用户名: 密码: 验证码:
生物安全实验室排风高效过滤器原位检漏关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高等级生物安全实验室的操作对象为高致性病原微生物,其许多常规的实验操作都会产生危害性气溶胶。如果实验室带菌、带毒的室内污染空气排放到大气中,将会感染人群及动物,引起流行病爆发,严重威胁人类生命健康,甚至引发重大公共卫生事件。因此,高等级生物安全实验室污染空气排放处置是确保实验室生物安全的关键。
     目前,空气高效过滤仍然是生物安全实验室空气污染防护的主要手段。高效空气过滤器存在泄漏和表面病原微生物存活、繁殖的风险,WHO《实验室生物安全手册》(第3版)要求BSL-3实验室所有的高效过滤器必须安装成可以进行气体消毒和检测方式,我国标准GB19489-2008也规定BSL-3实验室应可以在原位对排风高效过滤器进行消毒灭菌和检漏。
     我国高等级生物安全实验室的建设起步较晚,现采用的实验室排风处置技术仍十分落后,不能满足对高效过滤器进行原位检漏和原位消毒的要求。为解决通过改造使我国已建及一些在建的高等级生物安全实验室符合GB19489-2008的技术难题,有必要依据现有标准和其它相关技术要求,对高效空气过滤单元过滤器原位检漏技术进行研究,并研发适合我国国情的高等级生物安全实验室排风处置设备。
     针对高等级生物安全实验室排风高效过滤器安装的实际情况,研究了国际上通用的高效过滤器扫描检漏、全效率检漏法,并结合相关标准对高效过滤器效率测试台提出的性能要求,以及我国已建及在建高等级生物安全实验室的实际情况,提出生物安全实验室排风高效过滤器原位检漏技术研究方案。
     本文首先研究了如何将全效率检漏应用到排风过滤装置的技术方法,并通过理论分析、实验对比和CFD模拟,设计了排风过滤装置的下游混匀装置,可以保证下游采样具有代表性,建议依据标准ASHERE52.2-1999“一般通风用空气净化器件计径效率实验方法”对下游采样点气溶胶混合性能进行评价。在过滤器下游9个发尘点注入人工发生的DOP气溶胶,在下游采样口进行测试,结果表明对粒径为0.3~0.5μm的粒子,所有发尘点所对应的下游采样口所采集的气溶胶浓度测试结果产生的相对偏差均低于3%,满足标准不大于10%的要求。
     对于具有上游发尘和采样功能的高效空气过滤单元,根据标准要求,需要保证紧靠过滤器上游的气溶胶浓度具有空间一致性。为了满足要求,通常在上游加装混匀板,但在某些情况下,仍然难以达到混匀要求,此时可以通过采用将常规发尘口改为环形发尘口。通过实验测试,表明环形发尘口可有效加速气溶胶混匀,取得了很好的混匀效果。
     利用美国TSI3160分级式滤料测试台测试了具有不同孔径漏点的高效滤纸,所测滤纸MPPS效率大于99.97%,其MPPS粒径为0.1μm。测试结果表明,当漏点直径低于0.4mm时,对滤纸的整体效率影响很小,当直径大于0.4mm时,滤纸的效率明显下降。因此建议当测试扫描探头漏点识别及定位漏点性能时,所制作漏点直径选为0.4mm为宜。此处漏点直径时指对漏点进行扎漏的圆针直径。
     针对常规采样探头应用在排风过滤装置的自动扫描系统上所存在的问题,提出了研制线扫描采样探头的方案。首先根据采样探头采样口气流速度一致性对线扫描采样探头两种设计方案进行测试,采样气流流量为28.3L/min,根据测试结果对两种方案进行了初步的选择,所选择的线扫描采样探头采样口各点风速值均在平均值±20%范围内,满足相关标准要求。
     为了测试线扫描探头识别漏点的能力,与常规扫描探头进行了过滤器漏点识别对比测试,测试时分别在过滤器进、出风面的滤纸上人为制作了两个直径为0.4mm的漏点,两种探头在距过滤器25mm位置对漏点周围进行固定采样。测试结果显示,线扫描探头测试固定漏点所得透过率约为常规扫描探头的0.7倍,线扫描探头漏点识别范围为7mm左右,透过率分布呈抛物线状,矩形采样探头漏点识别范围为11mm左右,透过率分布呈梯形状,且线扫描探头对不同位置漏点所测差异性比较小,证明可用于过滤器扫描。
     根据线扫描采样探头识别漏点的特点,将扫描探头的运动方式设置为间断式运行,每运行5mm,暂停0.5s。之所以采取间断式运行,是为了给数据的采集和处理提供时间,当粒子计数器与计算机传送数据时,计数器不能同时采集数据,此运行方式可有效防止漏认。考虑到采样管的长度所造成的数据采集延时,在扫描过程中对采样的时间进行设定修正。对有漏点的过滤器进行线扫描检漏时,可准确定位漏点所在区域。
     根据排风过滤装置的性能要求,研发了线扫描自动检漏系统,整个扫描系统除了包括上述的采样探头之外,还包括运动控制系统、采样管路切换系统以及数据采集处理系统。该系统具有扫描周期短、机械结构简单、配套仪器少、自动化程度高和更加人性化的优点,且自动扫描系统的所有电器元件全部安装在装置的外侧,可完全适用于排风过滤装置的过滤器原位检漏。
     高等级生物安全实验室应根据自身结构情况,选择合适的排风过滤装置,并根据其高效过滤器的安装情况,选择适用的检漏方法。系列生物安全实验室排风高效空气过滤装置的成功研制为我国高等级生物安全实验室的建设提供了重要的技术和装备支撑,且产品性能达到了国外同类产品水平,可在国内高等级生物安全实验室的建设中得到推广应用。
The operational objects in high-level biosafety laboratories are highly pathogenic microorganisms. Harmful aerosols may be released during most of regular experimental operations. Once laboratory carries bacteria and the contaminated indoor air is discharged to atmosphere, population and animals will be infected, which will cause epidemic outbreak, threaten severely people’s health, and even induce magnitude public health incident. Thus, treatment of contaminated air in biosafety laboratory is the key point to ensure laboratory biosafety.
