用户名: 密码: 验证码:
上海中心大厦裙房深大基坑变形特性及盆式开挖技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上海中心大厦基坑工程为近年来上海软土地区罕见的超大、超深基坑工程。其周边环境复杂,变形控制要求高;且因该地区隔水性好的第⑧粘性土层的缺失,导致第⑦和第⑨砂土承压含水层贯通,地下连续墙未能隔断坑内外承压水层的水力联系,且水头降深大、降水时间长,从而导致承压降水对基坑变形影响显著。该基坑工程采用“主楼顺作+裙房逆作”的总体施工方案,采用圆形地墙将主楼区和裙房区临时隔开,先行施工主楼区基坑,后再逆作施工裙房区基坑。由于工程的特殊性,针对此类裙房基坑变形特性的研究甚少。同时,现采用逆作法施工的深大基坑工程普遍采用盆式土方开挖技术;但在实际施工过程中,相关施工参数通常只根据施工经验确定,甚至有时较为随意,从而容易导致基坑变形过大。另外,基坑工程总体施工方案合理与否,对工程施工的安全性和经济性起到关键作用。由此,本文通过理论分析、数值模拟和实测数据分析等手段,对基坑降水对基坑变形的影响、本裙房基坑工程的变形特性、深大基坑的盆式土方开挖技术、及本工程的总体施工方案合理性验证等方面内容,作了较深入的研究。主要内容包括以下几个方面:
     (1)基于FLAC渗流分析模块对不同土层分布的孔压场进行了研究,定性把握了不同土层及渗流边界条件下的孔压分布规律;并依此规律,针对上海软土地区常见三类深基坑降水情况,给出了相应的考虑渗流作用的水压分布计算简化方法,且对此合理性作了相应论证;同时结合本裙房基坑工程实例,对给出的水压分布简化计算方法的合理性给予了验证。
     (2)依据实测数据详细分析了围护墙侧移的整体变形性状、最大侧移值及发生位置和三维空间效应,并分析了基坑开挖宽度和出入口进出施工车辆对围护墙侧移的影响;同时着重分析了混凝土垫层的设置和水平梁板及大底板的混凝土结构收缩对围护墙侧移的影响,指出混凝土垫层对围护墙具有较好的支撑作用,及超长水平混凝土结构的收缩对围护墙变形影响显著。另外,围护墙顶竖向位移、立柱的隆沉、墙柱之间的差异沉降、墙后地表沉降及基坑周边历时建筑和临近管线沉降作了详细分析。突出说明了承压降水对基坑变形的显著影响。
     (3)基于FLAC有限差分软件对基坑变形特性进行了研究。在模拟中,结合水土分算原则,土体物理参数采用有效应力指标,并根据实际施工过程降水情况,及前面考虑渗流作用的水压分布研究成果,考虑了土中孔压变化对基坑变形的影响。在分析过程中,首先讨论了主楼区与裙房区之间的临时隔断圆形地墙的简化方式、是否考虑地下水和工程桩的作用等因素对计算结果的影响;分析了基坑开挖宽度及水平支撑刚度对基坑变形的影响;并对裙房基坑中间部位的变形特性做了较全面的计算分析,且比较了计算值和实测值之间的关系,特别说明了基坑北侧部分地表测点有所隆起的原因;同时采用不同计算方法对作用在围护墙上的水土压力大小进行了分析,并与实测值进行了对比,说明了采用前面提出的考虑渗流作用的水压分布计算方法用于水土压力计算的合理性。
     (4)为合理确定逆作法深大基坑工程的盆式土方开挖方案,依据悬臂和带撑两种不同条件的特点,对土方开挖的分块大小、盆边开挖深度、盆中开挖深度、盆边留土宽度和坡度及分块开挖顺序等施工参数的确定进行了较为详细的分析说明。并提出了盆边开挖路径向相关区和盆中开挖路径非相关区的概念及划分。且对盆式开挖盆边留土宽度的对基坑变形影响作较深入的研究,并给出了合理确定的方法和建议。
     (5)为论证背景基坑工程现行总体施工方案的合理性,首先详细分析了该基坑工程的特点;在此基础上,提出了四个比选方案:中间大开口全顺作、中间大开口全逆作、主楼区顺作+裙房区顺作、主楼区顺作+裙房区逆作等方案;接着从工期、经济成本、周边环境影响、技术方法等方面进行方案了比较分析。同时对现行所采用方案的优点作了进一步说明。
The excavation of Shanghai Tower project is a rare oversized and ultra-deepexcavation in Shanghai soft deposit in recent years. The surrounding environment isvery complex, so the strict control of deformation is required. And due to lack of the8thlayer of cohesive soil in Shanghai soft deposit, which leads to the7thand9thlayerof confined aquifers are connected directly. But the diaphragm wall failed to isolatethe hydraulic connection of confined aquifer between the inside and outside of theexcavation, and the water head drawdown is large, the time of dewatering is long, sothat the affection of the dewatering on the pit deformation is significantly. The overallconstruction program of the excavation uses the bottom-up construction for the mainbuilding pit and the top-down construction for the podium pit. Circular wall is used asthe temporary partition between the main building and the podium construction areas,the main building pit is constructed firstly, and then the podium pit is constructed withtop-down method. Because of the particularity of the excavation, few studies havebeen made to study the deformation characteristics of similar podium pits. Andgenerally, basin excavation method is commonly employed in the top-downexcavations, but in the actual construction process, construction parameters of thebasin excavation techniques are usually determined only according to the constructionexperience, even sometimes more casual, so it easily leads to excessive deformation.Therefore, in order to study the affect of dewatering on the deformation of theexcavation, the deformation characteristics of the podium pit, the basin excavationtechniques of deep and big excavations, and the reasonable verification of the overallconstruction scheme of foundation pit, intensive studies on these aspects are carriedout using the tools of theoretical analysis, numerical simulation and experimental dataanalysis and so on. The main contributions of this thesis are described in thefollowings:
