用户名: 密码: 验证码:
炭基电极材料制备及其孔结构对电容器性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学电容器可能成为继锂离子电池之后的又一新型储能元件,在国民经济领域极具发展前景。一般的多孔炭材料虽具有较高比表面积和较高的理论比容量,但由于孔径较小,限制了电解质离子在其孔隙内的自由扩散运动,随工作功率增大,比容量衰减很快,电容器的比能量--比功率性能差。高功率应用(如电动汽车)的双电层电容器对炭材料的孔结构有更高的要求,以保证电容器的比能量--比功率性能,本文基于上述思想,通过制备不同孔结构的活性炭作为电容器电极材料,测试其电化学性能,旨在考察活性炭材料的孔结构与电解质离子的匹配性,以期获得制备高功率特性电容器电极材料的新方法。
     首先以高比表面积专业商品活性炭为电极材料,在四种有机电解液中考察电容器的电化学性能,通过恒流充放电、循环伏安和交流阻抗测试综合分析,证明在本实验条件下,电容器的比能量--比功率性能最佳,并且在实用化应用方面理想的电解质溶液为1M LiClO4/PC。
     然后以制备的不同孔结构的石油焦基活性炭为电极材料,以1M Et4NBF4/PC为电解液,通过具体分析电极材料的孔结构特征以及测试电化学性能,联合交流阻抗测试中的响应时间,定性地确定1M Et4NBF4/PC电解质离子所需的合适的孔结构特征为1-3nm。
     继而以低软化点各向同性沥青为炭材料前驱体,以乙酸镁和柠檬酸镁热解得到的电化学性能稳定的MgO为模板,通过一步炭化法成功制备出两系列高收率、高比表面积、高中孔率和可控孔结构的炭材料,其区别在于炭材料的平均孔径不同。通过考察在30wt%KOH为电解液时的电化学性能,发现两系列炭材料均具有理想的比电容量,即在25A/g的电流密度下仍能得到220F/g的比电容量;较好的功率特性,即在25A/g时容量保持率仍能达到90%以上,以及理想的保压性能,即漏电流均低于0.05mA,静置24h后仍能保持0.5V以上的电压。相比较而言,以乙酸镁为模板剂前驱体制备的炭材料体系孔径稍大,具有更理想的倍率特性和功率特性,但如果追求小电流密度放电时的高比电容量,以柠檬酸镁为模板剂前驱体制备的炭材料体系是理想的电极材料。
Electrochemical double layer capacitors (EDLCs) are promising another new energy storage instrument after the lithium batteries, they will play an important role in national economy. The general carbon materials although have high surface area, the smaller pore size limits the diffusion of the electrolyte ions in the pores of the carbon. Though there is high theoretic specific capacitance, it will decrease when the working current increase, the power-energy performance gets worse. EDLCs need appropriate pore structure of the electrode materials to get higher power performance. Thus, tailoring the porous structures of carbon materials is a major goal of EDLC optimization. Based on the above depiction, in this paper, carbon materials with different pore structures were prepared, and their electrochemical performance were tested in different electrolyte in order to examine the suited electrolyte ion size and the pore structure, and expect to get new method for the electrode materials of EDLCs with higher power characteristic.
     First, one bought activated carbon with high surface area was used as the electrode material for the EDLCs, and tested its electrochemical performance in four electrolytes, in order to ascertain the optimal electrolyte with the best power-energy performance at fixed conditions. Results indicated that the best electrolyte was 1M LiClO4/PC in practical at the tested conditions.
     Then, activated carbons with different pore structures base on petroleum coke were prepared, and they were used as electrode materials of EDLCs. Their electrochemical performances were tested in 1M Et4NBF4/PC. By analyzing the pore characteristic of the electrode materials, testing their electrochemical performance and associating with the response time in the impedance spectrum, it could be confirmed qualitatively that the suited pore size range for the electrolyte ion was 1-3nm.
