用户名: 密码: 验证码:
Ti(C,N)基金属陶瓷增强技术及其组织和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ti(C,N)基金属陶瓷材料具有较高的红硬性、耐磨性以及较好的抗氧化能力,是用来制作高速高效切削刀具的理想候选材料。但由于其强韧性不足,制约了Ti(C,N)-Ni基金属陶瓷材料的推广应用。因此,开展对Ti(C,N)-Ni基金属陶瓷材料的强韧化研究,有着极为重要的意义。本文在课题组前期工作的基础上,采用X射线衍射仪(XRD)、金相显微镜(OM)、扫描电镜(SEM)、X射线能谱仪(EDS)和抗弯强度测试仪、洛氏硬度计和显微硬度计等分析测试手段研究了成型剂种类、WC颗粒粒径、Ti(C0.5N0.5)及(Ti,W)C固溶体和SiC晶须添加对Ti(C,N)基金属陶瓷显微组织和力学性能的影响。并在此基础上,进一步采用粉末冶金分层填铺法制备梯度结构Ti(C,N)基金属陶瓷,研究了成分及梯度结构设计对梯度结构Ti(C,N)基金属陶瓷显微组织和力学性能的影响。
     本文首先对Ti(C,N)基金属陶瓷的发展概况、性能特点及Ti(C,N)基金属陶瓷强韧化研究的现状进行了综述,并在此基础上提出了本文的研究目的、意义及技术路线。
     本文研究了SBP、GBY和PVA三种成型剂对TiC-TiN-20%Ni-Mo-WC-Cr3C2-C系金属陶瓷的力学性能的影响。研究结果表明,添加SBP成型剂的金属陶瓷性能最好,GBY次之,PVA最差。
     以TiC-TiN-20%Ni-Mo-WC-Cr3C2-C系金属陶瓷为研究对象,研究了微米级和亚微米级WC对Ti(C,N)基金属陶瓷力学性能和显微组织的影响。研究结果表明,与添加微米级WC的Ti(C,N)基金属陶瓷相比,添加亚微米级WC的金属陶瓷的抗弯强度偏高而硬度偏低,当烧结温度1450℃时,添加亚微米级WC的金属陶瓷的抗弯强度达到1890MPa,硬度91.1HRA。同时,在添加亚微米级WC的试样中出现了较多的“白芯-灰环”结构颗粒,且其硬质相颗粒粒径明显细化。能谱分析表明,白色芯相具有与环形相类似的化学组成,但W、Mo含量较高。断口分析表明断裂模式主要为沿晶断裂和穿晶断裂。
     对Ti(C0.5N0.5)-WC(sub-micron)-Ni-Mo系金属陶瓷研究表明,其显微组织结构中存在三种形貌:黑芯-灰环结构、白芯-灰环结构及黑芯-白环结构。随着WC含量的增加,内环形相的厚度增加。当WC含量在0-10%时,随着WC含量的增加,黑色芯相的颗粒尺寸减小;当WC含量继续增加时,黑色芯相的颗粒尺寸趋向变大。EDS分析表明,随着WC含量的增加,环形相和粘结相中W元素含量也逐渐增加,而Ti元素含量却逐渐减小,Mo元素含量变化不明显。断口分析表明,其断裂模式主要是沿晶断裂和穿晶断裂。随着WC添加量的增加,穿晶断裂减少,沿晶断裂开始增多,且气孔也逐渐减少。力学性能测试表明,随着WC含量的增加,抗弯强度增加,且相对密度也逐渐增加,但硬度呈下降趋势。当WC含量为10%时,Ti(C0.5N0.5)-WC-Ni-Mo2C系金属陶瓷具有最优的综合力学性能,抗弯强度为1987MPa,硬度为91.2HRA。
     对(Ti,W)C-Ti(Co.5N0.5)-Ni-Mo-C系金属陶瓷的研究表明,1445℃真空烧结后金属陶瓷的物相组成为Ti(C,N)固溶体和Ni。添加了(Ti,W)C固溶体的金属陶瓷的显微组织形貌均呈现出“芯-环”结构,主要有黑芯-灰环、白芯-灰环和灰芯-黑环结构。随着(Ti,W)C固溶体含量的增加,其显微组织形貌中具有“白芯-灰环”结构的颗粒数量增加。能谱分析表明,白色芯相为未溶解的(Ti,W)C固溶体。灰色芯相具有与环形相相同的元素组成,但W含量较低。其断裂模式主要为大颗粒硬质相的穿晶断裂和小颗粒硬质相的沿晶断裂。力学性能测试表明,随着(Ti,W)C固溶体含量的增加,抗弯强度和硬度均呈先增大后下降趋势,当(Ti,W)C固溶体含量为36%时,具有最佳的力学性能,抗弯强度为1927MPa,硬度91.9HRA。
     SiC晶须增强Ti(C,N)基金属陶瓷的研究结果表明,当微米级SiC晶须的添加量为1%时,抗弯强度和断裂韧性达到最高,分别为1905MPa和9.5MPa.m1/2,随着晶须添加量的增加,其力学性能呈下降趋势。研究发现,当微米级SiC晶须添加量超过1.6%时出现了MoSi2峰,表明添加的SiC与Mo发生了反应,MoSi2脆性相的出现及Mo的消耗和相对密度的下降导致了其性能的显著降低。在添加两种SiC晶须的Ti(C,N)基金属陶瓷的显微组织中呈现出了较完整的“芯-环”结构,主要有黑色的芯相、白色的内环形相和灰色的外环形相组成,但在添加微米级SiC晶须的Ti(C,N)基金属陶瓷的显微组织形貌中还出现了呈细长条状的黑色相,且在其断口中发现经真空烧结后残留下来的SiC晶须的长度明显低于原始加入微米级SiC晶须。SiC晶须在Ti(C,N)基金属陶瓷中的增强机理主要表现为晶须拔出和裂纹偏转。
     采用粉末冶金分层填铺法制备了梯度结构Ti(C,N)基金属陶瓷。力学性能测试表明,具有5层对称梯度结构的试样的力学性能明显优于3层非对称梯度的试样。且具有相同粘结相含量的梯度结构的金属陶瓷的力学性能要优于各层粘结相和硬质相含量均不同的梯度结构的金属陶瓷。制备出的具有相同粘结相含量的5层对称梯度结构的金属陶瓷的抗弯强度为2025MPa,表面硬度91.5HRA。在具有相同粘结相含量的5层对称梯度结构的Ti(C,N)基金属陶瓷中,由外至内,黑色的硬质芯相颗粒粒径及数量呈逐渐减小趋势,环形相厚度呈逐步增大的趋势。且在最外层/次外层及次外层/中间层处,大颗粒的穿晶断裂形成的局部平整断口由外层向内层呈减少趋势。而在中间层中出现了发达的撕裂棱,且断口表面呈现出高低起伏状,出现较多的小颗粒硬质相的沿晶断裂。
Ti(C,N)-based cermets are ideal candidate for high speed cutting tools because of their high hardness at elevated temperature, excellent wear-resistance and perfect oxidation resistance. However, the application of Ti(C,N)-based cermets is limited for its low transverse rupture. So the research on the strengthening and toughening of Ti(C,N)-based cermets is very important. In this paper, on the basis of preliminary study of our research group, the effects of forming agent types, particle size of raw WC powders, the addition of Ti(C0.5N0.5), (Ti,W)C solid solution and SiC whisker were studied by X-ray diffraction(XRD), scanning electron microscope(SEM), energy dispersive X-ray detector(EDS), bending strength tester, rockwell hardness and micro-hardness tester. And on the basis of previous study, gradient Ti(C,N)-based cermets were prepared with filling in layers by powder metallurgy method. The effects of chemical composition in each layer and gradient structure were also studied.