     (1) Using the basic flow scheme of FLAC program, the pore pressures in thecondition of different soil layers and different fluid flow boundary conditions arestudied, and the laws of the field distribution of pore pressure are qualitativelygrasped. In accordance with the law, for the three types of dewatering situationscommonly encountered in Shanghai soft deposit, simplified calculation methods of the water pressure distributions is given, and the rationality of the calculation methodsis reasoned. Meanwhile, rationality of the calculation methods is proofed, based onthe experimental data of the podium pit.
     (2) Based on the measured data, general trends of lateral displacement of wall,maximum lateral displacement of wall and location of its occurrence,three-dimensional effect of wall displacement are analyzed with details. Factors thataffect wall deflection such as excavation width, heavy traffic adjacent to wall,concrete cushion, and the shrinkage of overlong horizontal concrete structure, arestudied. Meanwhile, it highlights that the confinement effect of cushion todeformation of retaining wall is significant, and the concrete shrinkage of overlonghorizontal concrete structure leads to big increment of lateral displacement of wall.Additionally, vertical displacement of the top of wall and piles, differential settlementof wall and piles, ground surface settlement, settlement of temporary buildings andpipelines surround foundation pit are analyzed with details. Furthermore, theremarkable influence of confined water dewatering on settlement of foundation pit isespecially replied.
     (3) Deformation characteristics of foundation pit studies using explicit finitedifference program (FLAC) are conducted. Based on the principle of the separatedcalculation method for water and soil pressure, the soil physical parameters useeffective stress indicators, and according to dewatering conditions during the actualconstruction process and the earlier research results of water pressure distributionwhich considering seepage, the influence of changes of the soil pore pressure on pitdeformation is considered. Meanwhile, some factors affecting on the results ofcalculation are studied, such as the simplified form for the circle wall between themain building construction area and the podium construction area, and whetherconsidering pore pressure in soil and piles. And the influence of excavation width andthe stiff of horizontal strut on displacement of pits are analyzed. The deformation ofthe podium pit in the middle part is overall computational analysis with simplified2Dnumerical models and measured values, the reasons for the project phenomena whichsome surface measuring points on north pit show some heave is specially instructed.Furthermore, it also carries out analysis of the soil and water pressure on the wall bydifferent methods and compares with measured data, which testes and verifies that using the previously proposed method for calculation water pressure to calculatewater and soil pressure is reasonable.
     (4) To determine the rational program for large and deep top-down foundation pitusing basin excavation technique, some construction parameters of basin excavationare studied. These include block size of excavation, basin excavation depth of sideportion, basin excavation depth of middle portion, width of berm, slope of berm edge,and block excavation sequence and so on. Meanwhile, this thesis first presents theconcept of excavation path-dependent area for side portion of basin excavation andexcavation path-independent area for middle portion of basin excavation, and themethod of boundary division is proposed. Furthermore, the effect of width of berm onthe displacement of foundation pit is detailed studied, and the method for determiningthe width is proposed.
