H. Clausen, Tore Borvik, Odds S. Hopperstad, Ahmed Benalled, Flow and fracture characteristics of aluminium alloy AA5083-H116 as function of strain rate, temperature and triaxiality, Materials science and engineering, 364(1~2)(2004), 260~272.
    [7] V.A.Lubarada, D.J.Benson, M.A.Meyers. Strain-rate effects in rheological models of inelastic response, Inter. J. of Plasticity, 19(8)(2003), 1097~1118.
    [8] A.E. Huespe, A.Carfona, N. Nigro, V. Fachinotti. Visco-plastic constitutive models of steel at high temperature, Journal of Materials Processing Technology, 102(1~3) (2000), 143~152.
    [9]罗子健,杨旗,姬婉华,考虑变形热效应的本构关系建立方法,中国有色金属学报,10(6)(2000), 804~808.
    [10] A. Gente, H.W. Hoffmeister. Chip formation in machining Ti6Al4V at extremely high cutting speeds. Annals of CIRP,50(2001):49-52.
    [11] M.A. EIbetawi, A.K. EI-Wardany. A model for chip formation during machining of hardened steel. Annals of the CIRP 45(1996):71-76.
    [12] G.Poulachon, A.Moisan. A contribution to the study of the study of the cutting mechanisms during high speed machining of hardened steel. Annals of the CIRP, 1998,47(1):386-392.
    [13] M.A.Davies,Y.Chou,C.J.Evans. On chip Morphology, Tool Wear and Cutting Mechanics in Finish Hard Turning. Annals of the CIRP.1996,45(1):77-82.
    [14] R. Shivpuri, J. Hua. etc. Microstructure-mechanics interactions in modeling chip segementation during titanium machining. Cirp, 51(2001):85-89.
    [15] R. Komanduri, Z.B. Hou. On thermoplastic shear instability in the machining of a titanium alloy. Metallurgical and Materials Tran. A, 33A(2002):2995-3010.
    [16] A. Molinari, C. Musquar and G. Sutter. Adiabatic shear banding in high speed machining of Ti–6Al–4V: experiments and modeling. International Journal of Plasticity 18 (2002):443–459.
    [17] T.W. Wright. The physics and mathematics of adiabatic shear bands. Lodon:Cambridge University Press, 2002.
    [18]段春争,王敏杰,切屑高强度结构钢形成的绝热剪切带微结构观察.大连理工大学学报,2004,44(2): 244-248
    [19]阎秋生,陶瓷刀具与淬硬钢的切削机理研究.天津大学博士学位论文,1990.
    [20]何宁,难加工材料高效切削理论与应用研究.南京航空航天大学博士学位论文, 1996.
    [21]袁人炜,难加工材料高速铣削机理及工艺.上海交通大学博士学位论文,2001.
    [22]李亮,钛合金高速铣削机理及其工艺研究.南京航空航天大学博士学位论文,2004.
    [23]刘献礼等,硬态干式切削GCr15时的临界硬度.机械工程学报, 2000,36.3:13-16
    [24]王西彬,赵伯彦,陶瓷刀具干切削淬硬钢的研究.工具技术,1998,32(2):11-14
    [25] Abukhshim,N.A.,Mativenga P.T.,Sheikh M.A.,An investigation of the tool-chip contact length and wear in high-speed turning of EN19 steel. Proceedings of the institution of mechanical engineeers. Journal of Engineering Manufacture, 2004,218(8):889-903
    [26] Usui E.,Shirakashi T. and Kitagawa T.,Analytical prediction of three dimensional cutting process, part3: cutting temperature and crater wear of carbide tool. Journal of Engineering for Industry 100(5)(1978):236-243
    [27] Kitagawa T., Shirakashi T. and Usui E. ,Analytical prediction of flank wear of carbide tools in turning plain steels, part2:prediction of flank wear. Bull Japan Soc.of Prec.Engg.23(2)(1989):126-133
    [28] F. Koenigsberger and A. J. P. Sabberwal, Chip section and cutting force during the milling operation Annals of CIRP, 1961, 10:197-203
    [29] A.E.Bayoumi, G.Yucesan and L.A.Kendall, An analytic mechanistic cutting force model for milling operations: a analysisand methodology, Transactions of the ASME, Journal of Engineering for Industry, Vol.116(1994):324-330
    [30] A.E.Bayoumi, G.Yucesan and L.A.Kendall, An analytic mechanistic cutting force model for milling operations: a case study of helical milling operation, Transactions of the ASME, Journal of Engineering for Industry, Vol.116 (1994):331-339
    [31] I. Yellowley, Observations on the mean values of forces, torque, and specific power in the peripheral milling process, International Journal of Machine Tool Design and Research , 1985,Vol.25(4):337-346