     In the first part of the dissertation, the development and properties of Ti(C,N)-based cermets have been critically overviewed. Based on the review, the purpose and significance of the dissertation have been set forth.
     The effects of three types of forming agents, such as SBP, GBY and PVA on the mechanical properties of TiC-TiN-20%Ni-Mo-WC-Cr3C2-C cermets were studied. And the results showed that the mechanical properties of the cermets with SBP addition are the best, and that of PVA are the worst.
     The effects of micro WC and sub-micron WC on the mechanical properties and microstructure were studied. The results showed that, compared with the Ti(C,N)-based cermets with micron WC addition, the TRS of the cermets with sub-micron WC addition is higher while the hardness is lower. The best mechanical properties the cermets with sub-micron WC addition were obtained when the cermets are sintered at 1445℃with the TRS of 1890MPa and hardness of 91.2HRA. The microstructure of two cermets exhibit typically "black core-gray rim" structure. While in the cermets with sub-micron WC addition, there exists "white core-gray rim" structure, meanwhile, the particle sizes of hard phase are smaller than that in the cermets with micron WC addition. The result of EDS analysis showed that the white cores and the rims contain the same chemical elements, but the heavy element content such as W and Mo in the white cores is higher. The fracture micrographs showed that the fracture modes in the two cermets are intergranular and transgranular fracture.
     Ti(Co.5No.5)-WC(sub-micron)-Mo-Ni system cermets were studied. The results showed that the microstructures of the cermets exhibit three kinds of grains:one has black core-grey rim structure, the second has white core-grey rim structure and the third has black core-white rim structure. The thickness of inner rim increases with the increasing of WC content. Additionally, the particle size of black core decreases with the increase of WC content in the range of 0 to 10wt.%, and then increases slightly with further increase of WC. The results of EDS analysis indicated that W content in the rim and binder increases with the increase of WC content, while Ti content in the rim decreases with the increase of WC content, but the change of Mo content in rim is not obviously. The fracture micrographs showed that both intergranular and transgranular fracture occur in these cermets. With the increase of WC content, intergranular fracture increases while transgranular fracture decreases. The results of mechanical properties showed that with the increase of WC content, the TRS increases due to the increase of relative density, while hardness decreases. When the WC content is up to 10%, the best mechanical properties of Ti(C0.5N0.5)-WC-Mo-Ni system cermets are obtained with the TRS of 1987MPa and hardness of 91.2HRA.