     (5) In order to demonstrate the rationality of the overall construction program forthe foundation pit, a detailed analysis of the characteristics of the pit is carried out.And based on the characteristics, four alternative schemes are proposed: scheme1,total bottom-up construction method with large opening in the middle; scheme2, totalup-down construction method with large opening in the middle; scheme3, with circlewall as the temporary partition between the main building and the podiumconstruction areas, bottom-up construction method both for the two pits; scheme4(current scheme), as mentioned earlier. Then, the schemes are compared from theaspects of deadline, economic cost, the influence on surrounding environment,technological factors and so on. Finally, the current scheme is given and its advantageis further explained.
引文
[1]刘国彬,王卫东.基坑工程手册.北京:中国建筑工业出版社,2009.
    [2]龚剑.上海金茂大厦基坑支护技术.建筑技术,1997,28(8):533-539
    [3] Zhao Xihong, Gong Jian, and Chen Zhiming, Design&pratice on engineering projects ofspecially deep&big excavation in Shanghai, Chinese Journal of Geotechnical Engineering,1999,21(1):104-107
    [4]陈卫星.软粘土地区与主体地下结构相结合的支护结构性态分析:[硕士学位论文].上海:同济大学,2000
    [5]赵锡宏.大型超深基坑工程实践与理论.北京:人民交通出版社,2005:65-75
    [6]王利民,曾马荪,陈耀光.深基坑工程周围建筑及围护结构的监测分析.建筑科学,2000,16(2):35-37
    [7]戴标兵.超高层建筑基础与基坑工程逆作法现场测试与分析研究:[博士学位论文].上海:同济大学,2007
    [8]徐中华.上海地区支护结构与主体地下结构相结合的深基坑变形性状研究:[博士学位论文].上海:上海交通大学,2007
    [9]龚剑.上海环球金融中心主楼超大超深基础坑中坑围护施工技术[J].建筑施工,2006,28(5):331-334
    [10]孙小华,张德标.上海环球金融中心裙房逆作法施工中取土洞口及栈桥的合理设置.建筑施工,2008,20(10):855-858
    [11]谢小松.大型深基坑逆作法施工关键技术研究及结构分析:[博士学位论文].上海:同济大学,2007.
    [12]赖允瑾,王鑫,周生华.上海莘庄龙之梦逆作法基坑工程.见:龚晓南.基坑工程实例4[C].北京:中国建筑工业出版社,2012.
    [13]吴念祖.上海虹桥综合交通枢纽超深大基坑工程建设与实践.建筑施工,2010,32(7):609-610
    [14]范庆国.超高层建筑工程施工控制理论、方法和技术及其工程应用:[博士学位论文].上海:同济大学,2007.
    [15]贾坚,刘传平,谢小林,肖忠华,翟杰群.上海陆家嘴金融贸易区X2地块发展项目基坑工程.见:龚晓南.基坑工程实例3[C].北京:中国建筑工业出版社,2010.
    [16]李寅华,林文明,唐军等.上海廖创兴金融中心大厦深基坑工程逆作法的实测与研究.工业建筑,2006,36(12):44-49
    [17]叶卫东.上海世博会500kV全地下变电站逆作法施工技术.施工技术,2010,39(5):26-28
    [18]贾坚,谢小林,翟杰群.上海淮海中路3号地块发展项目基坑工程.见:龚晓南.基坑工程实例4.北京:中国建筑工业出版社,2012:34-43.
    [19]李广信.基坑支护结构上水土压力的分算与合算.岩土工程学报,2000,22(3):348-352.
    [20]沈珠江.基于有效固结应力理论的粘土土压力公式.岩土工程学报,2000,22(3):353-356.
    [21]龚晓南,高有潮.深基坑工程设计施工手册.北京:中国建筑工业出版社,1998.
    [22] Kishnani S. S.&Borja R.I.. Seepage and soil-structure interaction effects in bracedexcavations [J]. Journal of geotechnical engineering,1993,119:912-928.
    [23]魏汝龙.基坑内外的水压力和渗流力.岩土工程师,1998,10(1):23-25
    [24]李广信,刘早云,温庆博.渗透对基坑水土压力的影响.水利学报,2002(5):75-80.
    [25]王钊,邹维列,李广信.挡土结构上的土压力和水压力.岩土力学,2003,24(2):146-150
    [26]张克意,赵其华.深基坑围护结构侧面孔隙水压力研究.岩土工程学报,2004,26(1):155-157
    [27]刘国彬,黄院雄,侯学渊.水及土压力的实测研究.岩石力学与工程学报,2000,19(2):205-210.
    [28] O'Rourke T. D., and O'Donnell C. J.. Field behavior of excavation stabilized by deep soilmixing [J]. Journal of Geotechnical and Geoenvironmental engineering.1997,123:516-524
    [29] Sch fer R., Triantafyllidis Th.. Modelling of earth and water pressure development duringdiaphragm wall construction in soft clay. International Journal for Numerical Analytical andMethods in Geomechanics,2004,(28):1305-1326.
