用户名: 密码: 验证码:
掺杂纳米碳催化剂的制备及其氧还原催化作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温燃料电池作为一种洁净能源技术,具有比能量高、工作条件温和、启动速度快等优点,是一种理想的新能源汽车动力电源。目前,低温燃料电池需要在阴极附载大量的铂碳催化剂以加快缓慢的氧还原反应。尽管铂碳催化剂是现有技术水平中氧还原催化活性最好的一类催化剂,然而,铂作为一种贵金属,其不但价格昂贵,而且在自然界中储量稀少。因此,在低温燃料电池阴极中由于使用高载量的铂碳催化剂而导致的高成本及应用的不可持续性一直是低温燃料电池大规模商业化应用的最大障碍。所以,开发出价格低廉且具有较高氧还原催化活性与稳定性的非铂催化剂来替代铂碳催化剂,被认为是降低该类燃料电池成本,最终实现其大规模商业化应用的可行途径。在所有的非铂催化剂中,掺杂碳基催化剂因具有优良的氧还原催化活性、低甲醇渗透影响和高稳定性而吸引了研究者们的广泛兴趣。
     本论文以廉价、易得的化合物为原料,通过化学气相沉积法、硬模板加高温分解法、转移掺杂法、软模板加高温分解法等途径制备了具有特殊形貌的掺杂纳米碳基氧还原催化剂。并结合催化剂的形貌、化学组成、微观结构、氧还原催化活性等参数,对催化剂的氧还原催化机理、催化活性的影响因素做了深入地探讨。
     首先,以二茂铁和咪唑为前驱物,采用化学气相沉积法制备了掺氮碳纳米管阵列。该掺氮碳纳米管具有约100nm的外径和32层的的管壁,最高氮含量可达8.54at%。作为一种非铂催化剂,此掺氮碳纳米管在0.5M的H_2SO_4溶液与0.1M的KOH溶液中均表现出良好的氧还原催化活性;其中750℃下制备的掺氮碳纳米管氧还原催化活性最高,并且在碱性介质中的活性要优于在酸性介质中的活性。根据催化活性与催化剂表面吡啶型氮含量同步递变的现象,得出了吡啶型氮扮演着氧还原催化活性中心角色的结论。
     其次,以Fe2O3纳米粒子为硬模板剂,经过聚苯胺包覆、高温分解、硫酸除杂、高温石墨化处理四道工序,制备了比表面积高达555m2·g-1的泡状掺氮碳材料。尽管该碳材料氮含量低至1.42at%,但其在氧饱和的0.5M H_2SO_4溶液中具有高达0.93V(vs.RHE)的起始电位与0.82V的半波电位,氧还原催化活性可与20wt%的商业Pt/C相媲美。以该泡状掺氮碳材料为阴极催化剂的氢/空质子交换膜单电池在70℃工作温度下具有0.85V的开路电压和191mW·cm2的最大功率密度。我们认为该催化剂的高氧还原催化活性源自于泡状结构产生带来的高催化活性中心密度。此外,我们还认为铁并不是氧还原催化活性中心的有机组成部分,仅起到促进催化活性中心形成的作用。
     第三,先以热膨胀法将氧化石墨制成氧化石墨烯,再以聚苯胺为氮源,通过转移掺杂法在850℃下将氧化石墨烯还原、掺杂为掺氮石墨烯。经还原、掺氮后的石墨烯氧含量低至5.17at%,氮含量高达6.25at%,并且具有完整的石墨烯形貌与结构。该掺氮石墨烯在氧饱和的0.1M KOH溶液中起始电位、半波电位、极限电流密度分别为-0.01V、-0.12V (vs. Ag/AgCl)、5.38mA·cm~(-2),与20wt%的商业Pt/C催化剂具有相等的氧还原电催化活性;并且表现出不受甲醇渗透影响的特性。催化剂的高氧还原催化活性可归功于聚苯胺作为氮原、石墨烯的高比表面及高石墨化、以及石墨烯的一些特殊性能。
     ,最后,以β-萘磺酸衍生物为软模板剂、苯胺为单体,经过聚合、掺铁、碳化、酸处理、石墨化工序得到具有3D结构的自支撑氮、硫二元掺杂碳纳米纤维网。当反应物中β-萘磺酸的浓度从0.0125M上升到0.05M时,产物由掺杂碳纳米管与碳纳米纤维的共存体系转变为单纯的掺杂碳纤维;并且在材料的长度和直径都有所增加的同时,碳纤维与碳纤维之间还以分枝的方式相互连接形成了三维网状结构。氮含量最高的(4.89wt%)、以苯胺/萘磺酸摩尔比为4:6制备的催化剂,具有最好的氧还原催化活性。当掺入3wt%的铁后,催化剂的氧还原催化活性获得进一步提高,在0.1M的HClO_4中,起始电位达到了0.57V(vs. Ag/AgCl)。此催化剂的高氧还原催化活性被认为归功于氮、硫二元杂原子与碳原子之间的协同效应,以及三维结构导致的氧扩散效率的提高。
Low temperature fuel cells have been recognized as a kind of promising power sourcefor new energy vehicles, due to their advantages such as high power density, low operationtemperature and quick startup. However, high loading of Pt-based catalysts on the cathode isneeded to facilitate the sluggish oxygen reduction reaction (ORR) at the current technologystatus. The high cost and unsustainability of low temperature fuel cells resulting from theexpensive and scarce Pt are becoming one of the most important factors, which block thelarge-scale commercialization of this technology. Thus, developing the inexpensive non-Ptcathodic catalysts with both high performance and durability to substitute Pt-based catalystshas been regarded as a feasible way to reduce the cost of the fuel cells, and to realize theirlarge-scale commercialization. Among all the non-Pt cathodic catalysts, doped carbonmaterials have been widely studied for their high catalytic activity, less sensitivity formethanol cross-over and excellent stability.
