用户名: 密码: 验证码:
基于支持向量机的孤立点检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
孤立点检测是数据挖掘领域的重要内容之一。孤立点检测可以发现不具备一般数据特性的数据,进而发现潜在的有用信息。孤立点检测可以应用到很多实际领域,如信用卡欺诈检测、故障诊断、医学诊断、网络入侵检测和信息检索等。近年来很多国内外学者着力于结合支持向量机技术进行孤立点检测应用,其成果颇丰。然而随着研究的不断深入和应用范围的不断扩大,现存方法遇到了一些障碍,检测模型的泛化能力和稳定性能也存在诸多问题。由于上述原因,本文以基于支持向量机的孤立点检测为题进行研究,以期提供更加高效稳定的孤立点检测方法,主要研究内容如下:
     1、一类支持向量机及其改进算法进行孤立点检测问题研究。实际应用中训练集通常包含大量的有标签正常样本,但只包含少量或者根本不存在有标签孤立点样本,这种情况下一类支持向量机表现出优势,但是由于算法对坐标原点依赖性强、参数不易选择等原因造成孤立点检测的误报率较高。针对这些问题本文首先利用受试者工作特征分析技术作为性能评价标准,使用两种参数搜索方法对模型进行优化,进而获得最佳决策函数。其次,设计了“局部密度一类支持向量机”算法,为每个样本测量数据局部密度并加到对应的松弛变量上,在训练过程中包含这些信息将有助于获得更理想的决策函数。此外,提出了“孤立点一类支持向量机”算法,通过综合距离和概率输出两种标准在无标签训练集中探测可疑孤立点,然后在特征空间刻画与可疑孤立点保持最大间隔的分类超平面,并在此基础上提出了一种根据数据异常程度动态更新数据样本的方法,提供了稳定高效的检测性能。
     2、数据预处理技术改善孤立点检测中支持向量分类器性能问题研究。支持向量机进行分类操作的时候,决策超平面会受到数据库中孤立点干扰而发生偏移;其原因在于孤立点在训练过程中易于成为边界支持向量,从而对最后的决策函数做出较大贡献;另外数据维数过高也会降低分类效率和性能。为此本文提出使用数据预处理方法改善分类器性能,通过主成分分析处理训练数据,为远离聚簇中心孤立点设置较小的权值,这样孤立点对最终决策函数起到的作用将大大降低,从而缓解决策超平面被偏移的问题,提出的方法被成功地应用到蛋白质亚细胞定位预测领域。针对高维数据会影响分类器性能的问题,利用高斯过程潜变量模型来抽取特征,并且设计了阶梯跳跃式降维方法,为获得良好分类性能提供了保障。
     3、使用混合策略的孤立点检测研究。孤立点检测应用中数据存在不平衡的特点,两类样本数量比例失调,将支持向量机的分类超平面向预测大类正常样本的方向倾斜,进而能够将孤立点样本全部识别为正常样本。本文首先结合两种支持向量机算法提出了一个两阶段的孤立点检测方法;集成不同权值改进半监督的一类支持向量机对数据集进行重采样,执行过程中通过设定较低权值降低孤立点的信息量,除去部分正常样本从而平衡两类样本的比例;使用代价敏感支持向量机执行孤立点检测操作,以两种误分类代价线性和最小为目标,实现了代价敏感孤立点挖掘。其次结合集成学习方法改进支持向量分类器的性能,利用聚类算法分解正常样本与孤立点样本作为单个分类器的输入,综合不同分类模型的输出结果改善孤立点检测性能。对于大类正常样本,使用聚类算法分解成多个部分,并分别计算与小类样本之间的距离,通过综合打分系统排除最远和最近的聚类;对于小类孤立点样本,使用一类支持向量机进行训练,在对应的支持向量样本上进行过采样操作;两种数据重采样方法的目的均在于平衡样本集以获得更理想的分类超平面。本文提出的混合策略方法能够提高检测率,降低误报率,同时将误分类代价降到最低。
Outlier detection refers to the problem of finding patterns in data that do not conform to expected behavior. These nonconforming patterns often imply potentially useful information. Outlier detection is one of the most important contents in the data mining community. Outlier detection finds extensive use in a wide variety of applications such as credit fraud detection, fault detection, health care, intrusion detection for network security, image retrieval. In recent years, domestic and overseas scholars are focused on applying Support Vector Machine (SVM) theory to the tasks of outlier detection, and many results have been obtained. As the research and application going, the existed methods and techniques face some difficulties on the generalization ability and robust stability of the outlier detection models. For the above observations, this dissertation will focus on SVM method and try to find new techniques for efficient and robust outlier detection based on SVMs. It covers:
     1. Research on semi-supervised or unsupervised outlier detecion methods based on One-Class SVM (OCSVM). In practice, availability of labeled data for training and validation of models used by outlier detection techniques are major issues, there are only few labeled outliers in databases. One-class classification techniques are promising in detecting new outliers. However, such techniques usually gain high detection rate with high false positive rate, because proper parameters are difficult to select and the choice of origin as the separation point is arbitrary and affects the decision boundary returned by the algorithm. A new model is proposed which makes use of receiver operating characteristic (ROC) analysis technique, and the optimum parameters are automatically searched in limited scope using two techniques, then lead to the detection decision function after a boundary movement process. To identify the ideal hyperplane, a new algorithm named "local density OCSVM" is proposed by incorporating distance-based local density degree to reflect the overall characteristics of the target data. Finally, an "Outlier OCSVM" is proposed and a framework is designed for unsupervised outlier detection. Respectively scored by distance from hyper-plane and probabilistic output value, two definitions of outlier degree are presented. After picking out some suspicious outliers via combining the two criterions of outlier degree, the model starts the training operations and two parts of the data set are updated interactively through comparison of the outputs.