    [32] Y. Altintas, I.Yellowley and J.Tlusty, The detection of tool breakage in milling operations, Transactions of the ASME, Journal of Engineering for Industry, 1988, Vol.110:271-277
    [33] W.A., Kline and R.E., Devor, and J.R., Lindberg, The prediction of cutting forces in end milling with application to cornering cuts, International Journal of Machine Tool Design and Research , 1982,Vol.22(1):7-22
    [34] W.A., Kline and R.E., Devor, The effect of runout on cutting geometry and forces in end milling, International Journal of Machine Tool Design and Research, 1983, Vol.23:23-140
    [35] K.H., Fuh and R.M., Hwang, A predicted milling force model for high-speed end milling operation, International Journal of Machine Tool and Manufacturing, 1997 ,Vol.37:969-979
    [36] G. M., Kim, P.J., Cho, and C.N., Chu, Cutting force prediction of sculptured surface ball-end milling using Z-map, International Journal of Machine Tool and Manufacturing, 2000,Vol.40:277-291
    [37] T.I.Elwardany, M.A.Elebestawi, Cutting Temperature of Ceramic tools in HSM of Difficult-to-Cut Materials, Int. J. Mach. Tools Manufact., Vol. 36(No. 5), 1996:611-634
    [38] Jehnming Lin, Shinn-Liang Lee, Cheng-I Weng, Estimation of Cutting Temperature in High Speed Machining, Journal of Engineering Materials and Technology, Trans. ASME, 1992, Vol.114:289-296
    [39] Jehnming Lin, Inverse Estimation of the Tool-Work Interface Temperature in End Milling, Int. J. Mach. Tools Manufact., 1995, Vol. 35(No.5):751-760
    [40] Yogesh K.Potdar, Alan T.Zehnder. Measurements and simulations of temperature and deformation fields in transient metal cutting. Journal of Manufacturing Science and Engineering,vol.125,2003:645-655
    [41]陈明,袁人炜,三维有限元分析在高速铣削温度研究中应用.机械工程学报,2002,7. Vol.38(7): 76-79
    [42] Iwata K, Osakada K, Terasaka T. Process modeling of orthogonal cutting by the rigid-plastic finite method. Trans ASME J Eng Master Tecnol, 1984, 106: 132-138
    [43]宋国华,肖忠春,切削油添加剂对金属切削过程中残余应力的影响,合成润滑材料,1995(2):4-5
    [44]胡华南,周泽华,预应力加工表面残余应力的理论分析,华南理工大学学报,1994,Vol.22 No.2:1-10
    [45]胡华南,已加工表面残余应力的理论预测及控制,华南理工大学学报,1993
    [46]胡华南等,切削加工表面残余应力的理论预测.中国机械工程,1995,6(1):48-51
    [47] OKUSHIMA K; KAKINO Y,Residual stress produced by metal cutting,Ann CIRP ,1971,vol.20, 13-14
    [48] El-Axir, M.H. A method of modeling residual stress distribution in turning for different materials,International Journal of Machine Tools and Manufacture,2002,vol.42, No.9:1055-1063
    [49] Zhang, Jing Ying; Liang, Steven Y.; Zhang, Guowei; Yen, David,Modeling of residual stress profile in finish hard turning,Materials and Manufacturing Processes,2006,vol. 21 No.1:39-45
    [50] Sasahara, Hiroyuki, Prediction model of surface residual stress within a machined surface by combining two orthogonal plane models,International Journal of Machine Tools and Manufacture,2004,Vol.44, No.7-8:815-822
    [51] Ee, K.C.; Dillon Jr., O.W.; Jawahir, I.S. Finite element modeling of residual stresses in machining induced by cutting using a tool with finite edge radius,International Journal of Mechanical Sciences,2005,Vol.47, No.10:1611-1628
    [52] E.Ceretti, C.Lazzaroni, L.Menegardo,etc. Turing simulation using a three-dimensional FEM code.Journal of Materials Processing Technology. 98(2000):99-103
    [53] Mahmoud Shatla, Christian Kerk,Talyan Altan. Process modeling in machining.Part I: determination of flow stress data. International Journal of Machine Tools & Manufacture 41(2001):1511-1534
    [54] A.E. Huespe, A.Carfona, N. Nigro, V. Fachinotti. Visco-plastic constitutive models of steel at high temperature, Journal of Materials Processing Technology, 102(1~3) (2000), 143~152
    [55] Klamecki, B. E., Incipient chip formation in metal cutting - a three dimension finite element analysis, Ph. D. dissertation, University of Illinois, 1973; Okushima, K., Kakino, Y., The residual stress produced by metal cutting, Ann. CIRP 20 (1) (1971) 13-14.