     And then, templated mesoporous carbons with high yield, high surface area, more mesopore and controllable pore structure were successfully prepared from thermoplastic precursor pitch, by the carbonization of a mixture with the MgO precursors (magnesium acetate and citrate), the difference of the prepared carbons is their different average pore size. After testing their electrochemical performance in 30wt%KOH, results indicated that the resultant mesoporous carbons could achieve perfect specific capacitance 220F/g at the current density 25A/g, and they could get good power characteristic and voltage maintenance. The capacitance maintainance of the prepared carbons could reach 90% at 25A/g, and the leakage current was lower than 0.05mA. The mesoporous carbons prepared from the mixture of magnesium acetate and the pitch got comparatively bigger pore size and obtained better power characteristic. But the mesoporous carbons prepared from the mixture of magnesium citrate and the pitch were ideal electrode materials if paying attention to the higher specific capacitance at lower current density.
引文
[1] Spamaay M J, The electric double layer, Sydney: Pergamon Press Pty. Ltd., 1972: 4-6.
    [2] Matsumoto M, Electrical phenomena at interface: fundamentals, measurements, and applications, Surfactant science series, New York: Marcel Dekker, Inc., 1998, 76: 87-99.
    [3] Pandolfo A G, Hollenkamp A F, Carbon properties and their role in supercapacitors, J. Power Sources, 2006, 157 (1): 11-27.
    [4] Sarangapani S, Tilak B V, Chen C P, Materials for electrochemical capacitors, J. Electrochem. Soc., 1996, 143 (11): 3791-3799.
    [5] An K H, Kim W S, Park Y S, et al, Supercapacitors Using Single-Walled Carbon Nanotube Electrodes, Adv. Mater. 2001, 13 (7): 497-500.
    [6] Kim C, Kim J S, Kim S J, et al, Supercapacitors Prepared from Carbon Nanofibers Electrospun from Polybenzimidazol, J. Electrochem. Soc. 2004, 151 (5): A769-773.
    [7] Mikhail E K, Ryan C C, William M A, et al, Spinning solid and hollow polymerfree carbon nanotube fibers, Adv. Mater. 2005, 17 (5): 614-617.
    [8] Brousse Ty, Toupin M, Belanger D, A hybrid activated carbon-manganese dioxide capacitor using a mild aqueous electrolyte, J. Electrochem.Soc., 2004, 151 (4): A614-A622.
    [9] Endo M, Kim Y J, Takeda T, et al, Poly(vinylidene chloride)-Based Carbon as an Electrode Material for High Power Capacitors with an Aqueous Electrolyte , Journal of the Electrochemical Society, 2001, 148 (10): A1135-A1140.
    [10] Becker H L, Low voltage electrolytic capacitor , US Patent: 2800616, 1957.
    [11] Boos D L, Electrolytic capacitor having carbon electrode, US Patent: 3536093, 1970.
    [12] Trasatti S, Bugganca G, Ruthenium dioxide: a new interesting electrode material, solid state structure and electrochemical behavior, J Electroanal chem., 1971, 29(4): 1-5.
    [13] Nishino A, Development and current status of electric double-layer capacitors [A]. Proceedings volume 93-23, the symposium on new sealed rechargeable batteries and supercapacitors, Pennington N J: The Electrochemical Society Inc., 1993, 1-14.
    [14] Conway B E, Electrochemical Supercapacitors, New York: KlnwerAcademic/Plenum Publishes, 1999.
    [15]南俊民,杨勇,林祖庚,电化学电容器及其研究进展,电源技术,1996,20(4):152-156.
    [16]王晓峰,解晶莹,孔祥华,等,“超电容”电化学电容器研究进展,电源技术,2001,25(增刊):166-170.
    [17]田艳红,付旭涛,吴伯荣,超级电容器用多孔碳材料的研究进展,电源技术,2002,26(6):466-479.
    [18]桂长清,新型贮能单元超级电容器,电池工业,2003,8(4):163-165.
    [19]夏熙,刘洪涛,一种正在迅速发展的贮能装置—超电容器,电池工业,2004,9(3):115-120.
    [20]夏熙,刘洪涛,一种正在迅速发展的贮能装置—超电容器,电池工业,2004,9(4): 181-188.
    [21]王建立,刘文华,碳基电化学电容器及其研究进展,电源技术,2000,24(1): 57-59.
    [22]刘振宇,郑经堂等,离子交换与吸附, 1997,13(4):354-358.
    [23] Veziri C M, Pilatos G, Karanikolos G N, Growth and optimization of carbon nanotubes in activated carbon by catalytic chemical vapor deposition, Microporous and Mesoporous Materials, 2008, 110( 1) : 41-50.
