用户名: 密码: 验证码:
污水处理构筑物流态模拟与溢流污水高效处理装置优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先对商用软件PHOENICS进行应用开发探讨,在理解整个软件结构、组成的前提下,系统研究软件内部的数学模型,熟悉各种模型的适用范围。
     运用计算流体力学(CFD)技术数值模拟典型污水处理单元的流态,包括单相流体的模拟、固.液两相流体的模拟;应用CFD技术为辅助手段,对新研究开发的溢流污水一级化学强化处理工艺进行流态评估,通过现场中试试验进行验证,主要研究内容如下:
     对平流式二沉池内流场进行了数值模拟,结果表明:沉淀池中的流速并不均匀分布,沉淀池的挡板前后都存在涡流区,影响沉淀池的运行效果。对周边式沉淀池进行了不同回流比情况下的数值模拟,发现池内流量分布严重不均匀,在池中心部分流速较小,基本成为水流死区。对四槽式SBR池内流态进行了数值模拟,发现第一阶段进水中,1号槽和2号槽之间形成了类似氧化沟的平推流流型;但是在第二阶段内,短流情况十分严重,影响SBR池的处理能力和出水水质;并且提出改进优化措施,改第二阶段的3号槽进水为2号槽进水,从模拟结果中可见,水流短流情况明显得到改善。测定了曲阳污水厂辐流式二沉池多个工况下各个位置断面上的悬浮固体浓度,对辐流式沉淀池运行的速度场和污泥浓度场进行了数值模拟,并把模拟结果和试验结果进行比较:尽管计算模拟结果与试验结果有一定的差距,但是通过模拟可以较准确发现二沉池中的污泥界面范围,为今后优化池型,提高沉淀效率提供了理论依据。
     在数值模拟污水处理单元的基础上,研究开发出一套处理溢流污水的一级化学强化处理工艺,并且对反应池和斜板斜管沉淀池进行CFD流态评估,证明新开发工艺是可行的。通过现场中试试验测定了该套工艺装置对溢流污水的处理能力,平均去除率为:SS:70%;COD:50%;TP:85%,从而将CFD流态研究与中试试验验证结合,证实了工艺研究开发的可行性和实用性。
First, we study and discuss the application of commercial software PHOENICS. On the premise of understanding the structure and contents, research the in-line mathematical models and master the application scope of each model systematically.Computational Fluid Dynamics (CFD) technology is used to calculate and simulate the flow pattern of typical wastewater treatment units, including the simulation for single-phase fluid, solid-liquid simulation for two-phase fluid, and taking the CFD technology as the supplementary means, together with the site pilot-scale experiment, to assess and verify the Chemically-Enhanced Primary Treatment Process for Combined Sewer Overflows. Main research contents are as follows:The velocity field inside rectangular sedimentation tank is simulated, and the results show that: the inside velocity distributes unevenly, and there are eddy zones in the front-back of the baffle, which will influence the operating effect seriously;The Peripheral Feed-peripheral Effluent Secondary Clarifier is studied in different reflux ratio, we find the eddy zone exists in the Clarifier, obviously at the center of the tank where the velocity is relatively low;Flow pattern inside a four-tank SBR is studied. Results show that the flow pattern is nearly plug flow in tank 1 and tank 2 at the first stage. However, at the second stage, serious short circuit leading to impact the efficiency and effluent quality in the second stage is found. Therefore, the improving measures are developed, the inflow is changed from tank 2 to tank 3 at the second stage, and the short circuit situation is obviously improved by the simulating results;In several operating conditions, the actual suspended solid concentration in different cross-section of the circular clarifier of Quyang Wastewater Treatment Plant is measured and the simulation for the velocity field and sludge concentration is made, finally the calculated value is compared with the predicted value;Although there exists a certain difference between them, the sludge interface range inside the clarifier can be determined correctly through numerical simulation, which provides the theory basis for optimizing the tank size and improving the settling efficiency.
    Based on the above simulations for wastewater treatment units, a new Chemically-Enhanced Primary Treatment Process for Combined Sewer Overflows is developed and the flow pattern in reactor and the inclined-tube clarifier is assessed with CFD technology, results show that the process is feasible. In the site pilot-scale experiment, measure the treating ability for the overflow wastewater which can reach: the average removal rate of the SS: 70%, COD: 50%, TP: 85%. Therefore, the feasibility and practicability of the process are verified effectively in such aspects as the CFD flow pattern research and the Pilot-scale experiment.
