用户名: 密码: 验证码:
陡长上坡路段沥青路面车辙的形成机理与防治对策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高速公路不断向山区延伸,路线设计中不可避免会遇到“长”、“陡”坡的问题,而陡长坡路段车辙病害更加严重,极大地影响了行车安全和通行能力,成为高速公路的“瓶颈”。因此开展陡长坡路段沥青路面车辙机理及其防治对策研究,不仅必要而且十分迫切。
     本文从陡长坡路段车辆行驶状态出发,提出了不同条件下的坡度及坡长限值;通过对典型陡长上坡路段车辙病害实地调查和室内试验,分析并阐释了陡长上坡路段沥青路面车辙分布规律的影响因素,发现重载车慢速行驶时产生车辙的核心因素,而车速慢的原因在于纵坡坡陡或(和)坡长。通过对车辙病害影响因素的研究,提出以多轴重载、慢速交通等为对象研究长大纵坡车辙病害形成机理。
     通过不同温度和应力水平下的静载蠕变试验研究,分析了应力、温度和时间对沥青混合料蠕变影响的等效性,应用非线性粘弹性体的应力-温度-时间等效原理,推导了沥青混合料恒应力温度移位因子、恒温度应力移位因子以及温度-应力联合移位因子的数学表达,并以AC20沥青混合料的试验数据为依据进行了验证。
     根据陡长坡路段重载、慢速交通特性,进行了沥青路面永久变形的数值模拟,分析了轴载、速度和累计轴载作用次数对路表车辙、沥青面层各层永久变形以及路面剪应力和等效蠕变应变的影响,建立了路表车辙与了轴载、速度和累计轴载作用次数的回归关系式,而沥青面层各层产生的车辙与路面剪应力和等效蠕变应变的分布密切相关,各层永久变形所占比例现场调查的结论一致。
     通过移动荷载模拟车辆爬坡过程,研究了多轴重载以及夏季轮胎参数异化条件下沥青路面的力学响应。研究结果认为悬轴车将前轴荷载均匀施加在中轴和后轴,对路面影响显著增加,表现为竖向最大位移、剪应力峰值、压应力峰值均明显增大;随着温度的升高,由胎压变化引起的路面各项力学指标的增幅近10%,最大剪应力分布在路表由轮隙向轮心处迁移,沿路面深度方向由轮心处下中面层位置向路表迁移。
     通过对沥青胶浆高温特性、细集料填充效应、粗集料骨架效应的分析和研究,提出了陡长坡路段抗车辙沥青混合料的多尺度优化设计方法;并采用模糊数学综合评判方法,优选了改性剂类型,并将优选的改性剂和硬质沥青应用于陡长坡路段沥青路面的材料组成设计,而室内试验结果表明采用改性剂和硬质沥青后,沥青混合料的模量提高,蠕变性能得到改善,可以大幅降低路表车辙。
     最后,结合前文有关长大纵坡车辙病害形成机理分析,从主动防治对策、路面结构和材料优化设计及高温时段交通控制多角度提出长大纵坡车辙病害防治体系。
Rutting has been one of major early diseases in asphalt pavement. With freeway extending to mountain areas, the road designers inevitably encounter the problem of "long" and "steep" slopes in designing highways. However, rut in steep and long slope sections is more serious, which affects traffic safety greatly. Therefore, studying the formation mechanism and control measures of rut in long and steep slope sections of asphalt pavement is not only necessary, but also urgent.
     From driving state of vehicles in steep and long slope sections, the maximum ideal slope, maximum slope of unlimited length and restriction of maximum slope length were proposed under different altitude conditions. Through field investigations and laboratory tests for rut in uphill sections of typical steep and long slope, the influence factors of rut distribution laws were analyzed and interpreted in uphill sections of steep and long slope for asphalt pavement. The reason why the heavy vehicles run slowly was that the slopes were steep and long. In addition, the formation mechanism of rut in long and steep slopes was studied taking multi-axis heavy load and slow traffic as researched objects by studying the influence factors of rut.
     The static load creep test was carried out under different temperatures and stresses, and the equivalence of stress, temperature and time on the creep of asphalt mixture was analyzed. The mathematical expression of the joint displacement factor The temperature shift factor under constant stress, stress shift factor under constant temperature and connected shift factor under temperature and stress of asphalt mixture were deduced by the stress-temperature-time equivalence principle nonlinear viscoelastic body, and experimental data based on asphalt mixtures of AC-20 were used to verify it.