    [24] Sahar A M, Gamil A E, Sohair A A, et al, Catalytic promotion of activated carbon by treatment with some transition metal cations, Chinese Journal of Catalysis, 2007, 28(7): 611-616.
    [25] Ozaki J, Endo N, Ohizumi W, et al, Novel preparation method for the production of mesoporous carbon fiber from a polymer blend, Carbon, 1997, 35(7):1031-1033.
    [26]赵家昌,赖春艳,戴扬,等,模板法制备超级电容器中孔炭电极材料,中国有色金属学报, 2005, 15(9): 1421-1425.
    [27]杨裕生,曹高萍,电化学电容器用多孔炭的性能调节,电池,2006, 36 (1): 34-36.
    [28] Wu F C, Tseng R L, Hu C C, et al, Effects of pore structure and electrolyte on the capacitive characteristics of steam- and KOH-activated carbons for supercapacitors, Journal of Power Sources, 2005, 144 (1): 302-309.
    [29] Kim Y J, Lee B J, Suezaki H, Chino T, et al, Preparation and characterization of bamboo-based activated carbons as electrode materials for electric double layer capacitors, Carbon, 2006, 44(8): 1592-1595.
    [30] Grazyna G, Jacek M, Ewa L G, et al, Effect of pore size distribution of coal-based activated carbons on double layer capacitance, Electrochimica Acta, 2005, 50 (5): 1197-1206.
    [31] Tanahashi I, Yoshida A, Nishino A, Activated carbon fiber sheets as polarizable electrodes of electric double layer capacitors, Carbon, 1990, 28 (4): 477-482.
    [32] Yoshida A, Tanahashi I, Nishino A, Effect of concentration of surface acidic functional groups on electric double-layer properties of activated carbon fibers, Carbon, 1990, 28 (5): 611-615.
    [33] Xu B, Wu F, Chen S, et al, Activated carbon fiber cloths as electrodes for high performance electric double layer capacitors, J. Electrochimica Acta, 2007, 52(13): 4595-4598.
    [34] Lee J G, Kim J Y, Kim S H, Effects of microporosity on the specific capacitance of polyacrylonitrile-based activated carbon fiber, J. Power Sources, 2006, 160(2): 1495-1500.
    [35] Hsieh C T, Teng H, Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics, Carbon, 2002, 40(5): 667-674.
    [36] Kim J H, Sharma A K, Lee Y S, Synthesis of polypyrrole and carbon nano-fiber composite for the electrode of electrochemical capacitors, Materials Letters, 2006, 60( 13-14): 1697-1701
    [37] Tanahashi I, Yoshida A, Nishino A, Electrochemical characterization of activated carbon-fiber cloth polarizable electrodes for electric double-layer capacitors, J. Electochem. Soc, 1990, 137 (10): 3052-3057.
    [38] Xu B, Wu F, Chen S, et al, Activated carbon fiber cloths as electrodes for high performance electric double layer capacitors, Electrochimica Acta, 2007, 52: 4595-4598.
    [39]Toyoda M, Tani Y, Soneda Y, Exfoliated carbon fibers as an electrode for electric double layer capacitors in a 1 mol/dm3H2SO4 electrolyte, Carbon, 2004, 42 (14): 2833-2837.
    [40] Wang K P, Teng H, The performance of electric double layer capacitors using particulate porous carbons derived from PAN fiber and phenol-formaldehyde resin, Carbon, 2006, 44(15): 3218-3225.
    [41] Hsieh C T, Teng H, Influence of oxygen treatment on electric double-layer capacitance of activated carbon fibrics, Carbon, 2002, 40 (5): 667-674.
    [42] Yamashita A, Minoura S, Miyake T, et al. Modification of functional groups on ACF surface and its application to electric double layer capacitor electrode, Tanso, 2004, 214: 194-201.
    [43] Momma T, Liu X, Osaka T, et al, Electrochemical modification of active carbon fiber electrode and its application to double-layer capacitor, J. Power Sources, 1996, 60: 249-253. [44 Miura K, Nakagawa H, Okamoto H, Production of high density activated carbon fiber by a hot briquetting method , Carbon, 2000, 38 (1): 119-125.