     At present, HEPA filter is still the main method to protect from air pollution of bio-safety laboratory. HEPA filter has the risk of leakage and pathogenic microorganism surviving/propagating on the surface. It is required by WHO in“Laboratory Biosafety Manual”(3rd Edition) that all the HEPA filters in laboratory must be installed in a manner that permits gaseous decontamination and testing. This requirement is also prescribed in GB19489-2008 that the decontamination and testing should be executed in-situ.
     The building of high-level biosafety laboratory started relatively late in our country. The applied technology of laboratory exhaust air treatment is rather backward compared with foreign countries, and cannot meet the requirement of in-situ leak detection and in-situ decontamination. In order to solve the technical difficulty that how to improve the high-level biosafety laboratories built or being built to meet the requirements of GB19489-2008, it is called to study on the in-situ leak detection technology for HEPA filter unit basing on the existing standards and other technical requirements, and develop exhaust treating equipments for high-level biosafety laboratory suitable for our country situation.
     Scanning leak test and total efficiency leak test methods commonly used in the world were studied. Combined with the performance requirements of related standards for HEPA tester, as well as the actual situation of the built and being built high-level biosafety laboratories in our country, a research program of in-situ leak testing technology for HEPA filter of biosafety laboratory is proposed.
     This paper firstly studied the technical method that how to apply total efficiency leak test to exhaust filter equipment, and designed the downstream mixing device on the equipment through theoretic analysis, experimental comparison and CFD simulation, which ensured a representative downstream sampling. It is recommended to evaluate the property of mixture of aerosol at the downstream sampling point according to ASHERE52.2-1999“Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size”. Inject DOP aerosol manually in turn at the 9 dust generating points of the filter’s downstream and sample at the probes. For the particulars of sized between 0.3~0.5μm, the relative deviations of the test results inferior to 3% where the aerosol are collected at all downstream sampling probes corresponding to the dust generating points, which be able to meet the standard requirements for not more than 10%.