引文
[1] 姚重华编著,《环境工程仿真与控制》北京:高等教育出版社.2001;
    [2] 高廷耀,顾国维.《水污染控制工程(下)》北京:高等教育出版社.1999;
    [3] 王福军.《计算流体动力学分析—CFD软件原理与应用》北京:清华大学出版社.2004;
    [4] CFD comes to the desktop, The chemical Engineer, 13 June 1991: 23—25;
    [5] Zhou SP, McCorquodale JA, Modeling of Rectangular Settling Tanks-Closure, Joumal of Hydraulic Engineering-ASCE 120(2): 279-281 FEB 1994;
    [6] 詹咏.沉淀池中的异重流运动特征.中国给水排水.2003 19(1):43-45;
    [7] Zhou S. McCorquodale. Modeling of rectangular settling tanks, Journal of Hydraulic Engineering. 1992, 118(10): 1391-1400;
    [8] Zhou SP, McCorquodale JA, Godo AM, Short-Circuiting and Density Interface in primary clarifiers, Journal of hydraulic engineering-ASCE 120(9): 1060-1080 SEP 1994;
    [9] McCorquodale JA, Zhou SP, Effects of hydraulic and solids loading on clarifier performance, Journal of hydraulic research 31(4): 461-478 1993;
    [10] Matko T, Fawcett N, Sharp A, et al., A numerical model of flow in circular sedimentation tanks, PROCESS SAFETY AND ENVIRONMENTAL PROTECTION 74 (B3): 197-204 AUG 1996;
    [11] Matko T, Fawcett N, Sharp A, et al., Recent progress in the numerical modeling of wastewater sedimentation tanks, PROCESS SAFETY AND ENVIRONMENTAL PROTECTION 74(B4): 245-258 NOV 1996;
    [12] Adamsson, Asa (Dept. of Water Environment Transport, Chalmers University of Technology), Three-dimensional simulation and physical modeling of flows in detention tanks-Studies of flow pattern, residence time and sedimentation, Doktorsavhandlingar vid Chahners Tekniska Hogskola, n2116, 2004, 71p;
    [13] Samstag, R. W., Dittmar, D. E, Vitasovic, Z. and McCorquodale, JA., 1989, Underflow geometry in secondary sedimentation, Wat Environ Res, 64 (3): 204-212;
    [14] Zhou SP, McCorquodale JA, Vitasovic Z, Influences of density on circular clarifiers with baffles, Journal of environmental engineering-ACSE 118(6): 829-847, Nov-Dec, 1992;
    [15] Launder B E, Spalding D B. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering 1974, (3): 269-289;
    [16] Imam, E., 1981, Numerical modeling of rectangular clarifiers, phD Thesis (University of Windsor, Windsor, Ontario);
    [17] Krebs, P, Vischer D. GUJER, W., 1995, Inlet-strncture design for final clarifiers, Journal of Environmental Engineering-ASCE 121(8): 558-564AUG 1995;
    [18] Samstag, R. W., Dittmar, D. F., Vitasovic, Z. and McCorquodale, JA., 1989, Underflow geometry in secondary sedimentation, Wat Environ Res, 64 (3): 204-212;
    [19] 张政,谢灼利.流体—固体两相流的数值模拟.化工学报 2001,52(1):1~10;
    [20] 曾光明,葛卫华,秦肖生等.污水厂二维沉淀池水流和悬浮物运动数值模拟.中国环境科学学报 2002b 22(4):338~341;
    [21] 顾正平.周边式二次沉淀池流态的计算模拟研究的数值方法.环境科学研究 1995 8(3):50-52;
    [22] 郭生昌.平流沉淀池流场的计算与探讨.江苏环境科技.2003 16(4):10~12;
    [23] 马培勇,仇性启,唐鹏.计算流体力学软件PHOENICS及其应用.数值计算与工程仿真(第四期).2004;
    [24] 华祖林.湍流模型在环境水力学研究中的应用.水科学发展,第12卷第3期,2001年9月;
    [25] 许保玖,龙腾锐编著.《当代给水与废水处理原理》北京:高等教育出版社,2000;
    [26] 郭生昌.沉淀池的计算机数值模拟.东华大学硕士学位论文.2002;
    [27] 张自杰编著.《排水工程》.北京;中国建筑工业出版社,1999;
    [28] 蔡金傍,段祥宝,朱亮.沉淀池水流数值模拟[J].重庆建筑大学学报,25(4):64~69;
    [29] 郭生昌,陈亮,胡晋明.平流式沉淀池流场的计算及探讨[J].江苏环境科技,16(40):10~21;