     The XRD results showed that the peaks observed in the sintered (Ti,W)C-Ti(C0.5N0.5)-Ni-Mo cermets are Ti(C,N) and Ni.. The microstructures of (Ti,W)C-Ti(Co.5No.5)-Ni-Mo cermets exhibit a typically core-rim structure:one has black core-grey rim structure, the second has white core-grey rim structure and the third has grey core- black rim structure. With the increase of (Ti,W)C content, the numbers of the grain with white core-grey rim structure increase. The results of EDS analysis indicated that the white core is the undissolved (Ti,W)C solid solution. And the gray core contains the same element as the rim phase, but the W content in gray core is lower than rim phase. The fracture modes of (Ti,W)C-Ti(Co.5No.5)-Ni-Mo-C cermets contain the intergranular fracture of small hard phase and the transgranular fracture of big hard phase. The results of mechanical properties of (Ti,W)C-Ti(Co.5No.5)-Ni-Mo-C cermets showed that, the TRS and hardness firstly increase and then decrease with the increase of (Ti,W)C content. And the optimal mechanical properties can be obtained when the content of (Ti,W)C is up to 36%. But the actual density and relative density increase with the increase of (Ti,W)C content. When the (Ti,W)C content is up to 36%, the best mechanical properties of Ti(Co.5No.5)-WC-Mo-Ni system cermets are obtained with the TRS of 1927MPa and hardness of 91.9HRA.
     The SiC whisker reinforcement Ti(C,N)-based cermets were fabricated by vacuum sintering. The results showed that the optimal mechanical properties can be obtained with the TRS of 1905MPa and KIC of 9.5MPa.m1/2 when the content of micron SiC whisker is up to 1vol.%. The XRD results showed that when the content of micron SiC whisker is over 1.6vol.%, the MoSi2 peak appeared. That indicated that a part of micron SiC whisker react with Mo. The fracture micrographs showed that there are some white small phases similar to strip shape in the Ti(C,N)-based cermets with the 6% micron SiC whisker addition. The EDS results that the white small phases similar to strip shape are the remnant of the raw micron SiC whiskers. The toughness mechanism are whisker pullout and crack deflexion.
     The gradient Ti(C,N)-based cermets were prepared with filling in layers by powder metallurgy method. The results showed that the mechanical properties of the symmetry gradient Ti(C,N)-based cermets with five layers are superior to that of dissymmetry gradient Ti(C,N)-based cermets with three layers. And the mechanical properties of the symmetry gradient Ti(C,N)-based cermets with the same binder content in each layer are superior to that of the cermets with different binder content in each layer. The best mechanical properties of the cermets with symmetry gradient Ti(C,N)-based cermets with the same binder content in each layer were obtained with the TRS of 2025MPa and hardness of 91.5HRA. In the symmetry gradient Ti(C,N)-based cermets with the same binder content in each layer, from outer layer to middle layer, the particle size and the numbers of black core decrease, at the same time, the thickness of rim phase increases. And the transgranular fracture of big hard phase decrease from out layer to middle layer. Furthermore, in the middle layer, the developed tear edges and the intergranular fracture of small hard phase were found.
引文
[1]P.艾特梅尔,W.林戈.金属陶瓷进展[J].硬质合金,1990,7(1):25-28
    [2]章宗城.性能优异的切削刀具材料——金属陶瓷[J].工具技术,2001,12:15-19
    [3]铃木寿,林宏尔,松原秀彰.TiC基金属陶瓷进步与现状[J].日本金属学会会报,1983,22(4):312-319
    [4]汤波.TiC基金属陶瓷的性能与发展[J].湖南冶金,2004,32(5):7-10
    [5]Humenik MJ, Parikb NM. Cermet I, Fundamental Concepts related to microstructure and physical properties of cermets systems [J]. J Amer Ceram Soc,1956,39(2): 60-63
    [6]Parikb NM, Humenik MJ. Cermet II, Wettability and Microstructure studies in liquid phase sintering[J]. J Amer Ceram Soc,1957,40(9):315-320
    [7]许育东,刘宁,石敏,晁盛,陈名海.纳米改性Ti(C,N)基金属陶瓷研究进展[J].硬质合金,2005,22(2):112-116
    [8]熊素建,熊计,郭智兴,陈建中,吴悦梅.纳米Ti(C,N)基金属陶瓷制备技术研究进展[J].硬质合金,2009,26(3):194-200
    [9]铃木寿.硬质合金与烧结硬质合金材料的基础和应用[J].日本:丸善株式会社,1986:309-371
    [10]R. Kieffer, P. Ettmayer. Modern Development in P/M, Vol.5, ED by Hausen H, H., New York:Plenum Press.1971.201-203
    [11]邱小林.Ti(C,N)基金属陶瓷的研究进展[J].材料导报,2006,20(5):420-424
    [12]Ettmayer P, Kolaska H, Lengauer W, et al. Ti(C,N) cermets metallurgy and properties [J]. Refractory Metals & Hard Materials,1995,13:343-351
    [13]Zhang SY. Titanium carbide-based cermets process and properties [J]. Materials Science and Engineering,1993, A163:141-148
    [14]刘宁,赵兴中,刘灿楼.添加碳对Ti(C,N)基金属陶瓷组织和性能的影响[J].理化检验,1995,31(2):1-5
    [15]E. T. Jeon, J. Joardar, S. Kang. Microstructure and tribo-mechanical properties of ultrafine Ti(CN) cermets [J]. Int. J. of Refractory Metals & Hard Metals,2002,20: 207-211
    [16]J. Karch, R. Blrringer. Nanocrystalline Ceramics:Possible Candidates for Net-Shape forming [J]. Ceram. Int.,1990,16(5):291-294
    [17]Zackrisson J, Andren H-O. Effect of carbon content on the microstructure and mechanical properties of (Ti,W,Ta,Mo)(C,N)-(Co,Ni) cermets [J]. Refractory Metals & Hard Materials,,1999,17:265-273.