     According to the traffic characteristics of heavy load and slow speed in steep and long slope sections, numerical simulation of rut in asphalt pavement was carried out. And the influences of axle load, speed and number of cumulative axle load on the surface rut, permanent deformation in each layer of asphalt pavement, shear stress in pavement and equivalent creep strain were analyzed. The regression equation between surface rut and axle load, speed and number of cumulative axle load was established. However, rut in each layer of asphalt pavement was closely related to shear stress in pavement and distribution of equivalent creep strain, and the proportion of permanent deformation in each layer was consistent with the conclusions of field investigation.
     Mechanical responses of asphalt pavement were studied by simulating the process of climbing slopes with moving load under multi-axis heavy load and alienation of tires parameters in summer to the traffic characteristics of heavy load and overload. The results indicated that the front axle load of suspending axle vehicles was evenly applied to middle axle and rear axle which increased the influences on pavement significantly, and the influences included that the maximum vertical displacement, the peak of shear stress and the peak of conpressive stress increased significantly. As temperature increased, the mechanical indexes of pavement caused by the changes of tire pressure increased by nearly 10%. The distribution of maximum shear stress moved from wheel gap to wheel center on surface and moved from intermediate surface layer and lower surface layer under wheel center to surface along depth direction.
     Through studying high-temperature properties of asphalt mastic, filling effect of fine aggregates and skeleton effect of coarse aggregates, the optimal design method of asphalt mixtures for rut resistance was presented in steep and long slope sections. The type of modifier was selected using comprehensive evaluation method of fuzzy math and then the optimal modifier and hard asphalt were used in material composition design of asphalt pavement in steep and long slope sections. And the results from laboratory test showed that the modulus of asphalt mixtures increased, creep performance was improved and surface rut was reduced significantly after using modifier and hard asphalt.
     Finally, combining the analysis on formation mechanism of rut in long and steep slope, the treatment system of rut was proposed in long and steep slope from active control measures, optimal design of pavement structure and materials, heavy load and slow speed and traffic control at high-temperature.
引文
[1]邓学钧.路基路面工程[M].北京:人民交通出版社,2000
    [2]黄晓明,吴少鹏,赵永利.沥青与沥青混合料[M].北京:人民交通出版社,2002
    [3]沈金安.沥青与沥青混合料路用性能[M].北京:人民交通出版社,2001
    [4]张肖宁.沥青与沥青混合料的粘弹力学原理及应用[M].北京:人民交通出版社,2006
    [5]沈金安.高速公路沥青路面早期损坏分析与防治对策[M].北京:人民交通出版社,2004
    [6]沙庆林.高速公路沥青路面早期破坏现象及预防[M].北京:人民交通出版社,2001
    [7]Dorman G M. The Extension to Practice of a Fundamental Procedure for the Design of Flexible Pavements [C]. First International Conference on the Structural Design of Asphalt Pavements. Ann Arbor:University of Michigan, 1962,785-793
    [8]Romain J E. Rut Depth Prediction in Asphalt Pavements [C]. Third International Conference on the Structural Design of Asphalt Pavements. Vol.1 London,1972, 205-210