    [30]张飞,李镜培.考虑流—固耦合效应的基坑水土压力计算.工程勘察,2011,2:1-6
    [31]董诚,郑颖人,唐晓松.渗流条件下基坑水—土压力不同计算方法的比较.岩土力学,2007,28(S):677-681.
    [32]杨晓军,龚晓南.基坑开挖中考虑水压力的土压力计算.土木工程学报,1997,30(4):58-62
    [33]谢康和,柳崇敏,应宏伟,杨伟.成层土中基坑开挖降水引起的地表沉降分析.浙江大学学报,2002,36(3):239-251.
    [34]李玉岐.考虑渗流影响的基坑工程性状研究:[博士学位论文].杭州:浙江大学,2005
    [35]李玉岐,周健,谢康和.基坑开挖卸载诱发的渗流分析.岩土工程学报,2006,28(10):1259-1262
    [36]胡琦.超深基坑水、土与围护结构相互作用及设计方法研究:[博士学位论文].杭州:浙江大学,2008
    [37] Benmebarek N., Benmebarek S.,&Kastner R. etc. Passive and active earth pressures in thepresence of groundwater flow. Geotechnique,2006,56(3):149–158
    [38]徐日庆,张庆贺,刘鑫等.考虑渗透性的水—土压力计算方法.岩土工程学报2012,34(5):961-964
    [39]欧章煜,廖瑞堂.软弱粘土层中深开挖之土水压力之变化.中国土木水利工程学刊,1995,7(1):253-262.
    [40]郑刚,焦莹.深基坑工程设计理论及工程应用.北京:中国建筑工业出版社,2010.
    [41]赵锡宏,陈志明,胡中雄.高层建筑深基坑围护工程实践与分析.上海:同济大学出版社,1996
    [42] Peck R.B.. Deep excavation and tunneling in soft ground. In Proceedings of the7thInternational Conference on Soil Mechanics and Foundation Engineering, State-of-the-Art-Volu-me [C]. Mexico City,1969, pp:225-290
    [43] Clough G.W., O’Rourke T.D..Construction induced movements of in situ walls[C]//ASCE,Conference on Design and Performance of Earth Retaining Structures, Geotechnical SpecialPublication No.25. New York,1990,439–470.
    [44]吳佩軫,王明俊,彭嚴儒等.連續壁變形行為探討.第七屆大地工程學術研究討論會,1997,1:601-608.
    [45]龚晓南,高有潮.深基坑工程设计施工手册.北京:中国建筑工业出版社,1998:120-122
    [46] Mana A.I., and Clough G.W.. Prediction of movements for braced cuts in clay. Journal of theGeotechnical Engineering Division,1981,107(6):759-777
    [47] Terzaghi K.. Theoretical Soil Mechanics. John Wiley&Sons, New York,1967
    [48] Wong K.S., and Broms B.B.. Lateral wall deflections of braced excavation in caly. Journal ofGeotechnical Engineering,1989,115(6):853-870
    [49]谢百钩.黏土层深开挖引致地盘最大位移预测.中国土木水利工程学刊,2001,13(3):489–498
    [50]龚剑,王旭军,赵锡宏.深大基坑首层盆式开挖对基坑变形影响分析.岩土力学,2013,34(2):439-448
    [51] Hashash Y.M., and Whittle A.J.. Ground movement prediction for deep excavations in softclay. Journal of Geotechnical Engineering,1996,122(6):474-486
    [52]欧章煜.深开挖工程分析设计理论与实务.台北:科技图书股份有限公司,2004.
    [53]谭跃虎,吉同筠.软土深挖基坑中挡墙侧向变形分析与计算.岩土工程学报,1995,17(4):71-76
    [54] Whittle A.J., Hashash Y.M.A., and Whitman R.V.. Analysis of a deep excavation in Boston.Journal of Geotechnical Engineering,1993,119(1):69–90.
    [55] Kung G.T.C.. Comparison of excavation-induced wall deflection using top-down andbottom-up construction methods in Taipei silty clay. Computers and Geotechnics,2009,36(3):373–385.
    [56] LI Lin. Shrinkage induced tension in reinforced concrete struts for retaining large-scaleexcavation[J]. Advanced Materials Research,2011,368–373:2880–2886
    [57] Ng C.W.W.. Observed performance of multipropped excavation in stiff clay. Journal ofGeotechnical and Geoenvironmental Engineering,1998,124(9):889–905.
    [58]王旭军.上海中心大厦裙房的深大基坑工程围护墙变形分析.岩石力学与工程学报,2012,31(2):421–430.