    [45] Nakagawa H, Shudo A Miura K, High-capacity electric double-layer capacitor with high-density-activated carbon fiber electrodes, J. Electrochem. Soc, 2000, 147 (1): 38-42.
    [46]邓梅根,电化学电容器电极材料研究:[博士学位论文],合肥,中国电子科技大学,2005.
    [47]Pekala R W, Organic aerogels from the polycondensation of resorcinol with formaldehyde , J. Mater Sci, 1989, 24(9): 3221-3227.
    [48]孟庆函,刘玲,宋怀河,等,炭气凝胶为电极的超级电容器的研究,功能材料, 2004, 35 (4): 457-459.
    [49] Celzard A, Collas F, MarêchéJ F, et al, Porous electrodes-based double-layer supercapacitors: pore structure versus series resistance, Journal of Power Sources, 2002, 108(1-2): 153-162.
    [50] Pekala R W, Farmer J C, Alviso C T, et al, Carbon aerogels for electrochemical applications , Journal of Non-Crystalline Solids, 225 (1): 74-80.
    [51] Li W C, Reichenauer G, Fricke J, Carbon aerogels derived from cresol- resorcinol-formaldehyde for supercapacitors, Carbon, 2002, 40(15): 2955-2959.
    [52] Mayer S T, Method of low pressure and/or evaporation srying of aerogel, WO Patent 94/22943, 1994.
    [53] Tamon H, Ishizaka H, Yamamoto T, et al, Preparation of mesoporous carbon by freeze drying, Carbon, 1999, 37(12): 2049-2055.
    [54] Tamon H, Ishizaka H, Yamamoto T, et al, Influence of freeze-drying conditions on the mesoporosity of organic gels as carbon precursors, Carbon, 2000, 38 (7): 1099-1105.
    [55] Yamamoto T, Nishimura T, Suzuki T, et al, Control of mesoporosity of carbon gels prepared by sol-gel polycondensation and freeze drying, J. Non-Crystalline Solides, 2001, 288(1-3): 46-55.
    [56] Conway B E, Transition from“supercapacitor”to“battery”behavior in electrochemical energy storage, J. Electrochem. Soc., 1991, 138 (6): 1539-1548.
    [57] Iijima S, Helical microtubules of graphic carbon , Nature, 1991, 354: 56-62.
    [58] Niu C, Sichel E K, Hoch R, High power electrochemical capacitors based on carbon namotube electrodes, Appl. Phys. Lett., 1997, 70 (11): 1480-1482.
    [59] Frackowiak E, Metenier K, Bertagna V, et al, Supercapacitor electrodes from multiwalled carbon nanotubes, Appl. Phys. Lett., 2000, 77 (15): 2421-2423.
    [60]马仁志,魏秉庆,许才录,等,基于纳米炭管的超级电容器,中国科学(E), 2000, 84 (7): 1186-1188.
    [61]马仁志,魏秉庆,许才录,等,应用于超级电容器的纳米炭管电极的几个特点,清华大学学报(自然科学版), 2000, 40 (8): 7-10.
    [62] Jiang Q, Qu M Z, Zhou G M, et al, A study of activated carbon nanotubes aselectrochemical supercapacitors electrode materials , Materials letters. 2002, 57(4): 988-991.
    [63] Frackowiak E, Jurewicz K, Szostak K, et al. Nanotubular materials as electrodes for supercapacitors, Fuel Processing Technology, 2002, 77-78: 213-219.
    [64] Park J H, Ko J M, Park O O. Carbon nanotube/RuO2 nanocomposite electrode for supercapacitor, J. Electrochem. Soc., 2003, 150 (7): A864-A867.
    [65]杨骏兵,凌立成,刘朗,酚醛树脂基球形炭活化特性的研究,新型炭材料,1999,14(4): 11-16.
    [66] Stoeckli F, Ballerini L, Evolution of microporosity during activation of carbon, Fuel, 1991, 70(4): 557-559.
    [67] Kühl H., Kashani-Motlagh M. M., Mühlen H. J., et al, Controlled gasfication of different carbon materials and development of pore structure, Fuel, 1992, 71(8): 879-882.
    [68] Ryu S K, Jin H, Gondy D, et al, Activation of carbon fibers by steam and carbon dioxide, Carbon, 1993, 31(5): 841-842.