    [9]Finn F, Saraf C R, Kulkarni K, et al. The Use of Distress Prediction Subsystems for the Design of Pavement Structures [C]. Fourth International Conference on the Structural Design of Asphalt Pavements. Ann Arbor:University of Michigan, 1977,3-38
    [10]Eckman B. Rut Depth Prediction:A Practical Verification [C]. Sixth international Conference on the Structural Design of Asphalt Pavements, Vol. I, Ann Arbor: University of Michigan,1987,209-219
    [11]Sousa J B, Craus J, Monismith C L. Summary Report on Permanent Deformation in Asphalt Concrete [R]. Washington D C:Strategic Highway Research, National Research Program Council, Report No. SHRP-A-318,1991
    [12]Sousa J B, Deacon J A, Weissman S L, Leahy R B, Harvey J T, Paulsen G, Monismith C L. Permanent Deformation Response of Asphalt Aggregate Mixes[R]. Washington D C:Strategic Highway Research, National Research Program Council, Report No.SHRP-A-415,1994
    [13]Witczak, M.W., Kaloush, K. Simple Performance Test For Superpave Mix Design[R]. Transportation Research Board NCHRP Report 465. National Research Council, Washington, D.C.,2001
    [14]Von Quintus,H.L. et. L. Asphalt Aggregate Mixture Analysis System[R]. Transportation Research Board NCHRP Report 338. National Research Council, Washington, D.C.,1991
    [15]Chehab,GR.,et. L. Specimen Geometry Study for Direct Tension Test Based on Mechanical Tests and Air Void Variation in SGC-Compacted Asphalt Concrete Specimens[C]. Submitted for Presentation at 2000 Annual Meeting of the Transportation Research Board, Washington, D.C.,2000
    [16]Kamil Elias Kaliush. Simple Performance Test For Permanent Deformation Of Asphalt Mixtures [D]. Arizona State, USA:Arizona State University,2001
    [17]Brown, S. F. and Cooper, K. E. The Mechanical Properties of Bituminous Materials for Road Bases and Base Courses [J]. Journal of the Association of Asphalt Paving Technologists, Volume 53, Paul, Minnesota,1984
    [18]Barksdale, R. D. Laboratory evaluation of rutting in base course materials[C] Proc.,3rd Int. Conf. on Structure Design of Asphalt Pavements, Univ. of Michigan, Mich.1972.
    [19]黄仰贤.路面分析与设计[M].北京:人民交通出版社,1998
    [20]American Association of State Highway and Transportation Officials. AASHTO 2002. AASHTO Guide for Pavement Design of Pavement Structures
    [21]徐世法.高等级道路沥青路面车辙的预估控制与防治[D].上海:同济大学,1991
    [22]张登良.沥青路面工程手册[M].北京:人民交通出版社,2002
    [23]Monismith, C. L., Ogawa, N., and Freeme, C. R. Permanent deformation characterization of subgrade soils due to repeated loading[R]. Transportation Research Record.537, Transportation Research Board, Washington, D.C.,1975
    [24]Federal Highway Administration. VESYS users manual:Predictive design procedures[S].1977
    [25]McLean, Va., Lytton, R. L., et al. Development and validation of performance prediction models and specifications for asphalt binders and paving mixes[R]. Washington D C:Strategic Highway Research, National Research Program Council, Report No.SHRP-A-357,1993
    [26]Tseng K H, Lytton R L. ASTM:Prediction of permanent deformation in flexible pavement materials, in implication of aggregate in the design, construction, and the performance of flexible pavements [S].1989
    [27]Bayomy, F. Development and analysis of a cement coating technique:An approach towards distress minimization and failure delay inflexible pavements [D]. Ohio:Ohio State University,1982
    [28]Fujie Zhou et al. Verification and Modeling of Three-Stage Permanent Deformation Behavior of Asphalt Mixes [J]. Journal of Transportation Engineering,2004, (6):486-494