    [56] Tay, A. O., Stevenson, M. G., David, G. V., Using the finite element method to determine temperature distributions in orthogonal machining, Proc. Inst. Mech. Eng. 188 (1974) 627-638.
    [57] Shet, C., Deng, X., Finite element analysis of the orthogonal metal cutting process, Journal of Material Processing technology 105 (2000) 95-109
    [58] B?ker, M., R?sler, J., Siemers, C., Finite element simulation of segmented chip formation of Ti6Al4V, Journal of Manufacturing Science and Engineering 124 (2002) 485-488;
    [59] Guo, Y. B., Liu, C. R., 3D FEA modeling of hard turning, Journal of ManufacturingScience and Engineering 124 (2002) 189-199.
    [60] Ceretti, E., Lazzaroni, C., Menegardo, L., Altan, T., Turning simulations using a three-dimensional FEM code, Journal of Materials Processing Technology 98 (2000): 99-103.
    [61] Ohbuchi, Y., Obikawa, T., Finite element modeling of chip formation in the domain of negative rake anlge cutting, Journal of Engineering Materials and Technology 125 (2003): 324-332.
    [62] Lin, Z.-C., Zheng, Y.-L., Three-dimensional thermo-elastic-plastic finite element analysis with different cutting speeds, International Journal of Computer Applications in Technology 13 (2000): 210-220
    [63]鲁宏伟,汤燕斌,吴雅等.分维数估计极其在机床颤振混沌研究中的应用.力学与实践,1995, 17(4): 46~48
    [64]张智海,郑力,李志忠,张伯鹏.端铣工艺非线性动力学特性的研究.机械工程学报,2004年8月,第40卷第8期: 45-48
    [65] zhao M X, Balachandran B. B . Dyn amics and stability of milling process,Internationla Journal of Solids and Structures,2001,38(3):2233-2248
    [66] Rao S, Chen L. Determination of optimal machining conditions: a coupled uncertainty model [J]. Transactions of the ASME, 2000 (122) : 206 - 214.
    [67] Uros Z, Franci C. Optimization of cutting conditions during cutting by using neural networks [J]. Robotics and Computer Integrated Manufacturing, 2003 (19) : 189 - 199
    [68] Franci C, Joze B. Optimization of cutting process by GA approach [J]. Robotics and Computer Integrated Manufacturing, 2003 (19) : 113 - 121.
    [69] Suresh P V S, Rao P V , Deshmukh S G. A genetic algorithmic approach for optimization of surface roughness predict ion model[J]. International Journal of Machine Tools &Manufacture, 2002, 42: 675- 680.
    [70] AL Ansary MD, Deiab IM. Concurrent optimization of design and machining to lerances using the genetic algorthms method [J]. In ternational Journal of Machine Tools &Manufacture, 1997, 37: 1721- 1731.
    [71] Pang, Xuehui; Wu, Wenge; Chang, Xing;The prediction of cutting parameter using grey system theory;Progress of Machining Technology - Proceedings of the Seventh International Conference on Progress of Machining Technology, ICPMT'2004;2004;p 759-762
    [72] Nihat Tosun,Determination of optimum parameters for multi-performance characteristics in drilling by using grey relational analysis,Int J Adv Manuf Technol(2006) 28: 450–455
    [73] Jeong H. K.,Won S. Y.,Dong W. C.,Off- line feed rate scheduling using virtual CNC based on an evaluation of cutting performance [J]. Computer- Aided Design,2003,35(4):383- 393.