    [18]熊惟皓,胡镇华,崔昆.Ti(C,N)基金属陶瓷中包覆结构的研究[J].华中理工大学学报,1998,26(3):32-34.
    [19]Qi F, Kang S. A study on microstructural changes in Ti(CN)-NbC-Ni cermets [J]. Material Science and Engneering,1998, A251:276-285.
    [20]郑勇,赵兴中.Ti(C,N)基金属陶瓷中的添加剂[J].硬质合金,1994,11(2):123-125
    [21]熊惟皓,胡镇华,崔崑.Ti(C,N)基金属陶瓷的相界面过渡层[J].金属学报,1996,32(10):1075-1080
    [22]熊惟皓,胡镇华,崔崑.Ti(C,N)基金属陶瓷相界面层微晶结构的形成[J].金属学报,1997,33(5):473-478
    [23]Jun Kui Yang, Hu-Chu Lee. Microstructural evolution during the singtering of a Ti(C,N)-Mo2C-Ni alloy [J]. Materials Sicience and Engineering A,1996,209: 213-317
    [24]Liu N, Xu YD, Li H, et al. Effects of addition of TiN nanoparticles on microstructure and mechanical properties of TiC based cermets [J]. Mater Sci Tech,2002, 18:586-590
    [25]Liu N, Xu YD, Li H, et al. Effects of nano-micro TiN addition on the microstructure and mechanical properties of TiC based cermets [J]. J Euro Ceram Soc,2002,22: 2409-2414
    [26]许育东,刘宁,李华,等.纳米TiN改性金属陶瓷刀具的磨损性能[J].硬质合金,2001,18(3):142-145
    [27]许育东,刘宁,曾庆梅,等.纳米改性金属陶瓷的组织和力学性能[J].复合材料学报,2003,20(1):33-37
    [28]郑勇,熊惟皓.微米级和亚微米级Ti(C,N)基金属陶瓷的组织和性能[J].材料工程,2001,5:37-40
    [29]刘文俊,郑勇,熊惟皓.Ti(C,N)基金属陶瓷中纳米粉相对含量对组织和性能影 响[J].粉末冶金技术,2005,23(5):334-338
    [30]Liu N, Xu YD, Li ZH, et al. A study on the cutting and wear behavious of TiC based cermets cutter with nano-TiN modification [J]. Trans Nonferro Met Chn,2003,13(4): 869-875
    [31]Liu N, Han CL, Xu YD, et al. Microstructure and mechanical properties of nanoTiN modified TiC-based cermets for the milling tools [J]. Mater Sci Eng A,2004, 382(1-2):122-131
    [32]Jung J, Kang S. Effect of ultra-fine powders on the microstructure of Ti(C,N)-xWC-Ni cermets [J]. Acta Mater,2004,52:1379-1386
    [33]Jung J, Kang S. Effect of nano-size powders on the microstructure of Ti(C,N)-xWC-Ni cermets [J]. J Am Ceram Soc,2007,90(7):2178-2183
    [34]Liu N, Xu YD, Li ZH, et al. Influence of Molybdenum addition on the microstructure and mechanical properties of TiC-based cermets with nano-TiN modification [J]. Ceram Int,2003,29:919-925
    [35]Zheng Y, Xiong WH, Liu WJ, et al. Effect of nano addition on the microstructures and mechanical properties of Ti(C,N)-based cermets [J]. Ceram Int,2005,31: 165-170
    [36]Xiong J, Guo Z, Chen F, et al. Phase evolution in ultra-fine Ti(C0.7N0.3) based cermet during sintering [J]. Int J Refract Met Hard Mater,2007,25:367-373
    [37]熊继,张亚昆,沈保罗,等.超细TiCN金属陶瓷的制备及性能[J].粉末冶金技术,2003,21(2):92-95
    [38]Ji Xiong, Zhixing Guo, Mei Yang, et al. Effect of ultra-fine TiC0.5N0.5 on the microstructure and properties of gradient cemented carbide [J]. Journal of Materials Processing Technology,2009,209(12-13):5293-5299
    [39]Ning Liu, Xuesong Liu, Xiaobo Zhang, et al. Effect of carbon content on the microstructure and mechanical properties of superfine Ti(C,N)-based cermets [J]. Materials Characterization,2008,59(10):1440-1446
    [40]Yan Li, Ning Liu, Xiaobo Zhang, et al. Effect of carbon content on the microstructure and mechanical properties of ultra-fine grade (Ti,W)(C,N)-Co cermets [J]. Journal of Materials Processing Technology,2008,206(1-3):365-373
    [41]Yan Li, Ning Liu, Xiaobo Zhang, et al. Effect of Mo addition on the microstructure and mechanical properties of ultra-fine grade TiC-TiN-WC-Mo2C-Co cermets [J]. Inter J Ref Met Hard Mater,2008,26(3):190-196