     2. Research on robust classification models combined data preprocess techniques and SVMs in outlier detection. The experimental data sets are likely to contain outliers or noises, which can lead to poor generalization ability and classification accuracy for SVMs. This happens because the outliers may become boundary support vectors and contribute to the decision function, in addition, the high dimensional feature databases can reduce the efficiency and performance. A method using Weighted SVM (WSVM) combined with Principal Component Analysis (PCA) is then proposed for robust prediction of protein subcellular localization. After performing dimension reduction operations on the data sets, more suitable weights are generated for further training, as PCA transforms the data into a new coordinate system with largest variances affected greatly by the outliers. Gaussian process latent variable model (GPLVM) is also used for the purpose of nonlinear low dimensional embedding of sample data sets, and a new ladder jumping dimensional reduction classification framework is proposed for effectively confirming the objective dimension.
     3. Research on hybrid methods for solving imbalanced classification problems in outlier detection. The data sets used in outlier detection applications are usually imbalanced, which have detrimental effects on the performance of an SVM classifier, because the classifier may be strongly biased towards the majority class. A new resampling algorithm based on a modified OCSVM is then proposed, and a two-stage outlier detection approach is designed after combining the resampling algorithm with a cost sensitive SVM. Low weights were set for outliers, and some common points were removed proportionally by the hyperplane in feature space, as could also overcome the effect of overlapping data points. The optimal parameters of the cost sensitive SVM is searched and the cumulative misclassification costs are reduced. Moreover, a new method using ensemble learning method is proposed. Both minority and majority classes are resampled to increase the generalization ability. For majority class, just instead of all data, the prototypes of the clusters are selected. In essence, this could form a way of undersampling of this class. The clusters are used to build an SVM ensemble with the oversampled minority patterns. For minority class, an OCSVM model combined with synthetic minority oversampling technique (SMOTE) is used to oversample the support vector instances. Hybrid methods adopt both strategies of modifying the data distribution and adjusting the classifier, present hight true positive rates with low false positive rates.
引文
[1] David H, Heikki M, Padhraic S. Principles of data mining [M]. MA:MIT Press, MA, 2001.
    [2] Tan P, Steinbach M, Kumar V. Introduction to data mining [M]. Boston, MA, USA:Addison Wesley, 2005.
    [3] Shortland R, Scarfe R. Data mining applications in BT [J]. Bt Technology Journal. 2007, 25(3-4):272-277.
    [4] Han J, Kamber M. Data mining: concepts and techniques [M]. San Fransisco, CA:Morgan Kaufmann Publishers, 2006.
    [5] Agrawal R, Imielinski T, Swami A. Database mining - a performance perspective [J]. IEEE Transactions on Knowledge and Data Engineering. 1993, 5(6):914-925.
    [6] Fayyad U, PiatetskyShapiro G, Smyth P. From data mining to knowledge discovery in databases [J]. Ai Magazine. 1996, 17(3):37-54.
    [7] Chen MS, Han JW, Yu PS. Data mining: An overview from a database perspective [J]. IEEE Transactions on Knowledge and Data Engineering. 1996, 8(6):866-883.
    [8] Gyimothy T, Ferenc R, Siket I. Empirical validation of object-oriented metrics on open source software for fault prediction [J]. IEEE Transactions on Software Engineering. 2005, 31(10):897-910.
    
    [9] Bin Othman MF, Shan Yau TM. Comparison of different classification techniques using WEKA for breast cancer [C]. 3rd Kuala Lumpur International Conference on Biomedical Engineering 2006, 2007:520-523.
    
    [10] Sonnenburg S, Braun ML, Ong CS, Bengio S, Bottou L, Holmes G, LeCun Y, Muller KR, Pereira F, Rasmussen CE, Ratsch G, Scholkopf B, Smola A, Vincent P, Weston J, Williamson RC. The need for open source software in machine learning [J]. Journal of Machine Learning Research. 2007, 8(8):2443-2466.