    [74] V.P. Astakhov, S.V. Shvets. A system concept in metal cutting. Journal of Materials Processing Technology. 79 (1998): 189–199
    [75] Azonzi R, Guillot M. On line optimization of turing using an inverse process neurocontroller, transaction of ASME [J]. Journal of Manufacturing Science and Engineer ing, 1998, 120 (1) : 101- 107.
    [76] H Juan, S F Yu, B Y Lee. The optimal cutting parameter selection of production cost in HSM for SKD61 tool steels [J]. International Journal ofMachine tools &Manufacture, 2003, 43 (7) : 679 - 6861.
    [77] Armarego, E.J.A.,Ostafiev, D. Multi-constraint optimization and cutting conditions selection in process planning turning operations with modern chip breaker tools. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, v 217, n 1, 2003, p 57-71.
    [78] Wang, Rong-Tsu , Liu, Shiang-Tai. An economic machining process model with interval parameters. International Journal of Advanced Manufacturing Technology, v 33, n 9-10, July, 2007, p 900-910.
    [79] Lee, Chen-Han. Smooth Tool-axis variation in 5-axis surface machining. American Society of Mechanical Engineers, Manufacturing Engineering Division, MED, v 15, Manufacturing Engineering and Materials Handling - 2004, 2004, p 251-260.
    [80] Szmejkal, Attila,Somfai, Karoly; Kisdeak, Lajos. Possibilities of developments of cooling/lubricating fluids in metal working. Proceedings of the Conference on Mechanical Engineering, v 1, 1998, p 259-265.
    [81] Agapiou, J.S. Optimization of multistage machining systems, Part 1. Mathematical solution: Journal of Engineering for Industry, Transactions of the ASME, v 114, n 4, Nov, 1992, p 524-531..
    [82] Chua, M.S; Rahman, M.; Wong, Y.S.; Loh, H.T.Determination of optimal cutting conditions using design of experiments and optimization techniques. International Journal of Machine Tools & Manufacture, v 33, n 2, Apr, 1993, p 297-305
    [83] Choudhury, S.K; Appa Rao, I.V.K. Optimization of cutting parameters for maximizing tool life International. Journal of Machine Tools & Manufacture, v 39, n 2, Feb, 1999, p 343-353
    [84] Henriques, Elsa. Towards the integration of process and production planning: An optimisation model for cutting parameters. International Journal of AdvancedManufacturing Technology, v 28, n 1-2, February, 2006, p 117-128
    [85] Palanisamy, P.; Rajendran, I.; Shanmugasundaram, S. Optimization of machining parameters using genetic algorithm and experimental validation for end-milling operations. International Journal of Advanced Manufacturing Technology, v 32, n 7-8, April, 2007, p 644-655
    [86] Hassan, G. A., Suliman, S. M. A. (1990). Experimental modeling and optimization of turning medium carbon steel. International Journal of Production Research, 28(6), 1057–1065.
    [87] Luong, L. H. S., Spedding, T. A. (1995). Neural-network system for predicting machining behaviour. Journal of Materials Processing Technology, 52, 585–591.
    [88] Osborne, D. M., & Armacost, R. L. (1996). Review of techniques for optimizing multiple quality characteristics in product development. Computers and Industrial Engineering, 31(1/2), 107–110.
    [89] Dabade, B. M., Ray, P. K. (1996). Quality engineering for continuous performance improvement in products and processes: A review and reflections. Quality and Reliability Engineering International, 12, 173–189.
    [90] Carlyle, W. M., Montgomery, D. C., Runger, G. C. (2000). Optimization problem and method in quality control and improvement. Journal of Quality Technology, 32(1), 1–17.
    [91] Youssef, H., Sait, S. M., Adiche, H. (2001). Evolutionary algorithms, simulated annealing and tabu search: A comparative study. Engineering Applications of Artificial Intelligence, 14, 167–181.
    [92] Indrajit Mukherjee, Pradip Kumar Ray. A review of optimization techniques in metal cutting processes. Computers & Industrial Engineering 50 (2006) 15–34.
    [93]钟敬文,高效精密回转体刀具切削性能评价体系及其试验研究,上海交通大学硕士学位论文,上海交通大学,2004. 4
    [94] N.A. Abukhshim, P.T. Mativenga, M.A. Sheikh,Heat generation and temperature prediction in metal cutting A review and implications for high speed machining,International Journal of Machine Tools & Manufacture 46 (2006) 782–800
    [95]袁人炜,难加工材料高速铣削机理及工艺,上海交通大学博士学位论文,上海交通大学,2001. 4
    [96]苌浩,高速切削温度场研究,南京航空航天大学硕士学位论文,南京航空航天大学,2003.3
    [97] G. Barrow, A review of experimental and theoretical techniques for assessing cutting temperatures, Ann. CIRP 22 (2) (1973) 203–211.