    [69] Benssant G A R, Walker P L, Activation of anthracite using carbon dioxide versus air, Carbon,1994, 32(6): 1171-1176.
    [70] Wigmans T, Industrial aspects of production and usd of activated carbon, Carbon, 1989, 27(1): 13-22.
    [71] Williams P T, Reed An R., Development of activated carbon pore structure via physical and chemical activation of biomass fibre waste, Biomass and Bioenergy, 2006, 30(2): 144-152.
    [72]注立,高表面积活性炭(MAXSORB)的开发,新型炭材料,1994(1): 10-13.
    [73]方智利,陈木梁,章江洪,宋麟,国内外活性炭制备发展动态,云南化工,2001,(5): 23-26.
    [74]乔文明,查庆芳,氧化沥青的XPS研究,炭素技术, 1994(3):1-4.
    [75]刘海燕,凌立成,甲烷在高比表面活性炭上脱附行为的研究,新型炭材料,1999,14(2): 21-25.
    [76]郑经堂,张引枝,王茂章,多孔炭材料的研究与开发,炭素技术,1995,(3): 13-15.
    [77] Teng H, Chang Y J, Hsieh C T, Performance of electric double-layer capacitors using carbons prepared from phenol-formaldehyde resins by KOH etching, Carbon, 2001, 39(13): 1981-1987.
    [78] Mora E, Blanco C, Pajares J J, et al, Chemical activation of carbon mesophase pitches, Colloid and Interface Science, 2006, 298: 341-347.
    [79] Hu Z H, Srinivasan M P, Ni Y, Noval activation process for prepaing highly microporous and mesoporous activated carbons, Carbon, 2001 (39): 877-886.
    [80] Laine J, Calafat A, Labady M, Preparation and characterization of activated carbons from coconut shell impregnated with phosphoric acid, Carbon, 1989, 37 (2): 191-195.
    [81]刘植昌,凌立成,乔文明等,添加二茂铁制得的沥青基球状活性炭对VB12吸附性能的研究,离子交换与吸附,1999,15 (5): 391-396.
    [82] Liu H Y, Wang K P, Teng H, A simplified preparation of mesoporous carbon and the examination of the carbon accessibility for electric double layer formation, Carbon, 2005, 43(3): 559-566.
    [83] Hermann G,Klaus J H,Mechanism of iron-catalyzed water vapour gasification of carbon,Carbon,1986,24(4): 429-435.
    [84] Marsh H, Diez M A, Kou K, Lahaye J, P et al, Fundamental issues in control of carbon gasification reactivity. Kluwer Academic Publishers, 1991, 205-206 .
    [85] Liu Z, Ling L, Qiao W, et al, Preparation of pitch-based spherical activated carbon with developed mesopore by the aid ferrocene, Carbon, 1999, 37(4): 663-667.
    [86]刘植昌,凌立成,乔文明,等,铁微粒的存在对沥青基球状活性炭微孔形成过程的影响,炭素技术,1999,3: 10-14.
    [87]杨俊兵,康飞宇,凌立成等,从铁状态的变化研究球形活性炭中孔形成机理,离子交换与吸附,2001, 17 (2): 104-109.
    [88] Kamegawa K, Yoshida H, Preparation and characterization of swelling porous carbon beads,Carbon,1997, 35(5): 631-639.
    [89] Zhou H, Zhu S, M. Hibino, et al, Electrochemical capacitance of self-ordered mesoporous carbon, J. Power Sources, 2003, 122(2): 219-223.
    [90]栾广贵,刘振辉,荣海琴,等,模板法中孔炭材料的制备与表征,炭素技术, 2006, 25(1): 10-14.
    [91] Ozakl J, Endo X, Ohizumi W, et al, Novel preparation method for the production of mesopoeous carbon fiber from polymer blend, Carbon, 1997, 35 (7): 1031-1036.
    [92] Bansal R C, Bala S, Sharma N, preparation of carbon molecular sieves by pore blocking, Indian Journal of Technology, 1989, 27 (4): 206-210.
    [93] Kawabuchi Y, Oka H, Kawano S, et al, The modification of pore size in acrivated carbon fibers by chemical vapor deposition and its effect on molecular sieve selectivity, Carbon, 1998, 36 (4): 377-382.
    [94] Kamegawa K, Yoshida H, Preparation and characterization of swelling porous carbon beads, Carbon, 1997, 35 (5): 631-639.