     In this thesis, doped carbon nanomaterials with unique morphology have been preparedby the chemical vapor deposition method, hard template method, transfer doping method, andsoft template method, with some simple compounds as precursors. The performances andstructural characteristics of the catalysts, the structure of the catalytic active site, and theeffects of some preparation parameters on the catalysts have been investigated extensivelythrough the evaluation and the characterizations. The morphology, composition,microstructure of these catalysts have been revealed.
     Firstly, nitrogen-doped carbon nanotubes (N-CNTs) arrays have been prepared by achemical vapor deposition approach, using ferrocene as the catalyst and imidazole as thecarbon and nitrogen precursor. The N-CNTs have about100nm of outside diameter and32wall layers with a bamboo-like structure, the nitrogen content reaches high up to8.54at%.For the reduction of oxygen, the N-CNTs showed excellent electrocatalytic activity in bothacidic medium (0.5M H_2SO_4) and alkaline medium (0.1M KOH), especially in alkalinemedium. The optimum temperature for the preparation of the catalysts, in terms of catalyticactivity, is750C. It is found that the pyridinic nitrogen plays most important role for thecatalyst, it may be the most important components to the catalytic active site.
     Secondly, Vesicular nitrogen doped carbon (VNC) material, with BET surface area ofhigh up to555m2·g1, has been prepared by pyrolyzing the polyaniline covering on the Fe_2O_3nanoparticles, followed by acid leaching with H_2SO_4and graphitization. Although thenitrogen content is low, only1.42at%, VNC exhibits excellent catalytic activity towards oxygen reduction reaction comparable to commercial20wt%Pt/C, with the onset potentialand half-wave potential reach to0.93V and0.82V (vs. RHE) in0.5M H2SO4. It isdemonstrated that the air/hydrogen single cell with VNC as cathode catalyst, has anopen-circuit cell potential of0.85V and191mW·cm~(-2)of maximum power density at celltemperature of70C. It is suggested that the high catalytic activity of VNC results from itshigh surface area and high active center density, which may be caused by the vesicularstructure. Furthermore, we believe that the iron may just participate in the construction ofactive sites, but not as a component of the active site.
     Thirdly, Well defined nitrogen-doped graphene (NG) has been prepared by a transferdoping approach, in which the graphene oxide (GO) is deoxidized and nitrogen doped by thevaporized polyaniline, and the GO is prepared by a thermal expansion method from graphiteoxide. The content of doped nitrogen in the doped graphene is high up to6.25at%, andoxygen content is lowered to5.17at%. The NG catalyst exhibits excellent activity towardsthe ORR, as well as excellent tolerance towards methanol. In0.1M KOH solution, its onsetpotential, half-wave potential and limiting current density for the ORR are-0.01V,-0.12V(vs. Ag/AgCl) and5.38mA·cm-2, respectively, which are comparable to those of commercial20wt%Pt/C catalyst. It is suggested that the high ORR catalytic activity of NG is attributedto the choice of polianiline as nitrogen source, as well as the large surface area, highgraphitization and special features of NG.
     Finally, the3D self-supported N, S-codoped carbon nanofiber network has been preparedby a procedure, including polymerization, addition of Fe, carbonization, acid leaching andgraphitization, with β-naphthalene sulfonic acids (β-NSA), aniline and (NH)_4S_2O_8as startreactants. It was found that the concentration of β-NSA affected the structure of the materialssignificantly. With the concentration of β-NSA increasing from0.0125M to0.05M, thematerials structure is transformed from the coexistence of doped carbon nanotube andnanofiber into pure carbon nanofiber, along with the increase of diameter and length, and theemergence of3D structure. The catalyst derived from the precursor with molai ratio of4:6ofaniline to β-NSA contains highest contents of nitrogen, and shows the best ORR catalyticactivity. Adding3wt%of iron can further enhance the catalytic activity, the onset potential ishigh up to0.57V (vs. Ag/AgCl) in0.1M HClO_4for the material prepared at optimalconditions. It is suggested that the high catalytic activity is attributed to the synergistic effect of nitrogen, sulfur and carbon atoms in the material, as well as the more efficient diffusion ofoxygen in3D codoped carbon nanofiber network.
引文
[1] James D., Kalinoski J., Mass Production Cost Estimation for Direct H2PEM Fuel CellSystems for Automotive Applications,[J], Arlington, Virginia,2008.
    [2]衣宝廉.燃料电池-高效、环境友好的发电方式[M].北京,化学工业出版社,2000,7.
    [3] Grove W, Xxiv, On voltaic series and the combination of gases by platinum[J],Philosophical Magazine Series3,1839,14(127-130.