    
    [11] Ihaka R, Gentleman R. R: A language for data analysis and graphics [J]. Journal of computational and graphical statistics. 1996, 5(5):299-314.
    [12] Witten IH, Frank E. Data Mining: Practical Machine Learning Tools and Techniques [M]. San Fransisco, CA:Morgan Kaufmann Publisers, 2005.
    
    [13] Mierswa I, Wurst M, Klinkenberg R, Scholz M, Euler T. YALE: Rapid prototyping for complex data mining tasks [C]. Proceedings of the ACM SIGKDD International Confer ence on Knowledge Discovery and Data Mining, Philadelphia, PA, United states, 2006:935- 940.
    [14] King DE. Dlib-ml: A Machine Learning Toolkit [J]. Journal of Machine Learning Research. 2009, 10(10):1755-1758.
    [15] Abeel T, Peer YVd, Saeys Y. Java-ML: A Machine Learning Library [J]. Journal of Machine Learning Research. 2009, 10(10):931-934.
    [16] Hodge V, Austin J. A Survey of Outlier Detection Methodologies [J]. Artificial Intelligence Review. 2004, 22(2):85-126.
    [17] Chandola V, Banerjee A, Kumar V. Anomaly detection: A survey [J]. ACM Computing Surveys. 2009, 41(3):1-58.
    [18] Grubbs, F.E.. Procedures for detecting outlying observations in samples [J]. Technomet-rics. 1969, 11(1):1-21.
    [19] Barnett V, Lewis T. Outliers in statistical data [M]. New York:Wiley, 1994.
    [20] Asuncion A, Newman D. UCI Machine Learning Repository [DB]. 2007.
    [21] John G. Robust decision trees: Removing outliers from databases [C]. Proceedings of the First International Conference on Knowledge Discovery and Data Mining, Menlo Park,CA, 1995:174-179.
    [22] Aggarwal CC, Yu PS. Outlier detection for high dimensional data [C]. Proceedings of the 2001 ACM SIGMOD international conference on Management of data, Santa Barbara, California; United States, 2001:37-46.
    [23] Spence C, Parra L, Sajda P. Detection, synthesis and compression in mammographic image analysis with a hierarchical image probability model [C]. Workshop on Mathematical Methods in Biomedical Image Analysis MMBIA, Kauai, HI, United states, 2001:3-10.
    [24] Sjostrand K, Hansen MS, Larsson HB, Larsen R. A path algorithm for the support vector domain description and its application to medical imaging [J]. Medical Image Analysis. 2007, 11(5):417-428.
    [25] Wong WK, Moore A, Cooper G, Wagner M. Bayesian Network Anomaly Pattern Detection for Disease Outbreaks [C]. Proceedings, Twentieth International Conference on Machine Learning, Washington, DC, United states, 2003:808-815.
    [26] Shen Y, Cooper GF. A Bayesian biosurveillance method that models unknown outbreak diseases [C]. 2nd NSF BioSurveillance Workshop, BioSurveillance 2007, May 22, 2007 -May 22, 2007, New Brunswick, NJ, United states, 2007:209-215.
    [27] Branch J, Szymanski B, Giannella C, Wolff R, Kargupta H. In-network outlier detection in wireless sensor networks [C]. 26th IEEE International Conference on Distributed Computing Systems, Lisboa, Portugal, 2006:51-58.
    [28] Zhang Y, Meratnia N, Havinga P. An online outlier detection technique for wireless sensor networks using unsupervised quarter-sphere support vector machine [C]. 2008 International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Sydney, Australia, 2008:151-156.
    [29] Hongmei D, Xu R. Model Selection for Anomaly Detection in Wireless Ad Hoc Networks [C]. IEEE Symposium on Computational Intelligence and Data Mining, Honolulu, Hawaii, USA, 2007:540-546.
    [30] Hormozi AM, Giles S. Data mining: A competitive weapon for banking and retail industries [J]. Information Systems Management. 2004, 21(2):62-71.
    [31] Chen RC, Chen TS, Lin CC. A new binary support vector system for increasing detection rate of credit card fraud [J]. International Journal of Pattern Recognition and Artificial Intelligence. 2006, 20(2):227-239.
    [32] Whitrow C, Hand DJ, Juszczak P, Weston D, Adams NM. Transaction aggregation as a strategy for credit card fraud detection [J]. Data Mining and Knowledge Discovery. 2009, 18(1):30-55.
    [33] Fawcctt T, Provost F. Activity monitoring: noticing interesting changes in behavior [C]. Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining, San Diego, California, United States, 1999:53-62.