    [59] Long M.. Database for retaining wall and ground movements due to deep excavations.Journal of Geotechnical and Geoenvironmental Engineering,2001,127(33):203-224
    [60] Moormann C.. Analysis of wall and ground movements due to deep excavations in soft soilbased on a new worldwide database. Soils and Foundations,2004,44(1):87-98
    [61] Ou C.Y., Hsieh P.G., and Chiou D.C.. Characteristics of ground surface settlement duringexcavation. Canadian Geotechnical Journal,1993,30(5):758-767
    [62] Masuda T.. Behavior of deep excavation with diaphragm wall. M. S. thesis, MassachusettsInstitute of Technology (MIT), Cambradge, Massachusetts,1993.
    [63] Wong I.H., Poh T.Y., and Chuah H.L.. Performance of excavations for depressed expresswayin Singapore. Journal of Geotechnical and Geoenvironmental Engineering,1997,123(7):617-625
    [64] Leung, E. H. Y., and Ng, C. W. W.. Wall and ground movements associated with deepexcavations supported by cast in situ wall in mixed ground conditions. Journal of Geotechnicaland Geoenvironmental engineering,2007,133(2):129-143.
    [65]王建华,徐中华,王卫东.支护结构与主体地下结构相结合的深基坑变形特性分析.岩土工程学报,2007,29(12):1899-1903.
    [66]李琳,杨敏,熊巨华.软土地区深基坑变形特性分析.土木工程学报,2007,40(4):66-72
    [67]丁勇春,王建华,徐中华,陈锦剑.上海软土地区地铁车站深基坑的变形特性.上海交通大学学报,2008,42(11):1871-1875
    [68]候学渊,陈永福.深基坑开挖引起周围地基土沉陷的计算.岩土工程师,1989,1(1):3-13.
    [69] Kung G.T., Juang C.H., Hsiao E.C.L., et. Simplified model for wall deflection andground-surface settlement caused by braced excavation in clay. Journal of Geotechnical andGeoenvironmental Engineering,2007,133(6):731-747.
    [70]王旭军,龚剑,赵锡宏.混凝土垫层及水平结构混凝土收缩对围护墙变形影响的实测分析.岩石力学与工程学报,2013,3(32):520-527
    [71] Kumagai T., Ariizumi K., Kashiwagi A.. Behaviour and analysis of a large-scale cylindricalearth retaing structure. Japanese Geotechnical Society,1999,39(3):13-26.
    [72]刘建航,侯学渊.基坑工程手册.北京:中国建筑工业出版社,1997
    [73] Ou C.Y., Wu T.S., and Hsieh H.S.. Analysis of deep excavation with column type of groundimprovement in soft clay. Journal of Geotechnical Engineering,1996,122(9):709-716
    [74] Ou C.Y., and Shiau B.Y.. Analysis of the corner effect on excavation behaviors. CanadianGeotechnical Journal,1998,35(3):532-540
    [75] Lee F.H., Yong K.Y., Quan K.C.N., and Chee K.T.. Effect of corners in strutted excavations:field monitoring and case histories. Journal of Geotechnical and GeoenvironmentalEngineering,1998,124(4):339-349
    [76]俞建霖,龚晓南.软土地基基坑开挖的三维性状分析.浙江大学学报,1998,32(5):552-557
    [77]俞建霖,龚晓南.深基坑的空间性状分析.岩土工程学报,1999,21(1):21-25
    [78]俞建霖,龚晓南.基坑工程变形性状研究.土木工程学报,2002,35(4):86-90.
    [79]张冬霁.考虑空间与时间效应的基坑工程数值分析研究:[博士学位论文].杭州:浙江大学,2000.
    [80] Ou C.Y. Three-dimensional finite element analysis of deep excavations. Journal ofGeotechnical Engineering,1996,122(5):337-345.
    [81] Roboski J.F.. Three-dimensional performace and analyses of deep excavation:[PhD thesis].Northwestern University, Evanston Illinois, America,2004.
    [82] Finno R.J, Blackburn J.T, Roboski J.F. Three-dimensional effects for supported excavationsin clay. Journal of Geotechnical and Geoenvironmental engineering,2007,133(1):30-36.
    [83]刘建航,刘国彬,范益群.软土基坑工程中时空效应理论与实践(上).地下工程与隧道,1999,(3):7-12
    [84]刘建航,刘国彬,范益群.软土基坑工程中时空效应理论与实践(下).地下工程与隧道,1999,(4):10-14
    [85]高文华,杨林德,沈蒲生.香港广场深基坑围护结构变形的时空效应分析.2000,27(1):86-91
    [86]刘国彬,刘登攀,刘丽雯等.基坑坑底施工阶段围护墙变形监测分析.岩石力学与工程学报,2007,26(S2):4386-4394.