    [42]Ning Liu, Sheng Chao, Haidong Yang. Cutting performances, mechanical property and microstructure of ultra-fine grade Ti(C,N)-based cermets [J]. Inter J Ref Met Hard Mater,2006,24(6):445-452
    [43]Liu N, Sheng C, Huang XM. Effects of TiC/TiN addition on the microstructure and mechanical properties of ultra-fine grade Ti(C,N)-Ni cermets [J]. Journal of the European Ceramic Society,2006,26(6):3861-3870
    [44]Wang ZA, Dai HY, Zou Y. Effects of nano TiN addition on the microstructure and mechanical properties of TiC based steel bonded carbides [J]. Rare Metals,2008, 27(1):5-8
    [45]Joardar J, Kim SW, Kang S. GI-XRD studies on surface structure of ultrafine Ti(C0.5N0.5) WC-Ni cermets at high temperature [J]. Wear,2006,261 (3-4):360-366
    [46]刘宁,崔崑,胡镇华.SiC晶须对金属陶瓷抗弯强度和断裂韧性的影响[J].稀有金属材料与工程,1996,25(5):12-15
    [47]丁燕鸿,刘建文.SiC晶须增韧Ti(C,N)基金属陶瓷复合材料的研究[J].粉末冶金技术,2007,25(4):256-258
    [48]向阳开,徐智谋.Ti(C,N)w/Ti(C,N)基金属陶瓷的组织和力学性能的研究[J].硬质合金,2006,23(3):129-133
    [49]Tobioka M, Shimizu Y, Isobe K, et al. High toughness cermet and a process for production of the same [P]. U. S. Patent 4769070, Sept,1988
    [50]Monteverde F, Medri V, Bellosi A. Synthesis of ultrafine titanium carbonitride powders [J]. Appl Organometal Chem,2001,25:421-429
    [51]Park S, Kang YJ, Kwon HJ, et al Synthesis of (Ti,M1,M2)(CN)-Ni nanocrystalline powders [J]. Inter J Ref Met Hard Mater,2006,24:115-121
    [52]Xiang DP, Liu Y, Tu M, et al. Synthesis of nano Ti(C,N) powder by mechanical actvation and subsequent carbothermal reduction-nitridation reaction [J]. Inter J Ref Met Hard Mater,2009,27:111-114
    [53]Jin YZ, Liu Y, Wang YK, et al. Influence factors and microstructure evolution during preparation of nanocrystalline (Ti,W,Mo,V)(C,N)-Ni composite powders [J]. Int J Refract Met Hard Mater,2009,27:957-961
    [54]Jin YZ, Liu Y, Wang YK, et al. Synthesis of ultrafine (Ti,W,Mo,V)(C,N)-Ni composite powders by low-energy milling and subsequent carbothermal reduction- nitridation reaction [J]. J Alloys Compd,2009,486:34-36
    [55]Jin YZ, Liu Y, Wang YK, et al. Study on phase evolution during reaction synthesis of ultrafine (Ti,W,Mo,V)(CN)-Ni composite powders [J]. Materials Chemistry and Physics,2009,118:191-196
    [56]Ye JW, Liu Y, Cao H, et al. A novel method to synthesize vanadium carbonitride nanopowders by thermal processing precursor [J]. Int J Refract Met Hard Mater, 2009,27:858-861
    [57]Gotoh Y, Fujimura K, Koike M, et al. Synthesis of titanium carbide from a composite of TiO2 nanoparticles/methyl cellulose by carbothermal reduction [J]. Materials Research Bulletin,2001,36(13-14):2263-2275
    [58]Berger LM, Gruner W. Investigation of the effect of a nitrogen-containing atmosphere on the carbothermal reduction of titanium dioxide [J]. Inter J Ref Met Hard Mater,2002,20(3):235-251
    [59]Monteverde F, Medri V, Bellosi A. Microstructure of hot-pressed Ti(C,N)-based cermets [J]. Journal of the European Ceramic Society,2002,22(14-15):2587-2593
    [60]Xiang DP, Liu Y, Zhao ZW, et al. Reaction sequences and influence factors during preparation of Ti(C,N) powders [J]. J Alloys Compd,2007,429(1-2):264-269
    [61]Xiang DP, Liu Y, Gao SJ et al. Evolution of phase and microstructure during carbothermal reduction-nitridation synthesis of Ti(C,N) [J]. Materials Characterization,2008,59(3):241-244
    [62]Chen XL, Li YB, Li YW, et al. Carbothermic reduction synthesis of Ti(C, N) powder in the presence of molten salt [J]. Ceram Int,2008,34(5):1253-1259