    [98] A.O. Schmidt, O.W. Gilbert, A. Boston, Thermal balance method and mechanical investigation for evaluating machinability, Trans. ASME 67 (1945).
    [99] Narayanan V., Krishnamurthy K., Hwang J., Madhavan V., Chandrasekar S., Farris T.N., http://roger.ecn.purdue.edu/farrist/Public_Papers
    [100] Y. Takeuchi, M. Sakamoto, T. Sata, Improvement in the working accuracy of an NC lathe by compensating for thermal expansion, Precision Eng. 4 (1) (1982) 19–24.
    [101] Gang Liu, Ming Chen, Zhong Shen. Experimental Studies on Machinability of Six Kinds of Nickel-based Superalloys. International Journal of Machining and Machinability of Materials. Vol. 1, No. 3(2006):287–300
    [102] G. Liu, M. Chen. Experiment Study on Machinability of Six Kinds of Wrought Nickel-based Superalloys. Materials Science Forum. Vols.532-533 (2006). :.444-447.
    [103] G. Liu, N. He, L. Li, Z.L. Man. Cutting forces in the milling of Inconel 718. Key Engineering Materials. Vol.259-260 (2004). :.824-828.
    [104] J. Tlusty and P. MacNeil, Dynamics of cutting forces in end milling, C1RP Annals, 24 (1975): 21-25
    [105] H. J. Fu, R. E. DeVor and S. G. Kapoor, A mechanistic model for the prediction of the force system in face milling operations, Transactions ASME Journal of Engineering for Industry, 16 (1984 February),p. 81-88,
    [106] Felippa C A, Park K C, Farhat C. Partitioned Analysis of Coupled Mechanical System[J]. Computer Methods in Applied Mechanics and Engineering. 2001, 190(24-25): 3247-3270
    [107]陈日曜.金属切削原理.北京:机械工业出版社. 2002.
    [108] Koenigsberger ,Sabberwal F. Koenigsberger and A. J. P. Sabberwal, An investigation into the cutting force pulsation during milling operations, International A Journal of Machine Tool Design and Research, 1(1961): 15-33,
    [109] M.A.Elbestawi, L.Chen, C.E.Becze, T.I.El-wardany,High-Speed Milling of Dies and Molds in Their Hardened State, Annals of the CIRP, 1997, Vol.46(No.1)
    [110]赵威,航空薄壁件的加工变形分析与加工工艺研究,南京航空航天大学硕士学位论文,南京航空航天大学,2003.3
    [111]王志刚,铝合金薄壁件高速铣削加工变形研究,南京航空航天大学硕士学位论文,南京航空航天大学,2004.3
    [112]邓聚龙,灰色系统基本方法(第2版),武汉:华中科技大学出版社,2005年
    [113]邓聚龙,灰理论基础,武汉:华中科技大学出版社,2002年
    [114]罗佑新,张龙庭,李敏.灰色理论及其在机械工程中的应用,北京:国防科技大学出版社,2001
    [115]庞学惠,灰色预测及其在金属切削理论研究中的应用[J].新技术新工艺,2002(11):17-18.
    [116]刘思峰,郭天榜等,灰色系统理论及其应用(第二版)[M],北京:科学出版社,2000年.
    [117]刘家学,时序多指标决策的灰色关联分析法.运筹与管理.1997,6(3):6- 10
    [118] Ching-Chang Wong, Chia-Chong Chen. Data clustering by grey relational analysis. The Journal of Grey System,1998,10 (4): 281-288
    [119] Wu Weiduan, Pan zhaolu. Grey relational analyzing the associated elements of gold. The Journal of Grey System,1999,11(2):143-146
    [120]王坚强,一类动态多指标决策问题的灰色关联分析方法.中南工业大学学报.1999,30(5):548- 550
    [121]刘建慧.灰色关联分析适应性问题的探讨系统工程与电子技术.1998,(9):52 -54
    [122]刘开第,吴和琴等.不确定性信息数学处理及其应用.北京:科学出版社,1999
    [123]刘思峰,党耀国,方志耕,灰色系统理论及其应用,北京:科学出版社,2004:50~84
    [124]邓聚龙,灰色控制系统,北京:国防工业出版社,198:297~329
    [125] G. Liu, M. Chen, L.L. Jing, Z.G.Hu, X.F.Zhu, Z.W.Li and H.Xu. The Development of Special Drills for High-efficient Drilling Austenitic Stainless Steel. PartⅠ: Drill comparison and Experiment Research.Key Engineering Materials. Vol.315-316(2006):195-199.