    [87]李光照,郑刚.软土地区深基坑工程存在的变形与稳定问题及其控制.施工技术,2011,40(338):5-9
    [88]宰金珉.开挖回弹预测的简化方法.南京建筑工业学院学报,1997(2):23-27
    [89]刘国彬,王洪新.上海浅层粉砂地层承压水对基坑的危害及治理.岩土工程学报,2002,24(6):790-792
    [90]黄绍铭,高大钊.软土地基与地下工程(第二版).北京:中国建筑工业出版社,2005
    [91]陆培毅,余建星,肖健.深基坑回弹的空间性状研究.天津大学学报,2006,39(3):301-305
    [92]刘国彬,黄院雄,侯学渊.基坑回弹的实用计算法.土木工程学报,2000,33(4):61-67
    [93] Hsieh P.G., Ou C.Y.. Shape of ground surface settlement profiles caused by excavation.Canadian Geotechnical Journal,1998,35(6):1004-1017.
    [94]刘建航.地下墙深基坑周围地层移动的预测和治理之二——基坑周围地层移动的预测.地下工程与隧道,1993,2:2-15
    [95]唐孟雄,赵锡宏.深基坑周围地表沉降及变形分析.建筑科学,1996,(4):31-35
    [96]王卫东,徐中华.预估深基坑开挖对周边建筑物影响的简化分析方法.岩土工程学报,2010,32(S1):32-38
    [97]崔江余,梁仁旺.建筑基坑工程设计计算与施工.北京:中国建材工业出版社,1999
    [98]贾坚,谢小林.上海软土地区深大基坑卸荷变形机理.上海交通大学学报,2009,43(6):1005-1010.
    [99]邓指军,贾坚.地铁车站深基坑卸荷回弹影响深度的试验.城市轨道交通研究,2008,11(3):52-55.
    [100]贾坚,谢小林.上海软土地区深大基坑的卸荷变形及控制.岩土工程学报,2008,30(S):376-380.
    [101]刘婧,陈锦剑,王建华.上海世博500kV地下变基坑降水流固耦合分析.上海交通大学学报,2010,44(6):721-725.
    [102]张刚,梁志荣.承压水降水引起地表沉降现场试验研究.岩土工程学报,2008,30(S):323-327.
    [103]褚伟洪,黄永进,张晓沪.上海环球金融中心塔楼深基坑施工监测实录.地下空间与工程学报,2005,1(4):627-633
    [104]丁州祥.连续介质固结理论及其工程应用:[博士学位论文].杭州:浙江大学,2005
    [105] Pickles A.R, Lee S.W and Norcliffe.B.A.W.. Groundwater and ground movement arounddeep excavation. Geotechnical Engineering,2003,156(GE3):147-158
    [106] Clough G.W., Denby G.M.. Stabilizing berm design for temporary walls in clay [J]. Journalof Geotechnical Engineering Division,1977,103(GT2):75-90.
    [107] Potts D.M., Addenbrooke T.I., and Day R. A. The use of soil berms for temporary supportof retaining walls. In Retaining structures (ed. C.R.I. Clayton), pp,440-447. London: ThomasTelford,1993.
    [108] Georgiadis M, Anagnostopoulos C.. Effect of berms on sheet-pile wall behavior.Geotechnique,1998,48(4):569-574.
    [109] Powrie W., Daly M. P.. Centrifuge model tests on embedded retaining walls supported byearth berms.Geotechnique2002,52(2):89-106.
    [110] Daly M. P. Powrie W. Undrained analysis of earth berms as temporary supports forembedded retaining walls. Geotechnical Engineering,2001,149(4):237-248
    [111] Gourvenec S. M. POWRIE W.. Three-dimensional finite element analysis of embeddedretaining walls supported by discontinuous earth berms. Canadian Geotechnical Journal,2000,37, No.5,1062–1077.
    [112] Smethurst,J.A., Powrie,W. Effective-stress analysis of berm-supported retaining walls.Geotechnical Engineering,2008,161(GE1),39-48.
    [113]陈福全,吴国荣,刘毓氚.基坑内预留土堤对基坑性状的影响分析.岩土工程学报,2006(S):1470-1474.
    [114]孙洋波,袁聚云,赵宏锡.逆作法施工盆式开挖预留土体坡肩宽度的研究.地下空间与工程学报,2006,2(5):789–792.
    [115]周予启,刘卫未.软土地区超大深基坑中心岛支护方案设计与施工.施工技术,2011,40(341):52-54.