     According to the standards, it is required to ensure a spatial uniformity of concentration of the aerosol closing to filter’s upstream for the HEPA filter units with upstream dust generation and sampling functions. To meet the requirement, mixing board is usually installed at upstream. While it still cannot mix enough in some cases, thus ring dust generating probe is taken instead of conventional probes. Experimental results indicate that ring dust generating probe can accelerate aerosol mixing, which achieves a good result.
     Test HEPA filter paper with leakage of vary aperture by stage filter media tester TSI3160 US, of which the filter MPPS efficiency is more than 99.97% and MPPS particle size is 0.1μm. The test result shows that it has little effect on the overall efficiency of filter paper when the leakage diameter is inferior to 0.4mm, while the efficiency of filter paper decreases obviously when the diameter is superior to 0.4mm. Consequently, it is recommended to choose the leakage diameter as 0.4mm when testing the leak identification of scanning probe and performance of leak location. The leakage diameter indicates here the round pin diameter used to make a leak.
     The proposal of developing line scan sampling probe was put forward regarding the problems when applying conventional sampling probes to auto-scanning system of exhaust filter units. Firstly test the 2 designs of line scan sampling probe according to the air flow velocity consistency at sampling probe, where the sampled air flow rate is 28.3L/min. Based on the test result, a primary choice is made between the 2 designs. The line scanning sampling probe is selected because the average values of air flow velocities are all within the range of±20% and it can meet the requirement of related standards.
     In order to test the leakage identification performance of line scanning probe, a comparison test of filter leakage identification has been taken between conventional scanning probes and line scanning probes. 2 leaks of 0.4mm were made artificially in the filter paper and separately at inlet and outlet surfaces, The 2 kinds of probe are fixed at the distance of 25mm to filter to sample around the leakage. The test result shows that the transmittance get for fixed leakage by line scanning probe is 0.7 times of which by conventional probes. The leakage identifying range of line scanning probe is about 7mm with transmittance presenting a parabola shape. But the leakage identifying range of conventional probe is about 11mm with transmittance presenting a trapezoid shape. Furthermore, line scanning probe has less difference of test results at various leakages. It is proved to be available for filter scanning test.
     According to the characteristics of the line-scanning sampling probe, the movement of the probe is set to intermittent operation mode, which pauses 0.5s after moving every 5mm. The reason to select this mode is to provide time for date collection and processing, because the particle counter cannot collect data and transmit data to computer simultaneously, this operation mode can effectively prevent from missing leakage identification. Taking into account the delay of data collection caused by the length of sampling pipe, the sampling time was corrected in the process of scanning. The leak area can be located accurately when filter with leaks is scanned.
     According to the performance requirements of exhaust filter units, the automatic line-scanning leak detection system was developed. Besides the sampling probe, the system also includes motion control system, sampling pipeline switch systems and data acquisition and processing systems. The advantage of such system is short scan cycle, simple mechanical structure, less matching equipments, high automation and more humanized. All electrical components of the automatic scanning systems have been installed outside the units, so it can be fully applicable to filter leak detection of filter of the exhaust filter units in situ.
     High-level biosafety laboratory should select the appropriate exhaust filter units based on its construction, and also select the appropriate leak detection method in accordance with its installation manner of HEPA filter. In this thesis series of biosafety laboratory exhaust filter units were developed, which could provide the essential technical and equipment support for high-level biosafety laboratory in our country. The performances of these apparatus have reached the same level of those abroad, which could be used widely in high-level biosafety laboratory in our country in the near future. Keywords: high-level biosafety laboratory; HEPA filter; HEPA filter unit; leak detection in-suit; total efficiency leak test; scanning leak test.
引文
[1]高树田,伍瑞昌,王运斗.国内外生物安全实验室发展现状与思考[J],医疗卫生装备,2005,26(11):33~34.