    [34] He ZY, Xu XF, Deng SC. Discovering cluster-based local outliers [J]. Pattern Recognition Letters. 2003, 24(9-10):1641-1650.
    [35] Estevez PA, Held CM, Perez CA. Subscription fraud prevention in telecommunications using fuzzy rules and neural networks [J]. Expert Systems with Applications. 2006, 31(2):337-344.
    [36] Girardin E, Liu ZY. Bank credit and seasonal anomalies in China's stock markets [J]. China Economic Review. 2005, 16(4):465-483.
    [37] Eskin E, Arnold A, Prerau M, Portnoy L, Stolfo S. A geometric framework for unsu-pervised anomaly detection: Detecting intrusions in unlabeled data [M]. Norwell Massachusetts :Kluwer Academic Publishers, 2002:77-87.
    [38] Depren O, Topallar M, Anarim E, Ciliz MK. An intelligent intrusion detection system (IDS) for anomaly and misuse detection in computer networks [J]. Expert Systems with Applications. 2005, 29(4):713-722.
    [39] Giacinto G, Perdisci R, Del Rio M, Roli F. Intrusion detection in computer networks by a modular ensemble of one-class classifiers [J]. Information Fusion. 2008, 9(1):69-82.
    [40] Qing S, Wenjie H, Wenfang X. Robust support vector machine with bullet hole image classification [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews. 2002, 32(4):440-448.
    [41] Banerjee A, Burlina P, Diehl C, Takeuchi J, Yamanishi K. A support vector method for anomaly detection in hyperspectral imagery [J]. IEEE Transactions on Geoscience and Remote Sensing. 2006, 44(8):2282-2291.
    [42] Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R, Lee C, Montie JE, Shah RB, Pienta KJ, Rubin MA, Chinnaiyan AM. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer [J]. Science. 2005, 310(5748):644-648.
    [43] Tibshirani R, Hastie T. Outlier sums for differential gene expression analysis [J]. Bio-statistics. 2007, 8(1):2-8.
    [44] Tian J, Gu H, Liu W. A method for improving protein localization prediction from datasets with outliers [C]. IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, Nashville, TN, United states, 2009:100-105.
    [45] Edgeworth F. On discordant observations [J]. Philosophical Magazine. 1887, 23(5):364-375.
    [46] Eskin E. Anomaly Detection over Noisy Data using Learned Probability Distributions [C]. Proceedings of the Seventeenth International Conference on Machine Learning, Standord, CA, USA, 2000:255-262.
    [47] Desforges M, Jacob P, Cooper J. Applications of probability density estimation to the detection of abnormal conditions in engineering [C]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, London, 1988:687-703.
    [48] Solberg HE, Lahti A. Detection of Outliers in Reference Distributions: Performance of Horn's Algorithm [J]. Clinical Chemistry. 2005, 51(12):2326-2332.
    [49] Jolliffe I. Principal component analysis [M]. New York:Springer, 2002.
    [50] Yamanishi K, Takeuchi J, Williams G, Milne P. On-Line Unsupervised Outlier Detection Using Finite Mixtures with Discounting Learning Algorithms [J]. Data Mining and Knowledge Discovery. 2004, 8(3):275-300.
    [51] Ester M, Kriegel H, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial databases with noise [C]. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, 1996:226-231.
    [52] Guha S, Rastogi R, Shim K. Rock: A robust clustering algorithm for categorical attributes [J]. Information Systems. 2000, 25(5):345-366.
    [53] Yu D, Sheikholeslami G, Zhang A. Findout: finding outliers in very large datasets [J]. Knowledge and Information Systems. 2002, 4(4):387-412.
    [54] Ramaswamy S, Rastogi R, Shim K. Efficient algorithms for mining outliers from large data sets [J]. ACM SIGMOD Record. 2000, 29(2):427-438.
    [55] Breunig MM, Kriegel HP, Ng RT, Sander J. LOF: identifying density-based local outliers [J]. ACM SIGMOD Record. 2000, 29(2):93-104.
    [56] De Stefano C, Sansone C, Vento M. To reject or not to reject: that is the question-an answer in case of neural classifiers [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews. 2000, 30(1):84-94.
    [57] Barbara D, Wu N, Jajodia S. Detecting novel network intrusions using bayes estimators [C]. Proceedings of the 1st SIAM International Conference on Data Mining, Chicago, USA, 2001:1-17.
    [58] Scholkopf B, Platt JC, Shawe-Taylor J, Smola AJ, Williamson RC. Estimating the support of a high-dimensional distribution [J]. Neural Computation. 2001, 13(7):1443-1471.
    [59] Tax DMJ, Duin RPW. Support vector domain description [J]. Pattern Recognition Letters. 1999, 20(11-13):1191-1199.
    [60] Roth V. Kernel fisher discriminants for outlier detection [J]. Neural Computation. 2006, 18(4):942-960.