    [116]包旭范,庄丽,吕培林.大型软土基坑中心岛法施工中土台预留宽度的研究.岩土工程学报,2006,28(10):1208–1212.
    [117]元翔,孙玉永,宫全美,周顺华等.世博轴深大基坑逆作法施工变形控制研究.岩土工程学报,2009,31(7):1127-1132.
    [118]金亚兵,周志雄.挡土墙(桩)前堆载反压或预留土体分析与计算.岩土力学,1999,20(3):56-60.
    [119]郑刚,陈红庆,雷杨等.基坑开挖反压土作用机制及其简化分析方法研究.岩土力学,2007,28(6):1161-1166.
    [120]刘畅.考虑土体不同强度与变形参数及基坑支护空间影响的基坑支护变形与内力研究:
    [博士学位论文].天津:天津大学,2008.
    [121]王卫东,王建华.深基坑支护结构与主体结构相结合的设计、分析与实例.北京:中国建筑工业出版社,2007.
    [122]中国建筑科学研究院,建筑基坑支护技术规程(JGJ-120-99).北京:中国建筑工业出版社,1999
    [123]上海市城乡建设和交通委员会.基坑工程技术规范(DG/TJ08-61-2010).上海,2010.
    [124] Clough G.W., and Duncan J.M.. Finite element analyses of retaining wall behavior, Journalof the Soil Mechanics and Foundations Division,1971,97(12):1657-1673
    [125]陈育民,徐鼎平. FLAC/FLAC3D基础与工程实例.中国水利水电出版社,北京,2009.
    [126] Roscoe K.H., Schofield A.N., and Thurairajah A.. Yielding of clays in the state wetter thancritical. Geotechnique,1963,13(3):211-24
    [127] Roscoe K.H., and Burland J.B.. On the generalized stress-strain behavior of “wet” clay [A].Engineering Plasticity [C]. Cambridge: Cambridge University Press,1968:538-609
    [128] Potts D M, Mair R J. Finite element analysis in geotechnical engineering: application.London: Thomas Telford,2001.
    [129]徐中华,王卫东.敏感环境下基坑数值分析中土体本构模型的选择.岩土力学,2010,31(1):258-264
    [130] Itasca Consulting Group, Inc. Fast Lagrangian Analysis of Continua Theory andBackground, Flac (Version5.0), Users' Manual.2005: Minneapolis, MN,USA.
    [131]潘林有,程玉梅,胡中雄.卸荷状态下粘性土强度特性试验研究.岩土力学,2001,22(4):490-493.
    [132]李广信.高等土力学.北京:清华大学出版社,2004
    [133] Wood D.M.. Soil Behaviour and Critical State Soil Mechanics. Cambridge: CambridgeUniversity Press,1990.
    [134]上海岩土工程勘察设计研究院有限公司.上海中心大厦岩土工程勘察报告.上海,2008
    [135]上海市建设和管理委员会.岩土工程勘察规范(DGJ08-37-2002).上海,2002.
    [136]赵锡宏,姜洪伟,袁聚云等.上海软土各向性弹塑性模型.岩土力学,2003,24(3):322-330.
    [137]孙洋波.软土地区深基坑工程逆作法数值分析与实测研究:[博士学位论文].上海:同济大学,2006.
    [138] Brinkgreve R B J. Selection of soil models and parameters for geotechnical engineeringapplication [A]. Soil Constitutive Models, Proceedings of the Sessions of the Geo-Frontiers2005Congress, ASCE [C]. Austin, Texas,2005:69-98.
    [139]魏道垛,胡中雄.上海浅层地基土的前期固结压力及有关压缩性参数的试验研究.岩土工程学报,1980,2(4):13-22.
    [140]范巍,王建华,陈锦剑.连续墙与土体接触特性对深基坑变形分析的影响.上海交通大学学报,2006,40(12):2118-2121
    [141] Geotechnical engineering office. Guide to Retaining Wall Design (2th edition). Hong Kong:Government Publications Centre,2000.
    [142] Biot M.A.. General theory of three-dimensional consolidation. Journal Apply Physics,1941,12:155-161.
    [143]殷宗泽.土工原理.北京:中国水利水电出版社,2007
    [144]李广信.关于渗流情况的土压力计算.地基处理,1998,9(1):57-58.
