用户名: 密码: 验证码:
温度作用下连续配筋混凝土路面受力性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连续配筋混凝土路面(Continuously Reinforced Concrete Pavement,简称CRCP),是在水泥混凝土面板内沿纵向配置一定数量的连续钢筋。施工过程中不设置横缝,至少在同一车道上形成一条完整而平坦的路面表面,从而改善了汽车行驶的舒适性。混凝土板内连续钢筋能有效地约束混凝土因温缩和干缩引起的变形,使收缩裂缝分散在更多的部位。同时连续钢筋能够使裂缝位置处的混凝土保持紧密接触,极大的减小了裂缝宽度,在宏观上如同无缝的路面一样,使混凝土路面的整体性和刚度得到较大的提高。是一种适合于重载交通的混凝土路面结构形式。
     为了准确计算CRCP横向裂缝的分布和发展规律,基于力法的基本理论在现有研究成果的基础上,建立了考虑钢筋混凝土间的粘结滑移、地基摩阻力效应影响以及锚固地梁约束作用的CRCP在温缩和混凝土干缩作用下应力和位移的解析解。与现有的计算理论进行了对比,表明采用全路段联合作用进行温度效应计算更为合理,可靠。
     基于位移法的基本思想推导了设置伸缩缝的在CRCP各个裂缝段的联合作用下考虑温度梯度现象的解析解。并利用两个解析表达式研究了主要设计参数对计算结果的影响。
     为了进一步分析材料非线性对温缩和干缩裂缝的影响,基于接触理论,按照CRCP整体结构的实际状态,推导了一种新型的有限元刚度方程,利用有限元解分析了横向裂缝的发展规律,将计算结果与现有观测数据进行了对比,对比结果表明有限元解能够很好的预测CRCP裂缝的分布和发展规律。
The transverse cracks of CRCP is mainly caused by temperature shrinkage and concrete shrinkage.The slab of concrete pavement which is constrained by the foundation,lug and continuous longitudinal steel bars in the board can’t deform freely. In order to accurately calculate the distribution and law of development of the CRCP’s transverse cracks , based on the elementary theory of force method,on the foundation of existing research, considering the impact of foundation frictional resistance and the bond-slip effect between reinforced steel bar and concrete, and also considering the combined effect of every cracks and lug, the analytical solution of stress and displacement at any part of the CRCP is obtained.Compare to the existing compute theroy,it is more reasonable and reliable using the joint action of the entire road section for temperature effect compution. Make use of the analytical solution,the mechanical property of CRCP which is under the temperature shrinkage and concrete shrinkage have been studied and obtained the following conclusions:the larger the steel bar diameter is and the smaller the ratio of reinforcement is, the poorer integrity of CRCP is.Using“small dimeter and more numbers of steel bars”, contact area between concrete and steel bars is increased, in the same time,the deforming ability of concrete which is constrained by the steel bars is improved.And then the slip between concrete and steel bars is decreased, the load transmission ablity of steel bars between every cracks have also been increased,therefore the resistance of deformation is improved and strengthen the integral performance of the road pavement.According to the increasing of restraining action of the lug,the foundation frictional resistance and the stress of lug is also increasing,leading to the width of cracks is reduced;With the increasing of slab thickness,the maximum stress of concrete and steel bars gradually reduced,and width of cracks is increasing.With the development of slab thickness,the internal forces of the foundation frictional resistance and lug is increasing,so it shows that the thicker the slab is,the more require of lug system is.
     According to the increasing of foundation frictional resistance coefficient,the stress of concrete and steel bars is also increasing.It means that with the increase of foundation frictional resistance,the deform ablity of CRCP which is constrained by the foundation and under temperature shrinkage is developed,and the width of cracks is also increased,so the load of the lug is relieved apprently and the maximum internal force of lug is reduced greatly.
     The stress of concrete and steel bars which is closing to the end of the lug is sensitive to the scale factors of foundation soil surrounded lug,but the scale factors of foundation soil has little effect to the stress of concrete and steel bars which is at the middle of the road section,and have finite effect to the numbers and width of cracks which is appeared in the middle of the road section, the scale factors of foundation soil also have large effect to the mechanical property of lug system.With the increase of scale factors,the anchorage ability of lug is strengtened,the internal force of lug which is under temperature shrinkage is increased,therefore the lug must have sufficient bending stiffness and bearing capacity at the design phase.