    [2]俞詠霆,李太华,董德祥.生物安全实验室建设[M].北京:化学工业出版社,2006.3.
    [3]张弘,徐百万,林典生,等.兽医实验室生物安全指南.农业部兽医局[M].北京:中国农业出版社,2006.
    [4]谢慧祎.高效空气过滤器及滤料杀菌效率评价方法的研究[D].[硕士学位论文],天津:天津大学,2006.
    [5] Maus.R, H.Umhauer. Collection efficiencies of coarse and fine dust filter media for airborne biological particles [J], Journal of Aerosol Science, 1997, 28(3):401~415.
    [6]邱济夫.抗菌空气过滤器性能评价方法的研究[J],洁净与空调技术,2005,1: 1~6.
    [7] Maus.R, A.Goppelsroer, H.Umhauer. Survival of bacterial and mold spores in air filter media[J], Atmospheric Environment, 2001,35(1):105~113.
    [8] Simmons.R.B, S.A.Crow. Fungal colonization of air filters for use in heating, Ventilating, and air conditioning (HVAC) systems [J], Journal of Industrial Microbiology, 1995, 14(1):41~45.
    [9]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB 19489-2004实验室生物安全通用要求[S].北京:中国标准出版社,2008.
    [10] WHO, Laboratory Biosafety Manual[M], 3rd, Geneva: World Health Organization, 2004, 1-3.
    [11]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB19489-2008实验室生物安全通用要求[S].北京:中国标准出版社,2009.
    [12] Flanders Filters, Inc., Washington, N.C. Filter testing apparatus and method: US, 4494403[P].1985.1.22.
    [13] Camfil Farr, Inc. Scan testable filter housing assembly for exhaust applications: US, US 2006/0042359 A1[P].2006.3.2.
    [14] Camfil Farr, Inc., Riverdale, NJ(US). Method and apparatus for v-bank filter bed scanning: US, US 7334490B2[P].2008.2.26.
    [15]曹国庆.高效空气过滤器性能检测系统的研制与相关问题研究[D].[硕士学位论文],天津:天津大学,2006.
    [16]姜军,刘俊杰,朱能.对高效空气过滤器检漏的研究[J].洁净与空调技术,2005.3:7-11.
    [17]姜坪,刘梅红.空气过滤材料的发展与应用[J].现代纺织技术,2002.4(10):52-55.
    [18]徐启明.滤料的应用及发展[J].工业安全与环保,2006.32(5):39-40.
    [19]陈钢进,肖慧明,尤健明,等.溶剂浸泡对驻极体空气过滤材料性能的影响[J].洁净与空调技术,2009.3(1):76-79.
    [20]王小平,宋茂海,江键,等.紫外线对驻极体电荷储存稳定性的影响[J].第二军医大学学报,2004.25(3):335-337.
    [21]许仲麟.空气洁净技术原理[M].北京:科学出版社.2003.
    [22]蔡杰.空气过滤器ABC[M].北京:中国建筑工业出版社.2003.
    [23]李全鹏,空气微生物在纤维滤料上收集存活的研究[D].[硕士学位论文],天津;天津大学,2007.
    [24] MIL-STD-282:1956. Filter Unit, Protective Clothing, Gas-mask Components and Related Products: Performance-Testing Methods[S].
    [25]中国制冷空调工业学会.CRAA 431.4-2008高效率空气过滤器—第4部分:过滤器扫描试验[S].云南:云南科技出版社,2008.
    [26] Paolo Tronville, Ph.D, Developing standards: Global standards for air cleaning equipment[J]. Filtration & Separation, November 2008.
    [27] Institute of Environmental Science and Technology. IEST-RP-CC0034.2 (2005) HEPA and ULPA Filter Leak Tests [S].Arlington Heights Illinois: Institute of Environmental Science and Technology, 2005.
    [28]刘志军,朱能.HEPA/ULPA过滤器效率检测仪器相关问题的探讨[J].洁净与空调技术,2005,5: 26-28.