    [4] Yu Xingwen, Ye Siyu, Recent advances in activity and durability enhancement of Pt/Ccatalytic cathode in PEMFC: Part I. Physico-chemical and electronic interaction betweenPt and carbon support, and activity enhancement of Pt/C catalyst[J], Journal of PowerSources,2007,172(1):133-144.
    [5] Liang Huagen, Zheng Liping, Liao Shijun, Self-humidifying membrane electrodeassembly prepared by adding PVA as hygroscopic agent in anode catalyst layer[J],International Journal of Hydrogen Energy,2012,37(17):12860-12867.
    [6] Hong Ping, Zhong Yiliang, Liao Shijun, et al., A4-cell miniature direct formic acid fuelcell stack with independent fuel reservoir: Design and performance investigation[J],Journal of Power Sources,2011,196(14):5913-5917.
    [7] Hsin Yu Lin, Hwang Kuo Chu, Yeh Chuin-Tih, Poly(vinylpyrrolidone)-Modified GraphiteCarbon Nanofibers as Promising Supports for PtRu Catalysts in Direct Methanol FuelCells[J], Journal of the American Chemical Society,2007,129(32):9999-10010.
    [8] Du Wenxin, Wang Qi, Saxner David, et al., Highly Active Iridium/Iridium–Tin/Tin OxideHeterogeneous Nanoparticles as Alternative Electrocatalysts for the Ethanol OxidationReaction[J], Journal of the American Chemical Society,2011,133(38):15172-15183.
    [9] Cai Ke-Di, Yin Ge-Ping, Wang Jia-Jun, et al., Investigation of an Anode Catalyst for aDirect Dimethyl Ether Fuel Cell[J], Energy&Fuels,2009,23(2):903-907.
    [10] Mo Zaiyong, Liao Shijun, Zheng Yuying, et al., Preparation of nitrogen-doped carbonnanotube arrays and their catalysis towards cathodic oxygen reduction in acidic andalkaline media[J], Carbon,2012,50(7):2620-2627.
    [11] Lu Shanfu, Pan Jing, Huang Aibin, et al., Alkaline polymer electrolyte fuel cellscompletely free from noble metal catalysts[J], Proceedings of the National Academy ofSciences,2008,105(52):20611-20614.
    [12] Liu Licheng, Samjeske Gabor, Nagamatsu Shin-Ichi, et al., Enhanced Oxygen ReductionReaction Activity and Characterization of Pt–Pd/C Bimetallic Fuel Cell Catalysts withPt-Enriched Surfaces in Acid Media[J], The Journal of Physical Chemistry C,2012,116(44):23453-23464.
    [13] Carpenter Michael K., Moylan Thomas E., Kukreja Ratandeep Singh, et al.,Solvothermal Synthesis of Platinum Alloy Nanoparticles for Oxygen ReductionElectrocatalysis[J], Journal of the American Chemical Society,2012,134(20):8535-8542.
    [14] Shao Minhua, Shoemaker Krista, Peles Amra, et al., Pt Monolayer on Porous Pd CuAlloys as Oxygen Reduction Electrocatalysts [J], Journal of the American ChemicalSociety,2010,132(27):9253-9255.
    [15] Gong Kuanping, Du Feng, Xia Zhenhai, et al., Nitrogen-Doped Carbon Nanotube Arrayswith High Electrocatalytic Activity for Oxygen Reduction[J], Science,2009,323(5915):760-764.
    [16] Debe Mark K., Electrocatalyst approaches and challenges for automotive fuel cells[J],Nature,2012,486(7401):43-51.
    [17] Debe Mark K., Nanostructured Thin Film Electrocatalysts for PEM Fuel Cells-ATutorial on the Fundamental Characteristics and Practical Properties of NSTFCatalysts[J], ECS Transactions,2012,45(2):47-68.
    [18] Wu Gang, More Karren L., Johnston Christina M., et al., High-PerformanceElectrocatalysts for Oxygen Reduction Derived from Polyaniline, Iron, and Cobalt[J],Science,2011,332(6028):443-447.
    [19] Toda Takako, Igarashi Hiroshi, Uchida Hiroyuki, et al., Enhancement of theElectroreduction of Oxygen on Pt Alloys with Fe, Ni, and Co[J], Journal of TheElectrochemical Society,1999,146(10):3750-3756.
    [20] Liu Yan, Ishihara Akimitsu, Mitsushima Shigenori, et al., Zirconium Oxide for PEFCCathodes[J], Electrochemical and Solid-State Letters,2005,8(8): A400-A402.
    [21] Liu Yan, Ishihara Akimitsu, Mitsushima Shigenori, et al., Transition Metal Oxides asDMFC Cathodes Without Platinum[J], Journal of The Electrochemical Society,2007,154(7): B664-B669.
    [22] Kim Jin Yong, Oh Tak-Keun, Shin Yongsoon, et al., A novel non-platinum groupelectrocatalyst for PEM fuel cell application[J], International Journal of HydrogenEnergy,2011,36(7):4557-4564.
    [23] Liang Yongye, Wang Hailiang, Diao Peng, et al., Oxygen Reduction ElectrocatalystBased on Strongly Coupled Cobalt Oxide Nanocrystals and Carbon Nanotubes[J],Journal of the American Chemical Society,2012,134(38):15849-15857.
    [24] Liang Yongye, Li Yanguang, Wang Hailiang, et al., Co3O4nanocrystals on graphene as asynergistic catalyst for oxygen reduction reaction[J], Nat Mater,2011,10(10):780-786.