     The anchorage ability of pavement lug system can be increased effectively by augmented the size of lug which is closing to the end of the road section,and the foundation frictional resistance is also reduced,but in this case,the load of lug itself has been increased.When the thickness of lug is over 70 cm,it has little effect to anchorage ability.Compare to increasing the thickness of lug,increasing the deepth of lug is more efficent to improve the anchorage ability.However,increasing the deepth of lug,the thickness of lug must be increased properly as well,so the lug have the sufficient stiffness to resistent the bending moment .
     Basing on Displacement method, the warpage analytical solution of the CRCP derived by temperature is given,then analyze stress state of the CRCP with the the expansion joints in the case of seasons and sunshine temperature difference.In addition, the temperature stress and displacement of the CRCP with expansion joints about an actual projects is computed.And concluded that: The temperature displacement in CRCP tip with expansion joints increases due to the lack of lug restraints;the temperature gradient significant affect the stress on the concrete cross-section, especially the temperature warpage phenomenon can not be ignored in the end within the anchorage zone; the increasing of reinforcement rate and pavement thickness will result in a larger displacement and a longer anchorage zone in the end; we can through increasing the bar diameter and ground friction coefficient to reduce the displacement and the anchorage length in the end. The results provides more reliable theoretical basis for the future design.
     In order to analyze material nonlinearity of the impact of temperature shrinkage and shrinkage cracks, a new type of unit and its stiffness equations based on contact theory is established.It was established in accordance the actual work state of CRCP structure.it can deal with the presence of cracks, indicated foundation friction resistance at the bottom of concrete slab actually, indicated the actual arranged location of steel bars(not necessarily arranged in neutral layer).Considering bar&concrete adhesive stress and foundation friction resistance nonlinear constitutive relation and linear constitutive relation ,the author separately use finite element method to calculate. Results show that the difference between the two situation was large, CRCP design should take into account non-linear effects. Then the author used finite element method to analyze transverse cracks development, the calculation results were compared with available observational data.The Comparing results show that the finite element solution can be a very good prediction of the distribution and development of cracks in CRCP. It is a reliable and practical method.
     The author investigated the impact on the CRCP top surface stress affected by vertical location of the reinforcement.The calculation results showed that the continuous axial reinforcement should be arranged at a distance to the top of 1/2~1/3 thickness,when the stress minimum, verified the principles in standard. The author also analyzed development of CRCP cracks in the Changchun area which constructed in the different month.The average crack spacing decreased increases with time gradually increases;the number of cracks were gradually increased; crack spacing reduced rate changes over time more and more slowly, new cracks add fewer and fewer.Under normal circumstances, the development of cracks after a year of an overall cooling process, gradually stabilized.
引文
[1]黄志义,王金昌,朱向荣.含裂缝沥青混凝土路面的粘弹性断裂分析[J],中国公路学报,2006,19(2):18-23.
    [2]艾长发,邱延峻,毛成,兰波.不同沥青混凝土路面结构的大温差温度行为分析[J],公路,2008,16(4):14-18.
    [3]欧阳伟,范兴华,王连广.高模量沥青混凝土路面抗车辙性能分析[J],公路交通科技,2008,25(10):5-8.
    [4]万军.沥青混凝土路面车辙发展规律探讨[D],东南大学,南京,2006,P8-15.
    [5]王婧,刘大鹏.延长高速公路沥青混凝土路面寿命的措施探讨[J],路基工程,2008年1月,(1):185-186.
    [6]傅智,李红.论长寿命水泥混凝土路面的整体结构优化[J],公路,2008,16(10):67-74.
    [7]邓学均.路基路面工程[M],北京,人民交通出版社,2008:386-396.
    [8]王少君,马晓力,吴超凡.水泥混凝土路面病害发展过程研究[J],公路,2008,16(7):97-100.
    [9]肖金平.水泥混凝土路面工作性能评价指标体系研究[J],中外公路,2006,26(2):83-86.