    [126] Chen Ming, Liu Gang, Zhang Xiao-hui. Optimization Studies on Hole Making Tools for High Performance Cutting Austenitic Stainless Steel. Proceedings of CIRP HPC 2006 2nd International Conference on High Performance Cutting. :. 66-75.
    [127] Ming CHEN, Gang LIU, Lulu JING, Jingwen ZHONG, Fanghong SUN. Studies on the specific drills for austenitic stainless steel 1Cr18Ni9Ti. International Journal of Computer Applications in Technology. Vol.28, No. 3(2007):103–109.
    [128] M. Chen, G. Liu, L.L. Jing, Z.G.Hu, X.F.Zhu, Z.W.Li and H.Xu,The Development of Special Drills for High-efficient Drilling Austenitic Stainless Steel,PartⅡ: Coating Selection and Experiment Research.Key Engineering Materials. Vol.315-316(2006):200-204.
    [129] P.C. Jindal; A.T. Santhanam; U. Schleinkofer; A.F. Shuster;“Performance of PVD TiN, TiCN, and TiAlN coated cemented carbide tools in turning”; In: International Journal of Refractory metals & hard materials:163-167; Vol.17 (1999).
    [130] Chen, Ming, Liu, Gang and Zhang, Xiao-hui , 'OPTIMIZATION STUDIES ON HOLE-MAKING TOOLS FOR HIGH-PERFORMANCE CUTTING AUSTENITIC STAINLESS STEEL', Machining Science and Technology, 11:2, 183 -200
    [131]杨贵军,杨跃军,陈明等.新型TiCN涂层钻头的磨损机理[J].上海交通大学学报,2005,39(11): 1741-1745.
    [132] Shen, Zhong; Liu, Gang; Chen, Ming. Development and experiment of new AlTiN coated drills for high efficiency dry drilling of 40Cr [J]. Transactions of Nanjing University of Aeronautics & Astronautics , Vol. 24, No. 2(2007):106–111
    [133] Zhang, Xiaohui; Liu, Gang; Chen, Ming; Hu, Zuguang; Li, Zhengwei; Xu, Hui; Zhu, Xinfa. Cutting Forces in High Speed Tapping Cast Iron by Tungsten Carbide Taps. Transactions of Nanjing University of Aeronautics & Astronautics. Vol. 24, No. 2(2007):94–99
    [134]景璐璐;李铸宇;陈明;孙方宏;胡祖光;祝新发;励政伟;许辉;奥氏体不锈钢钻削变形系数的试验研究[J].上海交通大学学报,2005,39(11): 1746-1750.
    [135]李学崑;陈泽彪;陈明;胡祖光;祝新发;励政伟;涂层钻头加工不锈钢磨损机理研究[J].中国机械工程第17卷第4期2006年2月下半月: 354-361
    [136] L.L. Jing, G. Liu, M. Chen. Study on Surface Integrity in Hard Milling of Hardened Die Steel. Materials Science Forum. Vols.532-533 (2006) :.540-543
    [137] Liu, Gang; Zhang, Xiaohui; Chen, Ming; Hu, Zuguang; Li, Zhengwei; Xu, Hui; Zhu, Xinfa. Experiment of optimum geometry structure of milling tools for hardened steel SKD11. Transactions of Nanjing University of Aeronautics and Astronautics. Vol. 24, No. 4(2007):100–105
    [138] F.C. Tang;“Ball milling SKD61 tool steel using TiAlN coated cemented tungsten carbide tool”; In: Journal of the Chinese Society of Mechanical Engineers: 229-237; Vol.24 (2003)
    [139] Shaw MC. Metal Cutting Principles [J]. New York: Oxford University Press, 2005. 89~96
    [140] Konig W, Komanduri R, Tonshoff H K and Ackershott G. Machining of hard materials [J], Annals of the CIRP 39 (1) (1990): 417–427.