    [25] Liang Yongye, Wang Hailiang, Zhou Jigang, et al., Covalent Hybrid of SpinelManganese–Cobalt Oxide and Graphene as Advanced Oxygen ReductionElectrocatalysts[J], Journal of the American Chemical Society,2012,134(7):3517-3523.
    [26] Guo Shaojun, Zhang Sen, Wu Liheng, et al., Co/CoO Nanoparticles Assembled onGraphene for Electrochemical Reduction of Oxygen[J], Angewandte ChemieInternational Edition,2012,51(47):11770-11773.
    [27] Behret H., Binder H., Sandstede G., Electrocatalytic oxygen reduction with thiospinelsand other sulphides of transition metals[J], Electrochimica Acta,1975,20(2):111-117.
    [28] Sidik Reyimjan A., Anderson Alfred B., Co9S8as a Catalyst for Electroreduction of O2:Quantum Chemistry Predictions[J], The Journal of Physical Chemistry B,2005,110(2):936-941.
    [29] Susac D., Zhu L., Teo M., et al., Characterization of FeS2-Based Thin Films as ModelCatalysts for the Oxygen Reduction Reaction[J], The Journal of Physical Chemistry C,2007,111(50):18715-18723.
    [30] Feng Yongjun, He Ting, Alonso-Vante Nicolas, In situ Free-Surfactant Synthesis andORR-Electrochemistry of Carbon-Supported Co3S4and CoSe2Nanoparticles[J],Chemistry of Materials,2007,20(1):26-28.
    [31] Wang Hailiang, Liang Yongye, Li Yanguang, et al., Co1xS–Graphene Hybrid: AHigh-Performance Metal Chalcogenide Electrocatalyst for Oxygen Reduction[J],Angewandte Chemie,2011,123(46):11161-11164.
    [32] Jasinski Raymond, A New Fuel Cell Cathode Catalyst[J], Nature,1964,201(4925):1212-1213.
    [33] Alt H., Binder H., Sandstede G., Mechanism of the electrocatalytic reduction of oxygenon metal chelates[J], Journal of Catalysis,1973,28(1):8-19.
    [34] Baranton S., Coutanceau C., Garnier E., et al., How does α-FePc catalysts dispersed ontohigh specific surface carbon support work towards oxygen reduction reaction (orr)?[J],Journal of Electroanalytical Chemistry,2006,590(1):100-110.
    [35] Baranton S., Coutanceau C., Roux C., et al., Oxygen reduction reaction in acid mediumat iron phthalocyanine dispersed on high surface area carbon substrate: tolerance tomethanol, stability and kinetics[J], Journal of Electroanalytical Chemistry,2005,577(2):223-234.
    [36] Zhang Lei, Song Chaojie, Zhang Jiujun, et al., Temperature and pH Dependence ofOxygen Reduction Catalyzed by Iron Fluoroporphyrin Adsorbed on a GraphiteElectrode[J], Journal of The Electrochemical Society,2005,152(12): A2421-A2426.
    [37] Baker Ryan, Wilkinson David P., Zhang Jiujun, Electrocatalytic activity and stability ofsubstituted iron phthalocyanines towards oxygen reduction evaluated at differenttemperatures[J], Electrochimica Acta,2008,53(23):6906-6919.
    [38] Liu Hansan, Zhang Lei, Zhang Jiujun, et al., Electrocatalytic reduction of O2and H2O2by adsorbed cobalt tetramethoxyphenyl porphyrin and its application for fuel cellcathodes[J], Journal of Power Sources,2006,161(2):743-752.
    [39] Shi Zheng, Zhang Jiujun, Density Functional Theory Study of Transitional MetalMacrocyclic Complexes' Dioxygen-Binding Abilities and Their Catalytic Activitiestoward Oxygen Reduction Reaction[J], The Journal of Physical Chemistry C,2007,111(19):7084-7090.
    [40] Wang Guofeng, Ramesh Nitia, Hsu Andrew, et al., Density functional theory study of theadsorption of oxygen molecule on iron phthalocyanine and cobalt phthalocyanine[J],Molecular Simulation,2008,34(10-15):1051-1056.
    [41] Martínez Millán W., Toledano Thompson T., Arriaga L. G., et al., Characterization ofcomposite materials of electroconductive polymer and cobalt as electrocatalysts for theoxygen reduction reaction[J], International Journal of Hydrogen Energy,2009,34(2):694-702.
    [42] Rita Sulub S. W. Martínez-Millán, Mascha A. Smit, Study of the Catalytic Activity forOxygen Reduction of Polythiophene Modified with Cobalt or Nickel [J], InternationalJournal of Electrochemical Science,2009,4(0):1015-1027.
    [43] Millán W. Martínez, Smit Mascha A., Study of electrocatalysts for oxygen reductionbased on electroconducting polymer and nickel[J], Journal of Applied Polymer Science,2009,112(5):2959-2967.
    [44] Khomenko V. G., Barsukov V. Z., Katashinskii A. S., The catalytic activity of conductingpolymers toward oxygen reduction[J], Electrochimica Acta,2005,50(7–8):1675-1683.