    [10]蒋应军,戴学臻,陈忠达,戴经梁.重载水泥混凝土路面损坏机理及对策研究[J],公路交通科技,2005,22(7):31-35.
    [11]Gregory, J. M. Continuously Reinforced Concrete Overlays of Flexible Pavements on Trunk Road A2[J]. TRRL Supplementary Report (Transport and Road Research Laboratory, Great Britain), 1983, 21p
    [12]ACI Committee 325.Subcommittee VII.A Design Procedure of Continuously Reinforced Concrete Pavements for Highways[J].Journal of American Concrete Institute,1972.6.
    [13]AASHO.Guide for Design of Pavement Structure[S].American Association of State Highway and Transportation officials,1986
    [14]Leshchinsky, Alex, Pattison, John. High-performance concrete for Australian freeways[J]. Concrete International, 1994, 16(10):45-48
    [15]日本道路协会,杨孟余,杨春华译.水泥混凝土路面设计纲要[M].北京:中国建筑工业出版社,1988.6.
    [16]查旭东等译.欧洲水泥混凝土路综述[J].国外公路.1999,19(3):16-22.
    [17]McCullough, B. F. Criteria For the Design, Construction and Maintenance of Continuously Reinforced Concrete Pavement[J]. Australian Road Research, 1983,13(2):79-99
    [18]王小林.连续配筋混凝土路面基本理论试验与设计方法研究[D].东南大学硕士学位论文,1990
    [19]Blanshard, S. Overlaying the M.18 With Concrete[J]. Highways and Transpor- tation, 1988,35(2):29, 31, 33-35
    [20]M.A.Garnham.The development of CRCP Design Curves[J].Highway and Transporta- tion.1989.12
    [21]Edwin Haber, John. Cruickshank. Design Procedure for CRCP Based on Theoretical Considerations and Service Behavior. Proceeding[J], Second International Conference of Concrete Pavement Design,1982.
    [22]N.McCavitt,M.R.Yates,M.C.Forde. Dynamic Stiffness Analysis of Concrete Pavement Slabs[J].Journal of Transportation Engineering, 1992.8, Vol.118, No.4
    [23]Gregory JM,Burke AE.Continuously Reinforced Concrete Pavements.A Report of the Study Group,TRRL Report LR612[J]. The Transport and Road Research Laboratory,1974
    [24]Gharaibeh, Nasir G. Darter, Michael I., Heckel, Laura B. Field Performance of Continuou- sly Reinforced Concrete Pavement in Illinois[J]. Transportation Research Record, 1999.10 (N1684): 44-50
    [25]Gharaibeh, Nasir G., Darter, Michael I. Probabilistic Analysis of Highway Pavement Life for Illinois[J]. Transportation Research Record, 2003,(N1823, 03-4294):111-120
    [26]Anon. Research Pays Off. Illinois Improves Patching Procedures for Continuously Reinforced Concrete Pabements[J]. T R News (Transportation Research Board),1986, (N124):8-9
    [27]Tayabji, Shiraz D., Stephanos, Peter J., Zollinger, Dan G. Nationwide field investigation of continuously reinforced concrete pavements[J]. Transportation Research Record, 1995.7,(N1482):7-18
    [28]Green, J. Davies, I. A449 Coldra-Usk rehabilitation[J], Proceedings of the Institution of Civil Engineers, Municipal Engineer, 2000, 139(1):13-20
    [29]McCullough, B. F. Criteria for the Design, Construction and Maintenance of Continuously Reinforced Concrete Pavement[J]. Australian Road Research, 1983,13(2):79-99
    [30]曹东伟.连续配筋混凝土路面结构研究[D],长安大学,西安,2001.1.