    [29]刘慧杰,舒为群.邻苯二甲酸酯类化合物的毒理学效应及对人群健康的危害[J].第三军医大学学报,2004,26(19):1778-1781.
    [30]张振中,江锋,叶璲生,等.氯化钠粒径分布对钠焰法过滤效率的影响[J].清华大学学报(自然科学版), 2009, 49(3): 399-401, 406.
    [31]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 13554-2008高效空气过滤器[S].北京:中国标准出版社,2008.
    [32]中国制冷空调工业学会.CRAA 431.5-2008高效率空气过滤器—第5部分:过滤器总效率试验[S].云南:云南科技出版社,2008.
    [33] European Committee for Standardization. EN1822-5(2000) High efficiency air filter (HEPA and ULPA)—Part 5: Determining the efficiency of filter element [S]. Brussels: European Committee for Standardization, 2000.
    [34]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T 6165-2008高效空气过滤器性能试验标准效率和阻力[S].北京:中国标准出版社,2008.
    [35]中华人民共和国建设部.GB50346-2004生物安全实验室建筑技术规范[S].北京:中国建筑工业出版社,2004.
    [36] ANSI/ASHRAE 52.2-1999 Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size[S]. American National Standards Institute, 1999.
    [37] Launder, B.E. and Spalding, D.B. The Numerical Computation of Turbulent Flows [J]. Computer Methods in Applied Mechanics and Energy, 1974, 3:269-289.
    [38] Graham, D.I. and Moyeed, R.A. How Many Particle for My Lagrangian Simulations [J]. Powder Technology, 2002, 125: 179-186.
    [39]王彤,谷传纲,杨波,黄建德.非定常流动计算的PISO算法[J].水动力学研究与进展,2003A, 18(2): 233-239.
    [40] European Committee for Standardization. EN1822-4(2000) High efficiency air filter (HEPA and ULPA)—Part 4: Determining leakage of filter element (Scan method) [S]. Brussels: European Committee for Standardization, 2000.
    [41]邹志胜.高效空气过滤器最易穿透粒径效率测试台的研制[D].[硕士学位论文],天津:天津大学,2005.
    [42]周远斌.高效空气过滤器最易穿透粒径效率扫描测试台的研制[D].[硕士学位论文],天津:天津大学,2005.
    [43]张东东,许宏庆,何枫.气固两相射流瞬时速度场和浓度场的PIV研究[J].清华大学学报(自然科学版),2003,43(11):1491-1494.
    [44]许宏庆,何文奇,李良杰,张东东.应用PIV技术对气固两相流粒子浓度场的瞬时测量[J].流体力学实验与测量,2003,17(3):53-56.
    [45] The International Organization for Standardization. ISO 14644-3(2005) Cleanrooms and associated controlled environments—Part 3: Test methods[S].
    [46] European Committee for Standardization. EN 1822-1:1998.High efficiency air filters (HEPA and ULPA)—Part1: Classification, performance, marking. [S]. Brussels: European Committee for Standardization, 1998.
    [47]姜军,刘俊杰,朱能.对高效空气过滤器检漏的研究[J].洁净与空调技术,2005-3:7-11.
    [48] European Committee for Standardization. EN1822-2:1998. High efficiency air filters(HEPA and ULPA)—Part2: Aerosol production, measuring equipment, particle counting statistics[S]. Brussels: European Committee for Standardization, 1998.
    [49] US Federal Standard 209E,“Airborne Particulate Cleanliness Classes inCleanrooms and Clean Zones”, US General Service Administration, 1972.
    [50] HindsWC.气溶胶技术[M].孙聿峰译.哈尔滨:黑龙江科学技术出版社,1989.
    [51]刘俊杰,朱能,田喆.尘埃粒子计数器损失的分析研究[J].洁净与空调技术,2002,2(1):21-23.
    [52]许钟麟,沈晋明,陈长镛,等.粒子计数器采样气溶胶的误差[J].中国粉体技术,2000,6(1):6-9.
    [53] N.A.Fuchs. The Mechanics of Aerosols [M]. New York: The Macmillan Company and Pergamon Press, Inc,1964.