    [45] Yuan Yong, Zhou Shungui, Zhuang Li, Polypyrrole/carbon black composite as a noveloxygen reduction catalyst for microbial fuel cells[J], Journal of Power Sources,2010,195(11):3490-3493.
    [46] Yuan Yong, Ahmed Jalal, Kim Sunghyun, Polyaniline/carbon black composite-supportediron phthalocyanine as an oxygen reduction catalyst for microbial fuel cells[J], Journal ofPower Sources,2011,196(3):1103-1106.
    [47] Bashyam Rajesh, Zelenay Piotr, A class of non-precious metal composite catalysts forfuel cells[J], Nature,2006,443(7107):63-66.
    [48] Chen Jun, Zhang Weimin, Officer David, et al., A readily-prepared, convergent, oxygenreduction electrocatalyst[J], Chemical Communications,2007,0(32):3353-3355.
    [49] Yuasa Makoto, Yamaguchi Aritomo, Itsuki Hisayuki, et al., Modifying Carbon Particleswith Polypyrrole for Adsorption of Cobalt Ions as Electrocatatytic Site for OxygenReduction[J], Chemistry of Materials,2005,17(17):4278-4281.
    [50] Nguyen Cong H., El Abbassi K., Gautier J. L., et al., Oxygen reduction onoxide/polypyrrole composite electrodes: effect of doping anions[J], Electrochimica Acta,2005,50(6):1369-1376.
    [51] Mohana Reddy Arava Leela, Rajalakshmi Natarajan, Ramaprabhu Sundara,Cobalt-polypyrrole-multiwalled carbon nanotube catalysts for hydrogen and alcohol fuelcells[J], Carbon,2008,46(1):2-11.
    [52] Hirayama Tetsuaki, Manako Takashi, Imai Hideto, A Metal Coordination Polymer forFuel Cell Applications: Nanostructure Control Toward High PerformanceElectrocatalysis[J], e-Journal of Surface Science and Nanotechnology,2008,6(0):237-240.
    [53] Coutanceau C., El Hourch A., Crouigneau P., et al., Conducting polymer electrodesmodified by metal tetrasulfonated phthalocyanines: Preparation and electrocatalyticbehaviour towards dioxygen reduction in acid medium[J], Electrochimica Acta,1995,40(17):2739-2748.
    [54] Nabae Yuta, Moriya Shogo, Matsubayashi Katsuyuki, et al., RETRACTED: The role ofFe species in the pyrolysis of Fe phthalocyanine and phenolic resin for preparation ofcarbon-based cathode catalysts[J], Carbon,2010,48(9):2613-2624.
    [55] Bouwkamp-Wijnoltz A. L., Visscher W., Van Veen J. A. R., et al., On Active-SiteHeterogeneity in Pyrolyzed Carbon-Supported Iron Porphyrin Catalysts for theElectrochemical Reduction of Oxygen: An In Situ M ssbauer Study[J], The Journal ofPhysical Chemistry B,2002,106(50):12993-13001.
    [56] Lefèvre M., Dodelet J. P., Bertrand P., Molecular Oxygen Reduction in PEM Fuel Cells:Evidence for the Simultaneous Presence of Two Active Sites in Fe-Based Catalysts[J],The Journal of Physical Chemistry B,2002,106(34):8705-8713.
    [57] Lefèvre M., Dodelet J. P., Bertrand P., Molecular Oxygen Reduction in PEM Fuel CellConditions: ToF-SIMS Analysis of Co-Based Electrocatalysts[J], The Journal ofPhysical Chemistry B,2005,109(35):16718-16724.
    [58] Koslowski Ulrike I., Abs-Wurmbach Irmgard, Fiechter Sebastian, et al., Nature of theCatalytic Centers of Porphyrin-Based Electrocatalysts for the ORR: A Correlation ofKinetic Current Density with the Site Density of Fe N4Centers[J], The Journal ofPhysical Chemistry C,2008,112(39):15356-15366.
    [59] Oh Hyung-Suk, Kim Hansung, The role of transition metals in non-preciousnitrogen-modified carbon-based electrocatalysts for oxygen reduction reaction[J],Journal of Power Sources,2012,212(0):220-225.
    [60] Kramm U. I., Abs-Wurmbach I., Herrmann-Geppert I., et al., Influence of theElectron-Density of FeN4-Centers Towards the Catalytic Activity of PyrolyzedFeTMPPCl-Based ORR-Electrocatalysts[J], Journal of The Electrochemical Society,2011,158(1): B69-B78.
    [61] Lee Kunchan, Zhang Lei, Lui Hansan, et al., Oxygen reduction reaction (ORR) catalyzedby carbon-supported cobalt polypyrrole (Co-PPy/C) electrocatalysts[J], ElectrochimicaActa,2009,54(20):4704-4711.
    [62] Wu Gang, Chen Zhongwei, Artyushkova Kateryna, et al., Polyaniline-derivedNon-Precious Catalyst for the Polymer Electrolyte Fuel Cell Cathode[J], ECSTransactions,2008,16(2):159-170.
    [63] Wu Gang, Artyushkova Kateryna, Ferrandon Magali, et al., Performance Durability ofPolyaniline-derived Non-precious Cathode Catalysts[J], ECS Transactions,2009,25(1):1299-1311.