    [95] Kawabuchi Y, Kawano S, Mochida I, Molecular sieving selectivity of active carbons and active carbon fibers imoroved by chemical vapor deposition of benzene, Carbon, 1996, 34 (6): 711-717.
    [96]魏娜,利用除尘灰分制备活性炭的工艺研究:[硕士学位论文],天津,天津大学,2004.
    [97] Parra J B, Pis J J, De Souda J C, et al, Effect of coal preoxidation on the development of micro porosity in activated carbons, Carbon, 1996, 34 (6): 783-787.
    [98] Torregroda M R, Martin J M, Mittelmeijer M C, Porous texture of activated carbons modified with carbohydrates, Carbon, 1997, 35 (4): 447 -453.
    [99] Polovina M, Babic B, Kaluderovic B, et al, Surface characterization of oxidized activated carbon cloth, Carbon, 1997, 35 (8): 1047-1052.
    [100] Ohkubo T, Iiyama T, Kaneko K, Organized structures of methanol in carbon nanospaces at 303K studies with in situ X-ray diffraction, Chem. Phys. Letters, 1999, 312 (2): 191-195.
    [101] Rouquerol F, Rouqerol J, Sing K, Adsorption by powders and porous dolids. London: Academic Press, 1999, 165-179.
    [102] Sing K S, Adsorption methods for the characterization of porous materials, J. Coll. Int. Sci., 1998, 76 (1): 3-11.
    [103]严继民,张启元,高敬琮,吸附与凝聚:固体的表面与孔,北京:科学出版社,1986:150-161.
    [104] Terzyk A P, Gauden P A, Kowalczyk P, What kong of pore size distribution is assumed in the Dubinin-Astakhov adsorption isotherm equation, Carbon, 2002, 40 (15): 2879-2886.
    [105] Korili S A, Gil A, On the application of various methods to evaluate the microporous properties of activated carbons, Adsorption, 2001, 7 (3): 249-264.
    [106] Gavalda S, Kaneko K, Thomson K T, et al, Molecular modeling of carbon aerogels, Colloids and Surfaces A, 2001, 187: 531-538.
    [107] Ryu Z,, Zheng J, Wang M, et al, Characterization of pore size distributions on carbonaceous adsorbents by DFT, Carbon, 1999, 37(8): 1257-1264.
    [108]K. Kinoshita, Carbon: electrochemical and physicochemical properties, New York: Kodansa Press, 1988.
    [109] K.S.W. Sing, D.H. Everett, R.A.W. Haul, et al, Reporting physisorption data for gas/solid systems-with special reference to the determination of surface area and porosity, Pure&Appl. Chem., 1985, 57(4): 603-619.
    [110] Salitra G, Soffer A, Eliad L, et al, Carbon electrodes for double-layer capacitors I .Relations between ion and pore dimensions, J. Electrochem. Soc., 2000, 147(7): 2486-2493.
    [111] Soffer A, Folman M, The electrical double layer of high surface porous carbon electrode, J. Electroanal. Chem., 1972, 38(1): 25-43.
    [112] Koresh J, Soffer A, StereoseIectivity in ion eIectroadsorption and indouble-layer charging of molecular sieve carbon electrodes, J. Electroanal. Chem., 1983, 147(1-2): 223-234.
    [113] Shi H,Activated carbons and double layer capacitance, Electrochimica Acta, 1996, 41 (10): 1633-1639.
    [114] Lin C, Ritter J A, Popov B N, Correlation of double-layer capacitance with the pore structure of sol-gel derived carbon xerogels, J. Electrochem. Soc., 1999, 146(10):3639-3643.
    [115] Endo M, Kim Y J, Takeda T, et al, Poly(vinylidene chloride)-based carbon as an electrode material for high power capacitors with an aqueous electrolyte, J. Electrochem. Soc., 2001, 148(10): A1135-A1140.
    [116] Endo M, Kim Y J, Ishii K, et al, Structure and application of various saran-based carbons to aqueous electric double-layer capacitors, J. Electrochem. Soc., 2002, 149(11): A1473-A1480.
    [117] Qu D Y, Shi H, Studies of activated carbons used in double-layer capacitors, J. Power Sources, 1998, 74(1): 99-107.