    [31]张映雪(译),南北高速公路—连续配筋混凝土路面[J],国外公路,1998,18(4):28-31
    [32]钟春玲.连续配筋混凝土路面板底摩阻及端部锚固分析[D],吉林大学,长春,2009.7
    [33]McCullough, B. Frank, Strauss, Pieter. Investigating the Effect of Aggregate and Steel on Cracks in a Continuously-Reinforced Concrete Pavement[J]. American Society of Mechanical Engineers (Paper), 1975, p 723-730
    [34]Suh, Young-Chan, McCullough, B. Frank. Factors affecting crack width of continuously reinforced concrete pavement[J]. Transportation Research Record, 1994, (N1449):134-140
    [35]任毅.连续配筋混凝土路面横向裂缝和配筋设计研究[D],长沙理工大学,长沙,2008.7
    [36]Van Metzinger, William A., McCunogan, B. Frank. Performance of bonded concrete overlays on continuously reinforced concrete pavement[J]. Concrete International: Design and Construction, 1991,13(12):35-42
    [37]Lu, Jian, McCullough, B. Frank, Saraf, C.L. Maximum entropy spectral analysis of transverse crack spacing in continuously reinforced concrete pavements[J]. Transportation Research Record, 1989, (N1227):219-224
    [38]Xin, Dapeng, Zollinger, Dan G., James, Ray W. One-dimensional model for analysis of CRC pavement growth[J]. Journal of Transportation Engineering, 1992,118(4):557-575
    [39]Persson Boe. Continuously Reinforced Concrete Pavements with Elastic Joints. Elastically Articulated Pavements[J] Nordisk Betong,1969, 13(2):107-38
    [40]Mccullough BF, Boedecker KJ. Use of Linear-Elastic Layered Theory for the Design of CRCP Overlays[J]. Nat Acad Sciences-Nat Research Council-Highway Research Rec, 1969,(N29):1-13
    [41] Mccullough BF. Evaluation of terminal anchorage installations on rigid pavements[J]. Highw Res Rec, 1971,(N36):21-9.
    [42]Anon. Design Procedure for Continuously Reinforced Concrete Pavements for Highways[J]. Civil Engineering (New York),1972, 69(6):309-319.
    [43]Ma, James, McCullough, B. Frank. Analysis of Load, Temperature, and Shrinkage Effect on Continuously Reinforced Concrete Pavement[J]. Transportation Research Record,1978, (N671):29-39
    [44]Kim, Seong-Min, Won, Moon C., McCullough, B. Frank. Mechanistic Modeling of Continuously Reinforced Concrete Pavement[J] ACI Structural Journal, 2003, 100,(5):674-682
    [45]Kachlakev, D.I., Lundy, J.R., Gillet, V., Bon, A.L., Donon, Y., Martinand, C., Guerin, G.. New procedure for evaluating bond strength of concrete reinforcement[J]. Transportation Research Record, 1996,(n1525):124-130
    [46]Carmichael, R. F., McCullough, B. F., Hudson, W. R. Analysis of an Operational Rigid-Pavement System for Continuously Reinforced Concrete Pavements[J]. Transpor- tation Research Record, 1977, (N632):1-6
    [47]Darter, Michael I., LaCoursiere, Scott A., Smiley, Scott A. Structural Distress Mechanisms in Continuously Reinforced Concrete Pavement[J]. Transportation Research Record,1979, (N715):1-7
    [48]Saxena, S. K., Dounias, George T. Mechanical and environmental Stresses in Continuously Reinforced Concrete Pavements[J]. Transportation Research Record, 1986, p 12-22
    [49]McCullough, B. Frank, Dossey, Terry Controlling early-age cracking in continuously reinforced concrete pavement observations from 12 years of monitoring experimental test sections in Houston, Texas[J]. Transportation Research Record, 1999.10, (1684):35-43
    [50]Kim, Seong-Min, Nelson, Patricia Kim, Ruiz, Mauricio, Rasmussen, Robert Otto, Turner, Dennis. Early-Age Behavior of Concrete Overlays on Continuously Reinforced Concrete Pavements[J]. Transportation Research Record,2003, (N1823, 03-2317):80-92
    [51]Weissmann, Angela J., McCullough, B. Frank, Hudson, W. Ronald. Reliability assessment of continuously reinforced concrete pavements[J]. Journal of Transportation Engineering, 1994, 120(2):178-192
    [52]Selezneva, Olga, Darter, Michael, Zollinger, Dan, Shoukry, Samir. Characterizationof Transverse Cracking Spatial Variability: Use of Long-Term Pavement Performance Data for Continuously Reinforced Concrete Pavement Design[J]. Transportation Research Record, 2003, n 1849, 03-3229, p 147-155
    [53]Khazanovich, Lev, Selezneva, Olga I., Darter, Michael I., Thomas Yu, H. Development of rapid solutions for prediction of critical continuously reinforced concrete pavement stresses[J]. Transportation Research Record,2001, (N1778):64-72
    [54]Nagataki, Shigeyoshi, Yoneyama, Koichi. Studies on Continuously Reinforced Concrete and Prestressed Concrete Pavements Made with Expansive Cement Concrete[J]. Bulletin of the Electrotechnical Laboratory, Tokyo,1973, (SP 38-7):131-163
    [55]王虎.连续配筋混凝土路面静动力学计算与分析[D],长安大学,西安,2001.3
    [56]陈锋锋,黄晓明,秦永春.连续配筋混凝土路面横向裂缝分布模型的研究[J].公路交通科技,2006,23(6):18-21.