    [64] Yuan Xianxia, Zeng Xin, Zhang Hui-Juan, et al., Improved Performance of ProtonExchange Membrane Fuel Cells with p-Toluenesulfonic Acid-Doped Co-PPy/C asCathode Electrocatalyst[J], Journal of the American Chemical Society,2010,132(6):1754-1755.
    [65] Ohms D., Herzog S., Franke R., et al., Influence of metal ions on the electrocatalyticoxygen reduction of carbon materials prepared from pyrolyzed polyacrylonitrile[J],Journal of Power Sources,1992,38(3):327-334.
    [66] Van Veen J. A. Rob, Van Baar Jan F., Kroese Kees J., Effect of heat treatment on theperformance of carbon-supported transition-metal chelates in the electrochemicalreduction of oxygen[J], Journal of the Chemical Society, Faraday Transactions1:Physical Chemistry in Condensed Phases,1981,77(11):2827-2843.
    [67] Wiesener K., Ohms D., Neumann V., et al., N4macrocycles as electrocatalysts for thecathodic reduction of oxygen[J], Materials Chemistry and Physics,1989,22(3–4):457-475.
    [68] Chu Deryn, Jiang Rongzhong, Novel electrocatalysts for direct methanol fuel cells[J],Solid State Ionics,2002,148(3–4):591-599.
    [69] Jiang Rongzhong, Chu Deryn, Remarkably Active Catalysts for the Electroreduction ofO2to H2O for Use in an Acidic Electrolyte Containing ConcentratedMethanol[J], Journal of The Electrochemical Society,2000,147(12):4605-4609.
    [70] Li Shang, Zhang Lei, Kim Jenny, et al., Synthesis of carbon-supported binary FeCo–Nnon-noble metal electrocatalysts for the oxygen reduction reaction[J], ElectrochimicaActa,2010,55(24):7346-7353.
    [71] Tributsch Helmut, Koslowski Ulrike I., Dorbandt Iris, Experimental and theoreticalmodeling of Fe-, Co-, Cu-, Mn-based electrocatalysts for oxygen reduction[J],Electrochimica Acta,2008,53(5):2198-2209.
    [72] Herrmann I., Kramm U. I., Fiechter S., et al., Oxalate supported pyrolysis of CoTMPP aselectrocatalysts for the oxygen reduction reaction[J], Electrochimica Acta,2009,54(18):4275-4287.
    [73] Nallathambi Vijayadurga, Lee Jong-Won, Kumaraguru Swaminatha P., et al.,Development of high performance carbon composite catalyst for oxygen reductionreaction in PEM Proton Exchange Membrane fuel cells[J], Journal of Power Sources,2008,183(1):34-42.
    [74] Pylypenko Svitlana, Mukherjee Sanjoy, Olson Tim S., et al., Non-platinum oxygenreduction electrocatalysts based on pyrolyzed transition metal macrocycles[J],Electrochimica Acta,2008,53(27):7875-7883.
    [75] Zelenay P. Advanced Cathode Catalysts[R]. Arlington, Virginia: Los Alamos NationalLaboratory,2008.
    [76] Sun G. Q., Wang J. T., Gupta S., et al., Iron(III) tetramethoxyphenylporphyrin(FeTMPP-C1) as electrocatalyst for oxygen reduction in direct methanol fuel cells[J],Journal of Applied Electrochemistry,2001,31(9):1025-1031.
    [77] Lefèvre Michel, Dodelet Jean-Pol, Fe-based catalysts for the reduction of oxygen inpolymer electrolyte membrane fuel cell conditions: determination of the amount ofperoxide released during electroreduction and its influence on the stability of thecatalysts[J], Electrochimica Acta,2003,48(19):2749-2760.
    [78] Jaouen Frédéric, Marcotte Sébastien, Dodelet Jean-Pol, et al., Oxygen ReductionCatalysts for Polymer Electrolyte Fuel Cells from the Pyrolysis of Iron Acetate Adsorbedon Various Carbon Supports[J], The Journal of Physical Chemistry B,2003,107(6):1376-1386.
    [79] Zhang Lei, Lee Kunchan, Bezerra Cicero W. B., et al., Fe loading of a carbon-supportedFe–N electrocatalyst and its effect on the oxygen reduction reaction[J], ElectrochimicaActa,2009,54(26):6631-6636.
    [80] Bron M., Fiechter S., Hilgendorff M., et al., Catalysts for oxygen reduction fromheat-treated carbon-supported iron phenantroline complexes[J], Journal of AppliedElectrochemistry,2002,32(2):211-216.
    [81] Guillet N., Roué L., Marcotte S., et al., Electrogeneration of Hydrogen Peroxide in AcidMedium using Pyrolyzed Cobalt-based Catalysts: Influence of the Cobalt Content on theElectrode Performance[J], Journal of Applied Electrochemistry,2006,36(8):863-870.
    [82] Bezerra Cicero W. B., Zhang Lei, Lee Kunchan, et al., A review of Fe–N/C and Co–N/Ccatalysts for the oxygen reduction reaction[J], Electrochimica Acta,2008,53(15):4937-4951.
    [83] Lalande G., Tamizhmani G., C té R., et al., Influence of Loading on the Activity andStability of Heat‐Treated Carbon‐Supported Cobalt Phthalocyanine Electrocatalystsin Solid Polymer Electrolyte Fuel Cells[J], Journal of The Electrochemical Society,1995,142(4):1162-1168.