    [145]刘婧,陈锦剑,王建华.上海世博500kV地下变基坑降水流固耦合分析.上海交通大学学报,2010,44(6):721-725
    [146]李广信.对“基于水压率讨论土中孔隙水压力及有关问题”一文的讨论.岩土工程界,2007,10(9):22-24
    [147]李琳.工程降水对深基坑性状及周围环境影响的研究:[博士学位论文].同济大学,上海,2007
    [148]李广信.岩土工程20讲——岩土漫话[M].人民交通出版社,北京,2007:156-157
    [149]姚天强,石振华.基坑降水手册.中国建筑工业出版社,北京,2006:64-65.
    [150] Ou C.Y., Liao J.T., and Lin H.D.. Performance of diaphragm wall constructed usingtop-down method. Journal of Geotechnical and Geoenvironmental Engineering,1998,124(9):798-80
    [151] Roboski J., and Finno R.J.. Distributions of ground movements parallel to deep excavationsin clay. Canadian Geotechnical Journal,2006,43(1):43-58
    [152]卢礼顺,刘建航,刘国彬.基坑底混凝土垫层的支撑效应分析.地下空间,2004,24(6):224–228.
    [153]黄国兴,惠荣炎.混凝土的收缩.北京,中国铁道出版社,1990
    [154]范庆国,赵锡宏.深基坑工程逆作法的理论与计算.岩土力学,2006,27(12):2169-2176
    [155]戴标兵,范庆国,赵锡宏.深基坑工程逆作法的实测研究.工业建筑,2005,35(9):54-63
    [156]俞国风,丁洁民,仇建华.海洋大厦逆作法深基坑支护技术.结构工程师,2001,13(2):21-2.
    [157]罗智勇.软土地区逆作法地铁换乘车站基坑变形特性研究.铁道工程学报,2010,12(147):93-99
    [158]周淦,曹镛禄,冯玉山.金茂大厦基坑开挖施工监测.岩土工程技术,1998,3:57-62
    [159]陈中汉,黄书秩,程丽萍.深基坑工程(第二版).北京:机械出版社,2003
    [160]中国土木工程学会土力学及岩土工程分会.深基坑支护技术指南.中国建筑工业出版社,2012.
    [161]宋青君,王卫东.上海世博500KV地下变电站圆形深基坑逆作法变形与受力特性实测分析.建筑结构学报,2010,31(5):181-187.
    [162]王卫东,徐中华,王建华.上海地区深基坑周边地表变形性状实测统计分析.岩土工程学报,2011,33(11):1659-1666.
    [163] Ou C.Y., Hsieh P.G.. A simplified method for predicting groud settlement profiles inducedby excavation in soft clay. Computers and Geotechnics,2011,38:987-997.
    [164]翟杰群,谢小林,贾坚.“上海中心”深大圆形基坑的设计计算方法.岩土工程学报,2010(S1):392-396
    [165] JTJ303—2003港口工程地下连续墙结构设计与施工规程.北京:人民交通出版社,2004.
    [166]丁勇春,王建华,徐斌.基于FLAC3D的基坑开挖与支护三维数值分析.上海交通大学学报,2009,43(6):96-80.
    [167]王旭东.基坑开挖中水泥土挡墙的变形分析.南京建筑工程学院学报(自然科学版),1994,(1):25-30
    [168]鲁宏,李小芳.考虑工程桩存在对深基坑变形性状影响的有限元分析.昆明理工大学学报(理工版),2006,31(5):56-60
    [169]柏挺,李镜培,丁鼎,徐中华.框架逆作的超大基坑监测分析.地下空间与工程学报,2012,8(6):1302-1310
    [170]马险峰,张海华,朱卫杰等.超深基坑开挖对超临近高层建筑影响的离心模型试验研究.岩土工程学报,2008,3(S1):499-504.
    [171]秦爱芳,蒋晨旭.基坑开挖卸荷影响深度分析.上海大学学报(自然科学版),2008,14(2):205-209.
    [172]楼晓明,李德宁,刘建航.深基坑坑底地基的回弹应力与回弹变形.土木工程学报,2012,45(4):134-138.
    [173]徐中华,王卫东.敏感环境下基坑数值分析中土体本构模型的选择.岩土力学,2010,31(1):258-264
    [174] Powrie W, Davies J N, Britto A M.. A cantilever retaining wall supported by a berm duringtemporary works activities[C]//In Retaining structures (ed. C. R. I. Clayton), Thomas Telford,London,1993:418-428.
    [175]龚剑,周虹.大型地下车库逆作法土方工程施工技术.建筑施工,2003,25(1):7-9.
    [176] Zdravkovic L., Potts D.M., and ST John H.D.. Modelling of a3D excavation in finiteelement analysis. Geotechnique,2005,55(7):497-513
    [177]龚剑.上海超高层及超大型建筑基础和基坑工程的研究与实践:[博士学位论文].上海:同济大学,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700