    [63]Xiang DP, Liu Y, Tu MJ, et al. Synthesis of nano Ti(C,N) powder by mechanical activation and subsequent carbothermal reduction-nitridation reaction [J]. Inter J Ref Met Hard Mater,2009,27(1):111-114
    [64]West CP, Harrison I, Cussen EJ, et al. Facile synthesis of bimetallic carbonitrides, V1-xTix(C,N), by microwave carbothermal reduction-ammonolysis/carburisation (MW-CRAC) methods [J]. Journal of the European Ceramic Society,2009,29(11): 2355-2361
    [65]刘宁.Ti(C,N)基金属陶瓷的制备及成分、组织和性能的研究[华中理工大学博士学位论文].武汉:华中理工大学图书馆,1994
    [66]胡耀波.Ti (C,N)基金属陶瓷的制备工艺与组织变化[华中科技大学博士学位论 文].武汉:华中科技大学图书馆,2002
    [67]郑勇.细晶粒Ti(C,N)基金属陶瓷复合材料的研究[华中科技大学博士学位论文].武汉:华中科技大学图书馆,2002
    [68]熊继.高性能超细Ti(C,N)基金属陶瓷刀具材料的研究[四川大学博士学位论文].成都:四川大学大学图书馆,2003
    [69]叶大萌. Ti(C,N)基金属陶瓷与钢的钎焊连接及其界面结构研究[华中科技大学博士学位论文].武汉:华中科技大学图书馆,2009
    [70]贾佐城.超细晶硬质合金的发展.硬质合金.2000,17(1):58-63
    [71]刘峰晓,贺跃辉,黄伯云,刘咏.Ti(C,N)基金属陶瓷的发展现状及趋势.粉末冶金技术.2004,22(4):236-240
    [72]Ahn SY, Kang S. Formation of core/rim structure in Ti(C,N)-WC-Ni cermets via a dissolution and precipitation process [J]. J Am Ceram Soc.2000,83(6):1489-1494
    [73]S. Q. Zhou, W. Zhao, W. H. Xiong. Microstructure and properties of the cermets based on Ti(C,N) [J]. Int J Refract Met Hard Mater.2009,27:26-32
    [74]Lindahl P, Mainer T, Jonsson H, Andren HO. Microstructure and mechanical properties of a (Ti,W,Ta,Mo)(C,N)-(Co,Ni) type cermet [J]. Int J Refract Met Hard Mater.1993,4:187-204
    [75]Andren HO. Microstructure development during sintering and heat-treatment of cemented carbides and cermets [J]. Mater Chem Phys.2001,67:209-213
    [76]Shen C, Liu N, Yuan YP, Han CL, Xu YD, Shi M, et al. Microstructure and mechanical properties of ultrafine Ti(CN)-based cermets fabricated from nano/submicron starting powders [J]. Ceram Int.2005,31:851-862.
    [77]Chen Dong-Ⅱ, Kim Doh-Yeon. Microstructural evolution during the sintering of TiC-Mo-Ni cermets [J]. J. Am. Ceram. Soc.,1993,76(8):2049-2052
    [78]P. O. Snell. The effect of carbon content and sintering temperature on structure formation and properties of a TiC-24%Mo-15%Ni alloy [J]. Planseeberichte fur Pulvermetallurgie,1974,22(2):91-104
    [79]Kim S, Min KH, Kang S. Rim structure in Ti(C0.7N0.3)-WC-Ni cermets [J]. J Am Ceram Soc,2003,86(10):1761-1766
    [80]T.Laoui, H. Zou, O. Van der Biest. Analytical electron microscopy of the core/rim structure in titanium carbonitride cermets [J]. Inter J Ref Met Hard Mater,1992,11: 207-212
    [84]Ahn S, Kang S. Effect of VC addition on the microstructure and mechanical properties of Ti(C,N)-Based cermet [J]. J. Korean Ceram. Soc,1998,35(12): 1316-1322
    [85]Fukuhara M, Mitani H. Effect of nitrogen content on grain growth in Ti(C,N)-Ni-Mo sintered alloy [J]. Powder Metall. Int.,1982,14(4):196-200
    [86]H. Zhang, J. Yan, X. Zhang, S. Tang. Properties of titanium carbonitride matrix cermets [J]. Int. J. Refract. Met. Hard. Mater.,2006,(24):236-239.
    [87]Ahn S, Kang S. Effect of WC particle size on microstructure and rim composition in the Ti(C0.7N0.3)-WC-Ni system [J]. Scripta Materialia,55 (2006) 1015-1018.
    [88]J. Wang, Y. Liu, P. Zhang, J. Peng, J. Ye, M. Tu, Effect of WC on the microstructure and mechanical properties in the Ti(C0.7N0.3)-xWC-Mo2C-(Co,Ni) system [J]. Int. J. Refract. Met. Hard. Mater,27 (2009) 9-13.