    [84] Li Shang, Zhang Lei, Liu Hansan, et al., Heat-treated cobalt–tripyridyl triazine(Co–TPTZ) electrocatalysts for oxygen reduction reaction in acidic medium[J],Electrochimica Acta,2010,55(15):4403-4411.
    [85] Biddinger Elizabethj, Ozkan Umits, Methanol Tolerance of CN x Oxygen ReductionCatalysts[J], Topics in Catalysis,2007,46(3-4):339-348.
    [86] Lefèvre M., Dodelet J. P., Bertrand P., O2Reduction in PEM Fuel Cells: Activity andActive Site Structural Information for Catalysts Obtained by the Pyrolysis at HighTemperature of Fe Precursors[J], The Journal of Physical Chemistry B,2000,104(47):11238-11247.
    [87] Subramanian Nalini P., Li Xuguang, Nallathambi Vijayadurda, et al., Nitrogen-modifiedcarbon-based catalysts for oxygen reduction reaction in polymer electrolyte membranefuel cells[J], Journal of Power Sources,2009,188(1):38-44.
    [88] Schulenburg Hendrik, Stankov Svetoslav, Schünemann Volker, et al., Catalysts for theOxygen Reduction from Heat-Treated Iron(III) Tetramethoxyphenylporphyrin Chloride:Structure and Stability of Active Sites[J], The Journal of Physical Chemistry B,2003,107(34):9034-9041.
    [89] Bezerra Cicero W. B., Zhang Lei, Liu Hansan, et al., A review of heat-treatment effectson activity and stability of PEM fuel cell catalysts for oxygen reduction reaction[J],Journal of Power Sources,2007,173(2):891-908.
    [90] Liu Gang, Li Xuguang, Ganesan Prabhu, et al., Studies of oxygen reduction reactionactive sites and stability of nitrogen-modified carbon composite catalysts for PEM fuelcells[J], Electrochimica Acta,2010,55(8):2853-2858.
    [91] Li Xuguang, Liu Changpeng, Xing Wei, et al., Development of durable carbonblack/titanium dioxide supported macrocycle catalysts for oxygen reduction reaction[J],Journal of Power Sources,2009,193(2):470-476.
    [92] Bezerra Cicero W. B., Zhang Lei, Lee Kunchan, et al., Novel carbon-supported Fe-Nelectrocatalysts synthesized through heat treatment of iron tripyridyl triazine complexesfor the PEM fuel cell oxygen reduction reaction[J], Electrochimica Acta,2008,53(26):7703-7710.
    [93] Li Xuguang, Liu Gang, Popov Branko N., Activity and stability of non-precious metalcatalysts for oxygen reduction in acid and alkaline electrolytes[J], Journal of PowerSources,2010,195(19):6373-6378.
    [94] Ji Yanfeng, Li Zhongfang, Wang Suwen, et al., Thermal treatment of Co(II)tetracarboxyphenyl porphyrin supported on carbon as an electrocatalyst for oxygenreduction[J], International Journal of Hydrogen Energy,2010,35(15):8117-8121.
    [95] Ma Yuanwei, Zhang Huamin, Zhong Hexiang, et al., Cobalt based non-preciouselectrocatalysts for oxygen reduction reaction in proton exchange membrane fuel cells[J],Electrochimica Acta,2010,55(27):7945-7950.
    [96] Koslowski Ulrike, Herrmann Iris, Bogdanoff Peter, et al., Evaluation and Analysis ofPEM-FC Performance using Non-Platinum Cathode Catalysts based on Pyrolysed Fe-and Co-Porphyrins-Influence of a Secondary Heat-treatment[J], ECS Transactions,2008,13(17):125-141.
    [97] Matter Paul H., Wang Eugenia, Arias Maria, et al., Oxygen Reduction Reaction CatalystsPrepared from Acetonitrile Pyrolysis over Alumina-Supported Metal Particles[J], TheJournal of Physical Chemistry B,2006,110(37):18374-18384.
    [98] Matter Paul H., Wang Eugenia, Millet Jean-Marc M., et al., Characterization of the IronPhase in CNx-Based Oxygen Reduction Reaction Catalysts[J], The Journal of PhysicalChemistry C,2007,111(3):1444-1450.
    [99] Easton E. Bradley, Bonakdarpour Arman, Dahn J. R., Fe-C-N Oxygen ReductionCatalysts Prepared by Combinatorial Sputter Deposition[J], Electrochemical andSolid-State Letters,2006,9(10): A463-A467.
    [100] Chen Zhu, Higgins Drew, Chen Zhongwei, Nitrogen doped carbon nanotubes and theirimpact on the oxygen reduction reaction in fuel cells[J], Carbon,2010,48(11):3057-3065.
    [101] Chen Zhu, Higgins Drew, Chen Zhongwei, Electrocatalytic activity of nitrogen dopedcarbon nanotubes with different morphologies for oxygen reduction reaction[J],Electrochimica Acta,2010,55(16):4799-4804.
    [102] Chen Zhu, Higgins Drew, Tao Haisheng, et al., Highly Active Nitrogen-Doped CarbonNanotubes for Oxygen Reduction Reaction in Fuel Cell Applications[J], The Journal ofPhysical Chemistry C,2009,113(49):21008-21013.