    [61] Wu XD, Kumar V, Quinlan JR, Ghosh J, Yang Q, Motoda H, McLachlan GJ, Ng A, Liu B, Yu PS, Zhou ZH, Steinbach M, Hand DJ, Steinberg D. Top 10 algorithms in data mining [J]. Knowledge and Information Systems. 2008, 14(1):1-37.
    [62] Vapnik VN. Statistical learning theory [M]. New York:Wiley-Interscience, 1998.
    [63] Vapnik VN. The Nature of Statistical Learning Theory [M]. New York:Springer-Verlag, 2000.
    [64] Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines [M]. Cambridge, UK:Cambridge University Press, 2000.
    [65]许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策.2004,19(5):481-484.
    [66]Chapelle O,Vapnik V,Bousquet O,Mukhcrjee S.Choosing Multiple Parameters for Support Vector Machines[J].Machine Learning.2002,46(1):131-159.
    [67]Shao XG,Yang HZ,Chen G.Parameters selection and application of support vector machines based on particle swarm optimization algorithm[J].Kongzhi Lilun Yu Yinyong/Control Theory and Applications.2006,23(5):740-743.
    [68]Lin SW,Ying KC,Chen SC,Lee ZJ.Particle swarm optimization for parameter determination and feature selection of support vector machines[J].Expert Systems with Applications.2008,35(4):1817-1824.
    [69]Platt J.Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods[J].Advances in Large Margin Classifiers.1999,10(3):61-71.
    [70]Fawcett T.An introduction to ROC analysis[J].Pattern Recognition Letters.2006,27(8):861-874.
    [71]李昆仑,黄厚宽,田盛丰,刘振鹏,刘志强.模糊多类支持向量机及其在入侵检测中的应用[J].计算机学报.2005,28(002):274-280.
    [72]Steinwart I,Hush D,Scovel C.A Classification Framework for Anomaly Detection[J].Journal of Machine Learning Research.2005,6(6):211-232.
    [73]Jair ML,Escalante HJ.A Comparison of Outlier Detection Algorithms for Machine Learning [R].Department of Computational Sciences,2005.
    [74]Sung AH,Mukkamala S.Identifying important features for intrusion detection using support vector machines and neural networks[C].Proceedings of 2003 Symposium on Applications and the Internet,Orlando,Florida,2003:209-216.
    [75]Zhang ZH,Shen H.Application of online-training SVMs for real-time intrusion detection with different considerations[J].Computer Communications.2005,28(12):1428-1442.
    [76]Qing S,Wenjie H,Wenfang X.Robust support vector machine with bullet hole image classification [J].IEEE Transactions on Systems,Man,and Cybernetics,Part C:Applications and Reviews.2002,32(4):440-448.
    [77]Hu W,Liao Y,Vemuri V.Robust anomaly detection using support vector machines[C].International Conference on Machine Learning,San Francisco,CA,USA,2003:282-289.
    [78]Ratsch G,Mika S,Scholkopf B,Muller KR.Constructing boosting algorithms from SVMs:an application toone-class classification[J].IEEE Transactions on Pattern Analysis and Machine Intelligence.2002,24(9):1184-1199.
    [79]Tax DMJ,Duin RPW.Support Vector Data Description[J].Machine Learning.2004,54(1):45-66.
    [80]Davy M,Desobry F,Gretton A,Doncarli C.An online support vector machine for abnormal events detection[J].Signal Processing.2006,86(8):2009-2025.
    [81]King SP,King DM,Astley K,Tarassenko L,Hayton P,Utete S.The use of novelty detection techniques for monitoring high-integrity plant[C].Proceedings of the 2002 International Conference on Control Applications,Anchorage,Alaska,2002:221-226.
    [82]Heller KA,Svore KM,Keromytis AD,Stolfo SJ.One Class Support Vector Machines for Detecting Anomalous Windows Registry Accesses[C].Proceedings of the workshop on Data Mining for Computer Security,Melbourne,FL,2003.
    [83]Ma J,Perkins S.Time-series novelty detection using one-class support vector machines [C].Proceedings of the International Joint Conference on Neural Networks,Portland,OR,2003:1741-1745.
    [84]Ma J,Perkins S.Online novelty detection on temporal sequences[C].Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining,New York,NY,USA,2003:613-618.
    [85]Rong Y,Yan L,Rong J,Hauptmann A.On predicting rare classes with SVM ensembles in scene classification[C].2003 IEEE International Conference on Acoustics,Speech,and Signal Processing,Hong Kong,2003:21-24.
    [86]Ye L,Yun-Ze C,Ru-Po Y,Xiao-Ming X.Fault diagnosis based on support vector machine ensemble[C].Proceedings of 2005 International Conference on Machine Learning and Cybernetics,Guangzhou,China,2005:3309-3314.