    [54]丁伟雄,杨定安,宋晓光.步进电机的控制原理及单片机控制实现[J].煤矿机械,2005,5: 127-129.
    [1]张弘,徐百万,林典生,等.兽医实验室生物安全指南.农业部兽医局[M].北京:中国农业出版社,2006
    [2]全国认证认可标准化技术委员会(SAC/TC 261).GB 19489-2008实验室生物安全通用要求[S].北京:中国标准出版社,2009
    [3] Flanders Filters, Inc., Washington, N.C. Filter testing apparatus and method: US, 4494403[P].1985.1.22.
    [4] Camfil Farr, Inc. Scan testable filter housing assembly for exhaust applications: US, US 2006/0042359 A1[P].2006.3.2.
    [5] Camfil Farr, Inc., Riverdale, NJ(US). Method and apparatus for v-bank filter bed scanning: US, US 7334490B2[P].2008.2.26.
    [6] Cambridge Filter Corp., Syracuse. N.Y. Method for leak testing air filters: US, 4646558 [P].1987.3.3.
    [7]中华人民共和国建设部.GB50346-2004生物安全实验室建筑技术规范[S].北京:中国建筑工业出版社,2004
    [8]刘慧杰,舒为群.邻苯二甲酸酯类化合物的毒理学效应及对人群健康的危害[J].第三军医大学学报,2004,26(19):1778-1781
    [9] ANSI/ASHRAE 52.2-1999 Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size[S]. American National Standards Institute, 1999.
    [10]中国制冷空调工业学会.CRAA 431.4-2008高效率空气过滤器—第4部分:过滤器扫描试验[S].云南:云南科技出版社,2008
    [11] European Committee for Standardization. EN1822-4(2000) High efficiency air filter (HEPA and ULPA)—Part 4: Determining leakage of filter element (Scan method) [S]. Brussels: European Committee for Standardization, 2000.
    [12]许钟麟,沈晋明,陈长镛,等.粒子计数器采样气溶胶的误差[J].中国粉体技术,2000,6(1):6-9.
    [1]张弘,徐百万,林典生,等.兽医实验室生物安全指南.农业部兽医局[M].北京:中国农业出版社,2006
    [2]全国认证认可标准化技术委员会(SAC/TC 261).GB 19489-2008实验室生物安全通用要求[S].北京:中国标准出版社,2009
    [3] Flanders Filters, Inc., Washington, N.C. Filter testing apparatus and method: US, 4494403[P].1985.1.22.
    [4] Camfil Farr, Inc. Scan testable filter housing assembly for exhaust applications: US, US 2006/0042359 A1[P].2006.3.2.
    [5] Camfil Farr, Inc., Riverdale, NJ(US). Method and apparatus for v-bank filter bed scanning: US, US 7334490B2[P].2008.2.26.
    [6]刘慧杰,舒为群.邻苯二甲酸酯类化合物的毒理学效应及对人群健康的危害[J].第三军医大学学报,2004,26(19):1778-1781
    [7] Institute of Environmental Science and Technology. IEST-RP-CC0034.2 (2005) HEPA and ULPA Filter Leak Tests [S]. Arlington Heights Illinois: Institute of Environmental Science and Technology, 2005.
    [8] American Society of Heating, Refrigerating and Air-Conditioning Engineers. ANSI/ASHRAE 52.2-1992 Method of General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size [S]
    [9]中国制冷空调工业学会.CRAA 431.4-2008高效率空气过滤器—第4部分:过滤器扫描试验[S].云南:云南科技出版社,2008
    [10] Technical Committee CEN/TC 195.EN 1822-4:2000 High efficiency air filters (HEPA and ULPA)——Part4: Determining leakage of filter element (Scan method) [S]
    [11]邹志胜.高效空气过滤器最易穿透粒径效率测试台的研制[D].[硕士学位论文],天津:天津大学,2005.
    [12]周远斌.高效空气过滤器最易穿透粒径效率扫描测试台的研制[D].[硕士学位论文],天津:天津大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700