    [118] Sarangapani S, Tilak B V, Chen C P, Materials for electrochemical capacitors, J.Electrochem. Soc., 1996, 143(11): 3791-3799.
    [119] Qiao W, Korai Y, Mochida I, Preparation of an activated carbon artifact: oxidative modification of coconut shell-based carbon to improve the strength, Carbon, 2002, 40(3): 351-358.
    [120] Kim C H, Pyun S I, Shin H C, Kinetics of double-layer charging/discharging of activated carbon electrodes-Role of surface acidic functional groups, J. Electrochem. Soc., 2002, 149(2): A93-A98.
    [121] D.Lozano-Castello,D. Cazorla-Amoros,A. Linares-Solano, et al, Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte, Carbon, 2003, 41(9): 1765-1775.
    [122] Rychagov A Y, Urisson N A, Yu M V, Electrochemical characteristics and properties of the surface of activated carbon electrodes in a double-Layer capacitor, Russian Journal of Electrochemistry, 2001, 37(11): 1172-1179.
    [123] Qu D Y, Studies of the activated carbons used in double-layer supercapacitors. J.Power Sources, 2002, 109(2): 403-411.
    [124]文越华,曹高萍,程杰,等,纳米孔玻态炭—超级电容器的新型电极材料,新型炭材料, 2003, 18(3): 219-224.
    [125] Ishikawa M, Sakamoto A, Monta M, et al, Effect of treatment of activated carbon fiber cloth electrodes with cold plasma upon performance of electric double layer capacitance, J. Power Sources, 1996, 60(2): 233-238.
    [126] Nian Y R, Teng H, Nitric Acid Modification of activated carbon electrodes for improvement of electrochemical capacitance.J.Electrochem.Soc., 2002, 149(8):A1008-A1014.
    [127] Nian Y R, Teng H, Influence of surface oxides on the impedance behavior of carbon-based electrochemical capacitors, J. Electroanal.Chem.,2003, 540: 119-127.
    [128] Yoshida A, Tanahashi I, Nishino A, Effect of concentration of surface acidic functional groups on electric double-layer properties of activated carbon fibers, Carbon, 1990, 28(5): 611-615.
    [129] Nakamura M, Nakanishi M, Yamamoto K, Influence of physical properties of activated carbons on characteristics of electric double-layer capacitors, J. Power Sources, 1996, 60(2): 225-231.
    [130] Randin J P, Yeager E,Differential capacitance study on the based plane of stresss-annealed pyrolytic graphite, J. Electroanal. Chem., 1972, 36(2): 257-276.
    [131] Randin J P, Yeager E,Differential capacityance study on the edge orientation of pyrolytic graphite and glassy carbon electrodes, J. Electroanal. Chem., 1975, 58(2): 313-322.
    [132] M.Takeuchi, K.Koike,T.Maruyama, et al, Electrochemical intercalation of tetraethylammonium tetrafluoroborate into KOH-treated carbon consisting of muti-graphite sheets for an electric double-layer capacitor. Denki Kagaku, 1998, 66(11): 1311-1317.
    [133]侯朝辉,李新海,何则强,等,炭凝胶的制备及其电化学电容性能,中南大学学报(自然科学版),2004,35(4): 581-585.
    [134] Zheng J P, Jow T R, The limitations of energy density for Electrochemical Capacitors, J. Electrochem Soc, 1997, 144(6): 2026-2031.
    [135]李建玲,梁吉,徐景明,等,双电层电容器有机电解液研究进展,电源技术,2001,25(3): 229-234.
    [136] Pell W G, Conway B E, Marincic N, Analysis of non-uniform charge/discharge and rate effects in porous carbon capacitors containing sub-optimal electrolyte concentrations, J. Electroanal Chem, 2000, 491: 9-21.
    [137] Yoon S, Lee J, Hyeon T, et al, Electric double-layer capacitor performance of a new mesoporous carbon, J. Electrochem Soc, 2000, 147(7): 2507-2512.
    [138] Kibi Y, Saito T, Kurata M, et al, Fabrication of high-power electric double-layer capacitors , J. Power Sources, 1996, 60(2): 219-224.
    [139] Endo M, Kim Y J , Ohta H, et al, Morphology and organic EDLC applications of chemically activated AR-resin-based carbons, Carbon, 2002, 40(14): 2613-2626.