    [87]Wang B,Japkowicz N.Boosting support vector machines for imbalanced data sets[J].Knowledge and Information Systems.2009,(10.1007/s10115-009-0198-y).
    [88]Mao Y,Zhou XB,Pi DY,Sun YX.Constructing support vector machine ensembles for cancer classification based on proteomic profiling[J].Genomics Proteomics and Bioinformatics.2005,3(4):238-241.
    [89]Tax D.One-class classifiers[D].(PhD Thesis),June 2001.
    [90]Scholkopf B,Williamson RC,Smola A J,Shawe-Taylor J,Platt J.Support vector method for novelty detection[J].Advances in Neural Information Processing Systems.2000,12(3):582-588.
    [91]Scholkopf B,Platt J,Smola AJ.Kernel method for percentile feature extraction[R].Microsoft Research Ltd,2000.
    [92]万柏坤,薛召军,李佳,王瑞平.应用ROC曲线优选模式分类算法[J].自然科学进展.2006,16(11):1511-1516.
    [93]Chang CC,Lin CJ.LIBSVM:a library for support vector machines,Software available at http://www.csie.ntu.edu.tw/cjlin/libsvm[CP].2001.
    [94]董春曦,饶鲜,杨绍全,徐松涛.支持向量机参数选择方法研究[J].系统工程与电子技术.2004,26(08):1117-1120.
    [95]朱家元,杨云,张恒喜,任博.支持向量机的多层动态自适应参数优化[J].控制与决策.2004,19(02):223-226.
    [96]袁小芳,王耀南.基于混沌优化算法的支持向量机参数选取方法[J].控制与决策.2006,21(01):111-114.
    [97]Bazi Y,Melgani F.Semisupervised PSO-SVM regression for biophysical parameter estimation [J].IEEE Transactions on Geoscience and Remote Sensing.2007,45(6):1887-1895.
    [98]邵信光,杨慧中,陈刚.基于粒子群优化算法的支持向量机参数选择及其应用[J].控制理论与应用.2006,23(05):740-744.
    [99]Peng T,Zuo WL,He FL.SVM based adaptive learning method for text classification from positive and unlabeled documents [J]. Knowledge and Information Systems. 2008, 16(3):281-301.
    [100] Kennedy J, Eberhart R. Particle swarm optimization [C]. Proceedings of 1995 IEEE International Conference on Neural Networks, Perth, WA, 1995:1942-1948.
    [101] Yamanishi K, Takeuchi J. Discovering outlier filtering rules from unlabeled data: combining a supervised learner with an unsupervised learner [C]. Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, San Francisco, California, 2001:389-394.
    [102] Cao LJ, Lee HP, Chong WK. Modified support vector novelty detector using training data with outliers [J]. Pattern Recognition Letters. 2003, 24(14):2479-2487.
    [103] Oliveira ALI, Costa FRG, Filho COS. Novelty detection with constructive probabilistic neural networks [J]. Neurocomputing. 2008, 71(4-6):1046-1053.
    [104] Theodoridis S, Koutroumbas K. Pattern Recognition (Third Edition) [M]. Orlando, FL, USA:Academic Press, 2006.
    [105] Bishop C. Neural networks for pattern recognition [M]. Oxford U.K:Clarendon, 1995.
    [106] Kohonen T. The self-organizing map [J]. Neurocomputing. 1998, 21(1):1-6.
    [107] Tax, D.M.J.. DDtools, the Data Description Toolbox for Matlab [CP]. 2009.
    [108] Zhang Y, Liu XD, Xie FD, Li KQ. Fault classifier of rotating machinery based on weighted support vector data description [J]. Expert Systems with Applications. 2009, 36(4):7928-7932.
    [109] Gardner AB, Krieger AM, Vachtsevanos G, Litt B. One-class novelty detection for seizure analysis from intracranial EEG [J]. Journal of Machine Learning Research. 2006, 7(7):1025-1044.
    [110] Lee K, Kim DW, Lee KH, Lee D. Density-Induced Support Vector Data Description [J]. IEEE Transactions on Neural Networks. 2007, 18(1):284-289.
    [111] Markou M, Singh S. Novelty detection: a review [J]. Signal Processing. 2003, 83(12):2481-2497.
    [112] Manevitz LM, Yousef M. One-class SVMs for document classification [J]. Journal of Machine Learning Research. 2002, 2(2):139-154.
    [113] Chan CH, King I. Using biased support vector machine to improve retrieval result in image retrieval with self-organizing map [M]. Berlin:Springer-Verlag, 2004:714-719.
    [114] Campbell C, Bennett KP. A linear programming approach to novelty detection [J]. Advances in Neural Information Processing Systems. 2001, 14(4):203-209.