    [30] 余常昭.环境流体力学导论[M].北京:清华大学出版社,1992;
    [31] Spalding D B. Description of the Physical Models employed in COFFUS [M]. England: CHAM COMPANY, 2001;
    [32] 叶鼎.周进周出二沉池设计之探讨.工业用水与废水 2002 33(6).51~53;
    [33] 高立.周边进水、周边出水沉淀池设计问题的探讨.天津大学硕士学位论文.2001.2~10;
    [34] 马鲁铭等.周边式二次沉淀池流态的计算模拟研究,环境科学学报,1992.391~398;
    [35] DYNAMIC SIMULATION OF SLUDGE BLANKE MOVEMENTS IN A FULL-SCALE RECTANGULAR SEDIMENTATION BASINM, E GOHLE, A. FINNSON AND B. HULTMAN, WAT. SCI. TECH. VOL33, NO.1, 1996;
    [36] 杨云龙,陈启斌.SBRI艺的现状与发展.工业用水与废水.Vol.33 No.2.1~3;
    [37] 马鲁铭.连续流SBR运行工况的研究及运行周期的优化.研究报告
    [38] SPALDING. POLIS OF PHOENICS. England: CHAM COMPANY, 1978;
    [39] 金志刚,马鲁铭等.周边式二次沉淀池处理能力的生产性试验.西南给排水,1992,1~4;
    [40] Spalding D B. Description of the Physical Models employed in COFFUS [M]. England: CHAM COMPANY, 2001;
    [41] USEPA. Combined Sewer Overflows-Guidance For Monitoring And Modeling [M]. EPA 832-B-99-002, 1999;
    [42] USEPA. Combined Sewer Overflows-Guidance For Long-Term Control Plan [M]. EPA 832-B-95-002, 1995;
    [43] Techcommentary, High-rate clarification for the treatment of wet weather flows, EPRI, 1999, 49~52;
    [44] 车武,刘燕,李俊奇.国内外城市雨水水质及污染控制[J],给水排水 2003,29(10):38~42;
    [45] 严煦世主编.给水排水设计手册 第9册 专用机械.中国建筑工业出版社 1986; 141~142:
    [46] 上海市政工程设计院.给水排水设计手册 第9册 专用机械.北京:中国建筑工业出版社 1986:142;
    [47]上海市政工程设计院.给水排水设计手册 第9册 专用机械.北京:中国建筑工业出版社 1986:212;
    [48] C. Delporte, R. Pujol and EVion. Optimized Lamellae settling for urban stormwater waste [J]. Wat. Sci.Tech.1995,32 (1),127~136;
    [49] 王祖琴,李田,吴今明.上海市雨水污染控制初探[J].上海环境科学.2002,21(5):305~107;
    [50] 张锁龙,沈惠平,张国忠.推进桨、45°三叶折叶桨及新型轴流式桨的流场分析。石油化工高等学校学报.Vol.14 No.1,Mar 2001.55~58;
    [51] Michael R. Rasmussen and Torben Larsen. A Method for Measuring Sludge Settling Characteristics In Turbulent Flows. Wat. Res. Vol. 30.No.10. 1996 2363~2370;
    [52] Peter Krebs, Anastasios I. Stamou etc. Influent of Inlet and Outlet Configuration on The Flow in Secondary Clarifiers. Wat. Sci.Tech. Vol.34.No.5. 1996 1~9;
    [53] M.Koehne, K. Hoen, M.Schuhen. Modelling and Simulation of Final Clarifiers in Wastewater treatment plants. Mathematics and Computers in Simulation 39 (1995) 609~616;
    [54] A.Deninger, E.Holthausen and P.A. Wilderer. Velocity and solids distribution in circular secondary clarifiers Full scale measurements and numerical modeling. Wat.Res. Vol.32.No.10. 1998 2951~2958;
    [55] M.G.Wood, P.F.Greenfield etc. Computational fluid dynamic modelling of wastewater ponds to improve design. Wat.Sci.Tech. Vol.31.No.2. 1995 111~118;
    [56] Djamel Lakehal, Peter Krebs, Johan Krijgsman, and Wolfgang Rodi. COMPUTING SHEAR FLOW AND SLUDGE BLANKET IN SECONDARY CLARIFIERS. JOURNAL OF HYDRAULIC ENGINEERING. MARCH 1999. 253~262;
    [57] C.J.Brouckaert and C.A.Buckley. The Use of Computational Fluid Dynamics for Improving the Design and Operation of Water and Wastewater Treatment Plants. Wat.Sci.Tech. Vol.40.No.24-5 1999 81~89;
    [58] 高立、张效先等,周边进水、周边出水沉淀池设计问题的探讨,天津大学硕士学位论文,2001.12.1:

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700