    [89]Ahn S, Kang S. Effect of various carbides on the dissolution behavior of Ti(C0.7N0.3) in a Ti(C0.7N0.3)-30Ni system [J]. Int. J. Refract. Met. Hard. Mater,2001,19(4-6): 539-545
    [90]Kim S, Kang S. Change in the surface microstructure of Ti(C0.5N0.5)-20WC-10Ni-10Co cermets during sintering in a nitrogen atmosphere [J]. J Am. Ceram. Soc., 2007,90(9):2974-2979
    [91]Kim S, Min KH, Kang S. Rim structure in Ti(C0.7N0.3)-WC-Ni cermets [J]. J Am Ceram Soc,2003,86(10):1761-1766
    [92]Zheng Y, Liu WJ, Wang SX, et al. Effect of carbon content on the microstructure and mechanical properties of Ti(C, N)-based cermets [J]. Ceramics International, 2004,30(8):2111-2115
    [93]Wang SY, Xiong WH. Microstructure and mechanical properties of Ti(C,N)-based cermets with different molybdenum contents [J]. Tarns Nonferrous Met Soc China, 2005,15(S3):148-152
    [94]Wang SY, Xiong WH, Yan MS, et al. Effects of molybdenum on the microstructure and mechanical properties of Ti(C,N)-based cermets with low Ni [J]. Rare Metals, 2006,25(1):90-95
    [95]Zhang XB, Liu N, Rong CL. Effect of molybdenum content on the microstructure and mechanical properties of ultra-fine Ti(C,N) based cermets [J]. Materials Charac-terization,2008,59(12):1690-1696
    [96]Xiong J, Guo ZX, Shen BL, et al. The effect of WC, Mo2C, TaC content on the microstructure and properties of ultra-fine TiC0.7N0.3 cermet [J]. Materials & Design, 2007,28(5):1689-1694
    [97]Zhou SQ, Xiong WH, Zhou YN. Effect of Mo and Mo2C on the microstructure and properties of the cermets based on Ti(C,N) [J]. Acta Metallurgica Sinica (English Letters),2008,21(3):211-219
    [98]Guo ZX, Xiong J, Yang M, et al. Effect of Mo2C on the microstructure and properties of WC-TiC-Ni cemented carbide [J]. International Journal of Refractory Metals and Hard Materials,2008,26(6):601-605
    [99]Kang Y, Kang S. WC-reinforced (Ti,W)(CN) [J]. Journal of the European Ceramic Society,2010,30(3):793-798
    [100]Kwon WT, Park JS, Kim SW, et al. Effect of WC and group IV carbides on the cutting performance of Ti(C,N) cermet tools [J]. International Journal of Machine Tools and Manufacture,2004,44(4):341-346
    [101]Li Y, Liu N, Zhang XB, et al. Effect of WC content on the microstructure and mechanical properties of (Ti,W)(C, N)-Co cermets [J]. International Journal of Refractory Metals and Hard Materials,2008,26(1):33-40
    [102]Zheng Y, Min Y, Xiong WH, et al. Effect of Cr3C2 on Valence-Electron Structure and plasticity of rim phase in Ti(C,N)-based cermets [J]. J Am Ceram Soc,2004, 87(3):460-464
    [103]何林,黄传真,孙静,等.Cr3C2含量对Ti(C,N)基陶瓷力学性能的影响[J].材料工程,2003,7:7-10
    [104]王洪涛,熊惟皓.Ti(C,N)基金属陶瓷合金成分与性能研究进展[J].粉末冶金工业,2006,16(4):36-41
    [105]Feng P, He YH, Xiao YF, et al. Effect of VC addition on sinterability and microstructure of ultrafine Ti(C, N)-based cermets in spark plasma sintering [J]. Journal of Alloys and Compounds,2008,460(1-2):453-459
    [106]Wu P, Zheng Y, Zhao YL, et al. Effect of TaC addition on the microstructures and mechanical properties of Ti(C,N)-based cermets [J]. Materials & Design,2010, doi:10.1016/j.matdes.2010.01.047
    [107]Ostberg G, Buss K, Christensen M, et al. Effect of TaC on plastic deformation of WC-Co and Ti(C,N)-WC-Co [J]. International Journal of Refractory Metals and Hard Materials,2006,24(1-2):145-154
    [108]刘宁,吕庆荣,姜勇,等.化学成分对Ti(C,N)基金属陶瓷力学性能的影响[J].硬质合金,1999,11:206-211
    [109]Wang J, Liu Y, Feng Y, et al. Effect of NbC on the microstructure and sinterability of Ti(C0.7, N0.3)-based cermets [J]. International Journal of Refractory Metals and Hard Materials,2009,27(3):549-551
    [110]Kim S, Kang S. On the quantitative analysis of secondary carbide and carbon in (Ti1-xMx)C solid solutions via XRD measurements [J]. International Journal of Refractory Metals and Hard Materials,2008,26(5):444-448
    [111]Kwon WT, Park JS, Kang S. Effect of group IV elements on the cutting characteristics of Ti(C,N) cermet tools and reliability analysis [J]. Journal of Materials Processing Technology,2005,166(1):9-14
    [112]刘宁,崔昆,胡镇华.钇对金属陶瓷力学性能和组织的影响[J].中国稀土学报,1997,(3):80-84
    [113]刘宁,黄新民,周杰,等.Er对Ti(C,N)基金属陶瓷结构和力学性能的影响[J].硅酸盐学报,2000,1:72-75
    [114]Liu N, Yin WH, Zhu LW. Effect of TiC/TiN powder size on microstructure and properties of Ti(C,N)-based cermets [J]. Materials Science and Engineering:A,2007, 445-446:707-716
    [115]Ye F, Lei TC, Zhou Y. Interface structure and mechanical properties of Al2O3-20vol%SiCw ceramic matrix composite [J]. Materials Science and Engineering A, 2000,281:305-309
    [116]吴建铣,李建保,黄勇.晶须增韧陶瓷基复合材料的设计要点与复合技术[J].硅酸盐学报,1990,18(1):72-75
    [117]罗伍文,黄勇.用于补强陶瓷基复合材料的SiC晶须分散工艺研究[J].硅酸盐 通报,1990,9(2):9-13
    [118]Claussen N, Weisskope K-L, Ruhle M. Tetragonal Zirconia polycrystals reinforced with SiC whiskers [J]. J Am. Ceram Soc,1986,69(3):288-292
    [119]Baldacim SA, Santos C, Strecker K, et al. Development and characterization by HRTEM of hot-pressed Si3N4-SiC(w) composites [J]. Journal of Materials Processing Technology,2005,169:445-451
    [120]Park S, Jung J, Kang S, et al. The carbon nonstoichiometry and the lattice parameter of (Ti1-xWx)C1-y [J]. Journal of the European Ceramic Society,2010,30:1519-1526
    [121]戴乐阳,曾美琴,童燕青,欧阳柳章,朱敏,李元元.基于外场辅助的机械合金化研究[J].功能材料.2005,38(6):1158-1161.