    [115] He JR, Li MJ, Li ZW, Zhang HJ, Tong HH, Zhang CS. Pseudo relevance feedback based on iterative probabilistic one-class SVMs in web image retrieval [M]. Bcrlin:Springcr-Verlag, 2004:213-220.
    [116] Munoz A, Moguerza JM. Estimation of high-density regions using one-class neighbor machines [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2006, 28(3):476-480.
    [117] Yang X, Song Q, Wang Y. A weighted support vector machine for data classification [J]. International Journal of Pattern Recognition and Artificial Intelligence. 2007, 21(5):961- 976.
    [118] Krishnapuram R, Keller JM. A possibilistic approach to clustering [J]. IEEE Transactions on Fuzzy Systems. 1993, 1(2):98-110.
    [119] Hubert M, Engelen S. Robust PCA and classification in biosciences [J]. BIOINFORMAT- ICS. 2004, 20(11):1728-1736.
    
    [120] Filzmoser P, Maronna R, Werner M. Outlier identification in high dimensions [J]. Com putational Statistics and Data Analysis. 2008, 52(3):1694-1711.
    [121] Nair R, Rost B. Protein Subcellular Localization Prediction Using Artificial Intelligence Technology [M]. New York:Springer, 2008:435-463.
    [122] Gardy JL, Brinkman FS. Methods for predicting bacterial protein subcellular localization [J]. Nature Reviews Microbiology. 2006, 4(10):741-51.
    
    [123] Yu CS, Lin CJ, Hwang JK. Predicting subcellular localization of proteins for Gram- negative bacteria by support vector machines based on n-peptide compositions [J]. Protein Science. 2004, 13(5):1402-1406.
    [124] Nair R, Rost B. Mimicking cellular sorting improves prediction of subcellular localization [J]. Journal of Molecular Biology. 2005, 348(1):85-100.
    [125] Guo J, Lin YL, Liu XJ. GNBSL: A new integrative system to predict the subcellular location for Gram-negative bacteria proteins [J]. Proteomics. 2006, 6(19):5099-5105.
    [126] Chen YL, Li QZ. Prediction of apoptosis protein subcellular location using improved hybrid approach and pseudo-amino acid composition [J]. Journal of Theoretical Biology. 2007, 248(2):377-381.
    
    [127] Zhou XB, Chen C, Li ZC, Zou XY. Improved prediction of subcellular location for apop tosis proteins by the dual-layer support vector machine [J]. Amino Acids. 2008, 35(2):383- 388.
    [128] Reinhardt A, Hubbard T. Using neural networks for prediction of the subcellular location of proteins [J]. Nucleic Acids Research. 1998, 26(9):2230-2236.
    [129] Shen HB, Chou KC. PseAAC: A flexible web server for generating various kinds of protein pseudo amino acid composition [J]. Analytical Biochemistry. 2008, 373(2):386-388.
    [130] Chou KC, Cai YD. Prediction of membrane protein types by incorporating amphipathic effects [J]. Journal of Chemical Information and Modeling. 2005, 45(2):407-413.
    [131] Shen HB, Chou KC. Ensemble classifier for protein fold pattern recognition [J]. BIOIN- FORMATICS. 2006, 22(14):1717-1722.
    [132] Niu B, Jin YH, Feng KY, Lu WC, Cai YD, Li GZ. Using AdaBoost for the prediction of subcellular location of prokaryotic and eukaryotic proteins [J]. Molecular Diversity. 2008, 12(1):41-45.
    
    [133] Jin YH, Niu B, Feng KY, Lu WC, Cai YD, Li GZ. Predicting subcellular localization with AdaBoost Learner [J]. Protein and Peptide Letters. 2008, 15(3):286-289.
    [134] Vapnik VN. An overview of statistical learning theory [J]. Neural Networks, IEEE Transactions on. 1999, 10(5):988-999.
    [135]Blanchard G,Zwald L.Finite-dimensional projection for classification and statistical learning[J].IEEE Transactions on Information Theory.2008,54(9):4169-4182.
    [136]Bouchaffra D,Amira A.Structural hidden Markov models for biometrics:Fusion of face and fingerprint[J].Pattern Recognition.2008,41(3):852-867.
    [137]Lawrence N.Gaussian process latent variable models for visualisation of high dimensional data[C].Advances in Neural Information Processing Systems(NIPS)16,Cambridge,MA,2004:329-336.
    [138]Lawrence N.Probabilistic non-linear principal component analysis with Gaussian process latent variable models[J].Journal of Machine Learning Research.2005,6(6):1783-1816.
    [139]Eciolaza L,Alkarouri M,Lawrence ND,Kadirkamanathan V,Fleming PJ.Gaussian Process Latent Variable Models for Fault Detection[C].IEEE Symposium on Computational Intelligence and Data Mining,Honolulu,Hawaii,USA,2007:287-292.