    [140]郭炳焜,徐徽,锂离子电池,长沙:中南大学出版社,2002.
    [141] Pandolfo A G., Hollenkamp A F, Carbon properties and their role insupercapacitors , J. Power Sources, 2006, 157 (1): 11-27.
    [142] Mitani S, Lee S I, Yoon S H, et al, Activation of raw pitch coke with alkali hydroxide to prepare high performance carbon for electric double layer capacitor, J. Power Sources, 2004, 133 (2): 298-301.
    [143] Morimoto T, Development and industrialization of electric double-layer capacitors, Tanso, 2004, 214: 202-209.
    [144] Mochida I, Lee S I, Mitani S, et al, Performance, working mechanism and future development of active carbons in super capacitor, Tanso, 2003, 210: 250-257.
    [145] Ricketts B W, Ton-That C, Self-discharge of carbon-based supercapacitors with organic electrolytes , J. Power Sources, 2000, 89 (1): 64-69.
    [146] Takeuchi M, Koike K, Maruyama T, et al, Electrochemical Intercalation of Tetraethylammonium Tetrafluoroborate into KOH Treated Carbon Consisting of Multi-Graphene Sheets for an Electric Double Layer Capacitor, Electrochemistry, 1998, 66 (12): 1311-1317.
    [147]Momma T, Liu X J, Osaka T, et al, Electrochemical modification of active carbon fiber electrode and its application to double-layer capacitor, J. Power Sources, 1996, 60(2): 249-253.
    [148]Pottet C, Taberna P L, Simon P, et al, Modification of Al current collector surface by sol-gel deposit for carbon-carbon supercapacitor applications, Electrochimica Acta, 2004, 49: 905-912.
    [149]刘希邈,詹亮,滕娜,超级电容器用沥青焦基活性炭的制备及其电化学性能,新型炭材料, 2006, 21(1): 48-53.
    [150] H. Shi, Activated carbons and double layer capacitance. Electrochimica Acta, 1996, 41(10): 1633-1639.
    [151] Lufrano F , Staiti P , Minutoli M, Evaluation of Nafion based double layer capacitors by elect rochemical impedance spect roscopy, J. Power Sources, 2003, 124 (1) : 314-320.
    [152] Taberna P L, Simon P, Fauvarque J F, Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors, J. Electrochemical Society, 2003, 150 (3): A292-A300.
    [153] S. Yoon, J. Lee, T. Hyeon, et al, Electric double-layer capacitor performance of a new mesoporous carbon, J. Electrochem. Soc., 2000, 147(7): 2507-2512.
    [154] Lu A H, Schmidt W, Ferdi S, Simplified novel synthesis of ordered mesoporous carbon with a bimodal pore system, New carbon materials, 2003, 18(3): 181-185.
    [155] Kyotani T, Control of pore structure in carbon, Carbon, 2000, 38(2): 269-286.
    [156] Morishita T, Soneda Y, Tsumura T, et al, Preparation of porous carbons fromthermoplastic precursors and their performance for electric double layer capacitors, Carbon, 2006, 44(12): 2360-2367.
    [157] Morishita T, Ishihara K, Kato M, et al,Preparation of a carbon with a 2 nm pore size and of a carbon with a bi-modal pore size distribution, Carbon, 2007, 45(1): 209-211.
    [158] Inagaki M, Kato M, Morishita T, et al, Direct preparation of mesoporous carbon from a coal tar pitch, Carbon, 2007, 45(5): 1121-1123.
    [159] Lin C, Ritter J A, Popov B N , Correlation of double-layer capacitance with the pore structure of sol-gel derived carbon xerogels, J. Electrochem. Soc., 1999, 146(10): 3639-3643.
    [160] Soffer A, Folman M, The electrical double layer of high surface porous carbon Electrode, J. Electroanal. Chem., 1972, 38(1): 25-43.
    [161] Kinoshita K. Carbon: Electrochemical and Physicochemical Properties, New York, Kodansa Press, 1988: 326.
    [162] Eliad L, Salitra G, Soffer A, et al,Ion sieving effects in the electrical double layer of porous carbon electrodes: Estimating effective ion size in electrolytic solutions, J. Phys. Chem B, 2001, 105 (29): 6880-6887.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700