    [57]任毅.连续配筋混凝土路面横向裂缝和配筋设计研究[D].长沙理工大学,长沙,2008.4
    [58]李林,薛予生,张书建.半幅连续配筋水泥混凝土路面的设计与施工[J].河南交通科技,1998(4):33-40
    [59]查旭东,张起森,李宇峙,等.高速公路连续配筋混凝土路面施工技术研究[J].中外公路,2003,23(1):124.
    [60]张庆宇,田平.连续配筋混凝土路面施工技术研究[J],现代交通技术,2006(2):6-10.
    [61]鲁昌河,邱志雄,蔡业青,舒翔.双层与单层连续配筋混凝土路面设计与施工探讨[J].中外公路,2006,26(3):83-86
    [62]李卓,查旭东,张起森.连续配筋混凝土路面早期横向开裂分析[J].中外公路,2003,23(2):26-28.
    [63]赵明华,杨明辉,曹文贵,蒋德松.连续配筋混凝土板在岩溶及采空区公路建设中的应用[J].中南公路工程,2003,28(1):5-7 11.
    [64]刘代全,宋军,曹文贵,彭衡和.连续配筋混凝土板在岩溶及采空区上的应用[J].公路,2003(1):9-12
    [65]孙中阁,杨鸿.连续配筋混凝土路面在110国道改造中的应用[J].公路,2004,(8):76-80
    [66]杨鸿,孙中阁.连续配筋混凝土路面设计应用[J].城市道桥与防洪. 2004,(5):35-38.
    [67]王小林.连续配筋混凝土路面基本理论试验和设计方法研究[D].东南大学,南京,1990.
    [68]唐益民,黄晓明,邓学钧.连续配筋水泥混凝土路面荷载应力分析[J].岩土工程学报,1996,18(6):84-91
    [69]黄晓明,唐益民,邓学钧,金志强,蒋磊.连续配筋混凝土路面端部锚固原理研究[J].东南大学学报,1996,26(4):106-110.
    [70]陈云鹤,连续配筋混凝土路面荷载应力温度应力的计算理论与方法[D],东南大学,南京,1999.5
    [71]陈云鹤,庞有师,邓学钧.连续配筋混凝土路面结构总应力的计算方法[J].华东公路,2000,(5):45-46.
    [72]陈云鹤,邓学钧,周早生.连续配筋混凝土路面温度应力的弹性解[J].应用力学学报,2000,17(4):76-80.
    [73]陈云鹤,邓学钧,杨树才,庞有师.连续配筋混凝土路面早期裂缝宽度分析[J].中国公路学报,1998,11(增):36-42.
    [74]巨锁基,黄晓明,李宇峙.真实条件下CRCP温度应力通用解析解[J].公路交通科技,2006,23(6):14-17.
    [75]巨锁基,黄晓明.非完全约束条件下连续配筋混凝土路面温度应力的解析解[J]. 2005全国博士生学术论坛(交通运输工程学科)论文集,2005,P1157-1161.
    [76]巨锁基,李宇峙.局部脱空条件下CRCP荷载应力分析[J],公路交通科技,2005,22(5):34-37.