    [140]Cheng MH,Ho MF,Huang CL.Gait analysis for human identification through manifold learning and HMM[J].Pattern Recognition.2008,41(8):2541-2553.
    [141]Quirion S,Duchesne C,Laurendeau D,Marchand M.Comparing GPLVM Approaches for Dimensionality Reduction in Character Animation[J].Journal of Wscg.2008,16(13):41-48.
    [142]Tipping ME,Bishop CM.Probabilistic principal component analysis[J].Journal of the Royal Statistical Society Series B-Statistical Methodology.1999,61(3):611-622.
    [143]Lawrence N.Fast GP-LVM Software,available at http://www.cs.manchester.ac.uk/neill /fgplvm[CP].2005.
    [144]Weiss GM.Mining with rarity:a unifying framework[J].ACM SIGKDD Explorations Newsletter.2004,6(1):7-19.
    [145]Liao TW.Classification of weld flaws with imbalanced class data[J].Expert Systems with Applications.2008,35(3):1041-1052.
    [146]郑恩辉,李平,宋执环.代价敏感支持向量机[J].控制与决策.2006,21(04):473-476.
    [147]Hong X,Chen S,Harris CJ.A kernel-based two-class classifier for imbalanced data sets [J].IEEE Transactions on Neural Networks.2007,18(1):28-41.
    [148]Patcha A,Park JM.An overview of anomaly detection techniques:Existing solutions and latest technological trends[J].Computer Networks.2007,51(12):3448-3470.
    [149]李鹏,王晓龙,刘远超,王宝勋.一种基于混合策略的失衡数据集分类方法[J].电子学报.2007,35(11):2161-2165.
    [150]Chawla NV,Japkowicz N,Kotcz A.Editorial:special issue on learning from imbalanced data sets[J].ACM SIGKDD Explorations Newsletter.2004,6(1):1-6.
    [151]Guo H,Viktor H.Learning from imbaianced data sets with boosting and data generation:the DataBoost-IM approach[J].ACM SIGKDD Explorations Newsletter.2004,6(1):30-39.
    [152]Yen S J,Lee YS.Cluster-based under-sampling approaches for imbalanced data distributions [J].Expert Systems with Applications.2009,36(3):5718-5727.
    [153]Wilson DR,Martinez TR.Reduction Techniques for Instance-Based Learning Algorithms [J]. Machine Learning. 2000, 38(3):257-286.
    
    [154] Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: Synthetic minority over- sampling technique [J]. Journal of Artificial Intelligence Research. 2002, 16(6):321-357.
    [155] Liu Y, An A, Huang X. Boosting prediction accuracy on imbalanced datasets with SVM ensembles [C]. 10th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, Singapore, 2006:107-118.
    [156] Wang HY. Combination approach of SMOTE and biased-SVM for imbalanced datasets [C]. IEEE International Joint Conference on Neural Networks, Hong Kong, China, 2008:228-231.
    [157] Yoon K, Kwek S. A data reduction approach for resolving the imbalanced data issue in functional genomics [J]. Neural Computing and Applications. 2007, 16(3):295-306.
    [158] Zhao XM, Li X, Chen L, Aihara K. Protein classification with imbalanced data [J]. Proteins-Structure Function and Bioinformatics. 2008, 70(4):1125-1132.
    [159] Wu RS, Chung WH. Ensemble one-class support vector machines for content-based image retrieval [J]. Expert Systems with Applications. 2009, 36(3):4451-4459.
    [160] Li X, Wang L, Sung E. AdaBoost with SVM-based component classifiers [J]. Engineering Applications of Artificial Intelligence. 2008, 21(5):785-795.
    [161] Zhou ZH, Liu XY. Training cost-sensitive neural networks with methods addressing the class imbalance problem [J]. IEEE Transactions on Knowledge and Data Engineering. 2006, 18(1):63-77.
    [162] Sun Y, Kamel MS, Wong AKC, Wang Y. Cost-sensitive boosting for classification of imbalanced data [J]. Pattern Recognition. 2007, 40(12):3358-3378.
    [163] Lloyd SP. Least-squares quantization in PCM [J]. IEEE Transactions on Information Theory. 1982, 28(2):129-137.
    [164] Kim HC, Pang S, Je HM, Kim D, Bang SY. Constructing support vector machine ensemble [J]. Pattern Recognition. 2003, 36(12):2757-2767.
    
    [165] Breiman L. Bagging Predictors [J]. Machine Learning. 1996, 24(2):123-140.
    [166] Freund Y, Schapire RE. Experiments with a new boosting algorithm [C]. Thirteenth International Conference on Machine Learning, San Francisco, 1996:148-156.
    [167] Webb GI. MultiBoosting: A Technique for Combining Boosting and Wagging [J]. Machine Learning. 2000, 40(2):159-196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700