    [29]Abdulshafi A H. Viscoelastic-Plastic Characterization, Rutting and Fatigue of Flexible Pavements [D]. Ohio:Ohio State University,1983
    [30]Sides A, Uzan J, Perl M.A Comprehensive Viscoelastoplastic Characterization of Sand-Asphalt Compressive and Tensile Cyclic Loadings [J]. Test Evaluat,1985, 13(1):49-59
    [31]Judycki J. Non-Linear Viscoelastic Behaviour of Conventional and Modified Asphalt Concrete Under Creep [J]. Materials and Structures,1992,25:95-101
    [32]Sousa J B, Mansour Solaimanian, Weissman S L. Development and Use of the Repeated Shear Test(Constant Height):An Optional Superpave Mix Design-Tool [R]. Washington D C:Strategic Highway Research, National Research Program Council, Report No.SHRP-A-698,1994
    [33]Weissman S L. The Mechanics of Permanent Deformation in Asphalt-Aggregate Mixtures:A Guide to Laboratory Test Selection [S].1997
    [34]Ramsamooj D V, Ramadan P E J, Lin G S. Model Prediction of Rutting in Asphalt Concrete [J]. Journal of Transportation Engineering,1998,124(5): 448-455
    [35]Lu Y, Wright P J. Numerical Approach of Visco-Elastoplastic Analysis for Asphalt Mixtures [J]. Computers and Structures,1998,69:139-147
    [36]Weissman, S L, Sackman J L. The Effect of Traffic Wander on Rut Evolution in Pavements with Asphalt Concrete Surface Layer. Symplectic Engineering Corporation [S].1999
    [37]Archilla A R. Development of Rutting Progression Models by Combining Data from Multiple Sources [D]. Berkeley:University of California,2000
    [38]Weissman S L, Sackman J L. A Viscoplastic Constitutive Law for Asphalt Concrete Mixes at Elevated Temperature — A Finite Deformation Formulation [S].2000
    [39]Hua J Finite Element Modeling and Analysis of Accelerated Pavement Testing Devices and Phenomenon [D]. West Lafayette:Purdue University,2000
    [40]Long Fenella Margaret. Permanent Deformation of Asphalt Concrete Pavements: A Nonlinear Viscoelastic Approach to Mix Analyses and Design [D]. Berkeley: University of California,2001
    [41]Erkens S M J G, Liu X, Scarpas A.3D Finite Model for Asphalt Concrete Response Simulation [J]. The International Journal of Geomechanics,2002,2(3): 305-330
    [42]Krishnan J M, Rajagopal K R. Review of the Uses and Modeling of Bitumen from Ancient to Modern Times [J]. Appl Mech Rev,2003,56(2):149-214
    [43]ARA, INC., ERES Consultants Division. Guide For Mechanistic-Empirical Design of New and Rehabilitated Pavements Structure [R]. Washington D C: NCHRP Project 1-37A,2004
    [44]Dae-Work Park. Characterization of permanent deformation in asphalt concrete using a laboratory prediction method and an elastic-viscoplastic model[D]. Austin: Texas A&M University,2004
    [45]张久鹏,黄晓明,李辉.重复荷载作用下沥青混合料永久变形研究[J].东南 大学学报(自然科学版),2008,38(3):511-515
    [46]Schapery R A. Nonlinear Viscoelastic and Viscoplastic Constitutive Equations with Growing Damage [J]. Int. Journal of Fracture,1999,97:33-66
    [47]Hyun-Jong Lee, Jo Sias Daniel. Continuum damage mechanics-based fatigue model of asphalt concrete [J]. Journal of Materials in Civil Engineering,2000, 12(2):105-112
    [48]Yanqing Zhao. Permanent deformation characterization of asphalt concrete using a viscoelastoplastic model [D]. Raleigh:North Carolina State University,2002
    [49]Nelson H. Gibson. A Viscoelastoplastic Continuum Damage Model for the Compressive Behavior of Asphalt Concrete [D]. Maryland:University of Maryland at College Park,2006