    [77]倪富健,董侨,顾兴宇.连续配筋水泥混凝土路面面板位移研究[J].公路交通科技,2006,24(5):35-38 70.
    [78]顾兴宇,董侨,倪富健.连续配筋水泥混凝土路面裂缝发展规律研究[J].公路交通科技,2006,24(6):37-45.
    [79]王斌,杨军.移动荷载作用下连续配筋混凝土路面三维有限元分析[J].东南大学学报(自然科学版),2008,38(5):850-855.
    [80]王虎,胡长顺,王秉纲.连续配筋混凝土路面在横向荷载作用下的解析解[J].西安公路交通大学学报,1999,19(4):1-5,21.
    [81]王虎,胡长顺,王秉纲.连续配筋混凝土路面荷载应力精确解[J].中国公路学报,2000,13(2):1-4.
    [82]王虎,胡长顺,王秉纲.连续配筋混凝土路面动荷响应分析[J].工程力学,2001,18(5):119-126.
    [83]曹东伟,胡长顺.连续配筋混凝土路面温度应力分析[J].西安公路交通大学学报,2001,21(2):1-5.
    [84]曹东伟,王秉纲,刘伟,仰建岗.连续配筋混凝土路面的配筋设计方法[J].公路,2001,(12):11-14.
    [85]曹东伟,胡长顺.连续配筋混凝土路面端部锚固力计算方法[J].西安建筑科技大学学报,2000,32(3):300-303.
    [86]胡长顺,曹东伟.连续配筋混凝土路面结构设计理论与方法研究[J].交通运输工程学报,2001,1(2):57-62.
    [87]张洪亮,胡长顺.连续配筋混凝土路面凸形地梁锚固有限元分析[J].长安大学学报(自然科学版),2002,22(3):1-5.
    [88]曹东伟,胡长顺.连续配筋混凝土路面裂缝间距的可靠性分析[J].交通运输工程学报,2001,1(3):37-41.
    [89]胡长顺,李成才,景彦平,曹东伟.连续配筋混凝土路面试验路研究[J].公路,2001,(7):28-32.
    [90]苏清贵,张起森.连续配筋混凝土路面的端部位移[J].中外公路,2002,22(3):19-21.
    [91]肖秋明,查旭东,张起森.连续配筋混凝土路面一维非线性力学分析[J].长沙交通学院学报. 2004, 20(3):20-26.
    [92]李宇峙,任双宏,邵腊庚.连续配筋混凝土路面裂缝的发展规律研究[J].中南公路工程,2007,32(1):41-43.
    [93]查旭东.连续配筋混凝土路面横向开裂发展规律[J].交通运输工程学报,2008,8(2):65-68.
    [94]肖秋明,王文强.基于可拓方法的连续配筋混凝土路面裂缝宽度评价[J].铁道科学与工程学报. 2006, 3(1):87-91.
    [95]查旭东.连续配筋混凝土路面横向开裂的敏感性分析[J].铁道科学与工程学报,2008,5(2):64-69.
    [96]刘朝晖,郑健龙,华正良.连续配筋混凝土刚柔复合式沥青路面端部结构设置研究[J].中外公路,2008,28(1):41-44.
    [97]中华人民共和国交通部.公路水泥混凝土路面设计规范(JTJ 012-94)[S].北京:人民交通出版社,2002.
    [98]中华人民共和国交通部.公路水泥混凝土路面设计规范(JTG D40-2002)[S].北京:人民交通出版社,2002.
    [99]中华人民共和国交通部.公路桥涵地基与基础设计规范(JTG D63-2007)[S]北京:人民交通出版社,2002.
    [100]J.Houde,M.s.Mirza.A Finite Element Analysis of Shear Strength of Reinforced Concrete Beams.ACI,Shear in Reinforced Concrete,SP 42,Vol.1,1974
    [101]黄卫,钱振东.高等水泥混凝土路面设计理论与方法[M].北京,科学出版社,2000.1
    [102]McCullough B.F., Three-Dimensional Nonlinear Finite Element Analysis of Continuously Reinforced Concrete Pavements[D].Austin:USA, the University of Texas at Austin,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700