    [141]艾兴等.高速切削技术.北京:国防工业出版社, 2003: 108-112
    [142] Shen, Zhong; Liu, Gang; Chen, Ming. Development and experiment of new AlTiN coated drills for high efficiency dry drilling of 40Cr. Transactions of Nanjing University of Aeronautics and Astronautics. Vol. 24, No. 4(2007):106–111.
    [143]赵海波,高见,周彤.欧洲刀具涂层最新状况及发展模式[J].工具技术, 2005, 39(4): 3-9.
    [144]封顺怀. 80年代国内外易切削钢的发展[J].制造技术与机床,1994(7):51-53.
    [145]李联生,朱荣,郭汉杰.以锡代铅研制环保型易切削钢[J].北京科技大学学报,2003,25(4):312-314.
    [146]蒲玉梅.易切削钢线材的开发研究[J].金属制品,2004,30(2):19-22.
    [147]王小红,谢兵,冯仲渝.国内外易切削钢的现状和研究进展[J].特殊钢,2005,26(4):26-28.
    [148]江来珠,崔昆.易切削相组成,形态及面积份数对硫系易切削钢切削性能的影响[J].机械工程学报,1993,29(2):58-62.
    [149] JIANG L. Z., CUI K., HANNINER H. Effects of the composition, shape factor and area fraction of sulfide inclusions on the machinability of re-sulfurized free-machining steel. Journal of Materials Processing Technology. 1996, 58 : 160-165.
    [150]刘永铨.易切削钢[M].沈阳:东北工学院出版社,1990.
    [151] TAKASHI I.,TOSHIYUKI M. Bar and Wire Steels for Gears and Valves of Automobiles—Eco-friendly Free Cutting Steel without Lead Addition[J]. JFE Technical Report, 2004, 11: 74-80.
    [152] RAMANUJACHAR. K., SUBRAMANIAN S. V. Miromechanisms of the Tool Wear in Machining Free Cutting Steels[J]. Wear, 1996, 197: 45-49.
    [153] SRIDHAR G., DAS. S. K., MUKHOPADHYAY. N. K. Failure Analysis of Low Carbon Free-cutting Steel Wire Rods[J]. Engineering Failure Analysis 1999, 6: 155-172.
    [154]罗蒙,金属切削过程中毛刺形成机理及控制方法的研究,上海交通大学硕士学位论文,上海交通大学,2007.3
    [155] Andrey Toropov, Sung-Lim Ko, Byung-Kwon Kim. Experimental study of burrs formed in feed direction when turning aluminum alloy,Al6061-T6. International Journal of Machine Tools and Manufacture, 45 (2005).
    [156] L.Ken ,Lauderbaugh Saunders. A finite element model of exit burrs for drilling of metals. Finite Elements in Analysis and Design 40 (2003).
    [157]陈镇宇,王贵成,朱云明.切削方向毛刺亏缺的形成及其界限转换.现代制造工程,2005年第4期.
    [158]朱云明.金属切削毛刺形成的有限元模型及机理分析,应用基础与工程科学学报,2005年6月.
    [159] Sung-Lim Ko, David A.Dornfeld.Burr formation and fracture in oblique cutting. Journal of Materials Processing Technology 62 (1996)
    [160] Chih-Hsing Chu,A Framework for Burr Minimization in a CAD/CAM Integrated Environment. LMA report. UC-Berkeley (1999-2000): 15-19.
    [161] Amit Bansal and Kiha Lee.Study of Burr Size and Surface Roughness in High Speed Face Milling. LMA report. UC-Berkeley (2001-2002): 25-29.
    [162] S. L. Ko and D. A. Dornfeld,“Analysis of fracture in burr formation at exit stage of metal cutting,”Journal of Materials Processing Technology, vol. 58: 189-200, 1996.
    [163] S. L. Ko and D. A. Dornfeld,“Burr formation and fracture in oblique cutting,”Journal of Materials Processing Technology, 1996,vol. 62: 24-36,.
    [164] In-Hyu Choi,Jeong-Du Kim. Electrochemical deburring system using electroplated CBN wheels. Int.J.Mach. Tools Manufact,38 (1998): 265-270.
    [165]航空制造工程手册总编委会,《航空制造工程手册》,框架壳体工艺,航空工业出版社, 1997, 12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700