    [50]Huschek S. Evalution of Rutting due to Viscous Flow in Asphalt Pavements. Proceedings, Fourth International Conference on the Structural Design of Asphalt Pavements, Ann Arbor:University of Michigan,1977,497-507
    [51]张久鹏,黄晓明,王晓磊.基于粘弹塑性理论的沥青路面车辙分析[J].公路交通科技,2007,24(10):20-24
    [52]封基良,许爱华,席晓波.沥青路面车辙预测的粘弹性分析方法[J].公路交通科技,2004,21(5):12-14,28
    [53]王海军,李静.道路车辙的有限元分析[J].中外公路,2003,12:59-62
    [54]Arun Bhattacharya, Steven A Velinsky. Finite Element Implementation of the Microplane Theory for Simulating a Rigid Concrete Pavement-Vehicle Interaction[J]. Mech. Struct. & Mach.1998,26(4):377-400
    [55]Frangopol Dan M, Yong-Hak Lee, Willam Kaspar J. Nonlirrear Finite Element Reliability Analysis of Concrete [J]. Journal of Engineering Mechanics,1996, 122(12):1174-1182
    [56]Sam Helwany, John Dyer, Joe Leidy. Finite— Element Analyses of Flexible Pavements[J]. Journal of Transportation Engineering,1998,124(5):491-499
    [57]Collop A C, Cebon D, Hardy M S A. Viscoelastic Approach to Rutting in Flexible Pavements [J]. Journal of Transportation Engineering[J],1995,121(1):82-93
    [58]Jones R, Horner D, Sullivan P, et al A methodology for quantitatively assessing vehicular rutting on terrains [J]. Journal of Terra mechanics,2005,42(3/4): 245-257
    [59]Hall K T, Correa C E, Sinpson A L. Performance of flexible pavement maintenance treatments in the long-term pavement performance SPS-3 experinent [J]. Transportation Research Record,2003(1823):47-54
    [60]Fang Hongbing Haddock John E, White Thomas D, et al On the characterization of flexible pavement rutting using creep model-based finite element analysis [J]. Finite Elements in Analysis and Design,2004,41(1):49-73
    [61]彭妙娟.沥青路面车辙分析的非线性理论和方法[D].上海:同济大学,2005
    [62]Wijeratne A, Sargious M. Prediction of Rutting in Virgin and Recycled Asphalt Mixtures for Pavements Using Triaxial Tests [J]. Journal of the Association of Asphalt Paving Technologists,1987,56:111-121
    [63]Zhong Wu.Finite Element Simulation of Rutting on Superpave Pavements [D]. Kansas:Kansas State University,2001
    [64]朱永灵.沥青路面的车辙研究[D].上海:同济大学,1988
    [65]许志鸿,郭大智,吴晋伟等.沥青路面车辙的理论计算[J].中国公路学报,1990,3(3):27-36
    [66]张登良,李俊.高等级道路沥青路面车辙研究[J].中国公路学报,1995,8(1):23-29
    [67]郑健龙,田小革,应荣华.沥青混合料热粘弹性本构模型的实验研究[J].长沙理工大学学报(自然科学版),2004,1(1):1-7
    [68]张洪信,陈秉聪,张铁柱等.沥青路面粘弹塑性有限元法[J].青岛大学学报,2002,15(2):38-41
    [69]韦冉.半刚性基层沥青路面的车辙研究[D].南京:东南大学,1994
    [70]江苏省交通科学研究院.江苏省高速公路车辙采集与分析报告[R].2008
    [71]闫其来.沥青混合料抗车辙性能试验研究[D].南京:东南大学,2005
    [72]江苏省连徐高速公路有限公司,东南大学.高速公路沥青路面车辙成因及维修技术研究报告[R].2006
    [73]刘立新.沥青混合料粘弹性力学及材料学原理[M].北京:人民交通出版社,2005
    [74]江苏省高速公路建设指挥部,东南大学.沥青混凝土抗车辙性能研究报告[R].2007
    [75]中交公路规划设计院等.沥青路面设计指标和参数研究报告[R].2008
    [76]张裕卿.沥青混合料高温变形规律及试验方法研究[D].南京:东南大学,2006
    [77]孙立军.沥青路面结构行为理论[M].北京:人民交通出版社,2005
    [78]中华人民共和国交通部.公路沥青路面施工技术规范(JTG F40-2004)[S].北京:人民交通出版社,2005
    [79]中华人民共和国交通部.公路工程沥青及沥青混合料试验规程(JTJ052-2000)[S].北京:人民交通出版社,2000
    [80]黄菲.沥青路面永久变形数值模拟及车辙预估[D].南京:东南大学,2006
    [81]李辉.沥青路面车辙形成规律与温度场关系研究[D].南京:东南大学,2006
    [82]付凯敏.沥青路面结构车辙模拟及抗车辙性能研究[D].南京:东南大学,2007
    [83]李辉,黄晓明,张久鹏等.基于连续变温的沥青路面车辙模拟分析[J].东南大学学报(自然科学版),2007,37(5):915-920
    [84]崔娟.钢桥面沥青铺装车辙预估研究[D].南京:东南大学,2007
    [85]胡小弟.轮胎接地压力分布实测及沥青路面力学响应分析[D].上海:同济大学.2003
    [86]重庆交通科学研究院.沪宁高速公路(江苏段)扩建工程沥青路面结构环道试验研究[R].2005
    [87]谭积青,张肖宁.三层式沥青面层车辙组成及发展的调查与分析[J].公路交通科技,2006,23(1):20-23
    [88]杨少伟 石飞荣等.运行车速中的汽车换挡[J].长安大学学报(自然科学版),2004,24(2):34-36
    [89]郑健龙等.重交通条件下高模量沥青混凝土路面材料设计与施工技术研究[R].长沙:长沙理工大学,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700