    [122]R.A. Varin, Ch. Chiu, S. Lia, A Calka, D. Wexler. Application of controlled and electrical discharge assisted mechanical alloying for the synthesis of nanocrystalline MgB2 superconducting compound [J]. J Alloys Compd,2004,370:230-243.
    [123]Quan Yuan, Yong Zheng, Haijun Yu. Synthesis of nanocrystalline Ti(C,N) powders by mechanical alloying and influence of alloying elements on the reaction [J]. Int J Refract Met Hard Mater.2009,27:121-125.
    [124]马福康.等静压技术[M].北京:冶金工业出版社,1992,1-2
    [125]曾青,熊惟皓.等静压技术在粉末冶金材料生产中的应用[J].材料导报,1995,9(5):20-24
    [126]P. Perez, J. L. Gonzalez-Carrasco, G. Caruana, et al. Microstructural characterizati-on of P/M Ni3Al consolidated by HIP [J]. Mater. Charact,1994,33 (4):349-356
    [127]R. M. German, A.Bose, G. Camus. Tensile properties of nickel aluminide alloys and composites fabricated by hot isostatic compaction [J].Int. J. Powder Metall.,1995, 31(2):167-174
    [128]印红羽,盛听,汪海宽.硬质合金低压热等静压烧结工艺[J].粉末冶金技术,1997,15(4):299-302
    [129]D Agrawal, J Cheng, P Seegopaul, et al. Grain growth control in microwave sintering of ultrafine WC-Co composite powder compacts [J]. Powder Metallurgy, 2000,43(1):15-16
    [130]Zheng Y, Wang SX, You M, et al. Fabrication of nanocomposite Ti(C,N)-based cermet by spark plasma sintering [J]. Materials Chemistry and Physics,2005,92: 64-70
    [131]Chen L, Wang SQ, Zhou SZ, Li J, Zhang YZ. Microstructure and mechanical properties of Ti(C,N) and TiN/Ti(C,N) multilayer PVD coatings [J]. Int J Refract Met Hard Mater,2008,26(5):456-460
    [132]Chang CL, Lin CT, Tsai PC, Ho WY, Liu WJ, Wang DY. Mechanical and corrosion properties of (Ti,Si)N coating synthesized by cathodic arc plasma evaporation [J]. Surface and Coatings Technology,2008,202(22-23):5516-5520
    [133]Chen L, Du Y, Wang AJ, Wang SQ, Zhou SZ. Effect of Al content on microstructure and mechanical properties of Ti-Al-Si-N nanocomposite coatings [J]. Int J Refract Met Hard Mater,2009,27(4):718-721
    [134]Walter Lengauer, Klaus Dreyer. Functionally graded hardmetals [J]. J Alloys Compd. 2002,338:194-212
    [135]晏鲜梅,熊惟皓,杨勇,郑立允.Ti(C,N)基金属陶瓷功能梯度材料的制备[J].功能材料.2006,37(2):238-241
    [136]郑国粱,郑彬.硬质合金成形剂的现状与发展趋势[J].稀有金属与硬质合金,1992(109):39-41
    [137]陈雪松,张进新.硬质合金新型成型剂SBP的应用试验[J].硬质合金,2000,17(3):34-37
    [138]袁孔镛,董侯亮,胡希川.非增碳型新型成形剂的工艺试验[J].硬质合金,2006,23(2):84-87
    [139]Kieffer R, Ettmayer P, Lengauer W. Ti-Mo-C-N system:stability of the (Ti,Mo)x-(C,N),.X phase [J]. J Alloys Compd,1995,228 (1):196-201
    [140]李晨辉,熊惟皓,余立新.硬质相粒度对Ti(C,N)基金属陶瓷断裂韧性的影响[J].理化检验(物理分册),2001,37(10):415-419
    [141]刘文俊.TiN基涂层金属陶瓷材料的研制[华中科技大学博士学位论文].武汉:华中科技大学图书馆,2008
    [142]柯阳林.纳米SiC晶须改性Ti(C,N)基金属陶瓷的组织与性能研究[华中科技大学硕士学位论文].武汉:华中科技大学图书馆,2007
    [143]缪世群,佘正国,葛存旺.SiC晶须的分散与涂覆工艺的研究[J].江苏理工大学学报(自然科学版),2000,21(2):52-56
    [144]罗伍文,黄勇.用于补强陶瓷基复合材料的SiC晶须分散工艺研究[J].硅酸盐通报,1990,9(2):9-13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700