    [103] Higgins Drew, Chen Zhu, Chen Zhongwei, Nitrogen doped carbon nanotubessynthesized from aliphatic diamines for oxygen reduction reaction[J], ElectrochimicaActa,2011,56(3):1570-1575.
    [104] Yang Ruizhi, Bonakdarpour Arman, Bradley Easton E., et al., Co–C–N OxygenReduction Catalysts Prepared by Combinatorial Magnetron Sputter Deposition[J],Journal of The Electrochemical Society,2007,154(4): A275-A282.
    [105] Sirk Aislinn H. C., Campbell Stephen A., Birss Viola I., Oxygen Reduction by SolDerived [Co, N, C, O]-Based Catalysts for Use in Proton Exchange Membrane FuelCells[J], Electrochemical and Solid-State Letters,2005,8(2): A104-A107.
    [106] Ye Siyu, Vijh Ashok K., Non-noble metal-carbonized aerogel composites aselectrocatalysts for the oxygen reduction reaction[J], Electrochemistry Communications,2003,5(3):272-275.
    [107] Ye Siyu, Vijh Ashok K., Cobalt-carbonized aerogel nanocomposites electrocatalysts forthe oxygen reduction reaction[J], International Journal of Hydrogen Energy,2005,30(9):1011-1015.
    [108] Herrmann I., Brüser V., Fiechter S., et al., Electrocatalysts for Oxygen ReductionPrepared by Plasma Treatment of Carbon-Supported CobaltTetramethoxyphenylporphyrin[J], Journal of The Electrochemical Society,2005,152(11):A2179-A2185.
    [109] Herrmann Iris, Kramm Ulrike Ingrid, Fiechter Sebastian, et al., Comparative Study ofthe Carbonisation of CoTMPP by Low Temperature Plasma and Heat Treatment[J],Plasma Processes and Polymers,2010,7(6):515-526.
    [110] Liu Hansan, Shi Zheng, Zhang Jianlu, et al., Ultrasonic spray pyrolyzediron-polypyrrole mesoporous spheres for fuel cell oxygen reduction electrocatalysts[J],Journal of Materials Chemistry,2009,19(4):468-470.
    [111] Liu Hansan, Song Chaojie, Tang Yuanhua, et al., High-surface-area CoTMPP/Csynthesized by ultrasonic spray pyrolysis for PEM fuel cell electrocatalysts[J],Electrochimica Acta,2007,52(13):4532-4538.
    [112] Ma Zi-Feng, Xie Xian-Yu, Ma Xiao-Xia, et al., Electrochemical characteristics andperformance of CoTMPP/BP oxygen reduction electrocatalysts for PEM fuel cell[J],Electrochemistry Communications,2006,8(3):389-394.
    [113] Charreteur Fanny, Jaouen Frédéric, Ruggeri Stéphane, et al., Fe/N/C non-preciouscatalysts for PEM fuel cells: Influence of the structural parameters of pristinecommercial carbon blacks on their activity for oxygen reduction[J], Electrochimica Acta,2008,53(6):2925-2938.
    [114] Charreteur Fanny, Ruggeri Stéphane, Jaouen Frédéric, et al., Increasing the activity ofFe/N/C catalysts in PEM fuel cell cathodes using carbon blacks with a high-disorderedcarbon content[J], Electrochimica Acta,2008,53(23):6881-6889.
    [115] Van Wingerden Bob, Van Veen J. A. Rob, Mensch Cees T. J., An extended X-rayabsorption fine structure study of heat-treated cobalt porphyrin catalysts supported onactive carbon[J], Journal of the Chemical Society, Faraday Transactions1: PhysicalChemistry in Condensed Phases,1988,84(1):65-74.
    [116] Bouwkamp-Wijnoltz A. L., Visscher W., Van Veen J. A. R., et al., Electrochemicalreduction of oxygen: an alternative method to prepare active CoN4catalysts[J],Electrochimica Acta,1999,45(3):379-386.
    [117] Maldonado Stephen, Stevenson Keith J., Direct Preparation of Carbon NanofiberElectrodes via Pyrolysis of Iron(II) Phthalocyanine: Electrocatalytic Aspects forOxygen Reduction[J], The Journal of Physical Chemistry B,2004,108(31):11375-11383.
    [118] Matter Paulh, Ozkan Umits, Non-metal Catalysts for Dioxygen Reduction in an AcidicElectrolyte[J], Catalysis Letters,2006,109(3-4):115-123.
    [119] Maldonado Stephen, Stevenson Keith J., Influence of Nitrogen Doping on OxygenReduction Electrocatalysis at Carbon Nanofiber Electrodes[J], The Journal of PhysicalChemistry B,2005,109(10):4707-4716.
    [120] Biddinger Elizabeth, Von Deak Dieter, Ozkan Umit, Nitrogen-Containing CarbonNanostructures as Oxygen-Reduction Catalysts[J], Topics in Catalysis,2009,52(11):1566-1574.
    [121] Rao Chitturi Venkateswara, Cabrera Carlos R., Ishikawa Yasuyuki, In Search of theActive Site in Nitrogen-Doped Carbon Nanotube Electrodes for the Oxygen ReductionReaction[J], The Journal of Physical Chemistry Letters,2010,1(18):2622-2627.
    [122] Wang Xiqing, Lee Je Seung, Zhu Qing, et al., Ammonia-Treated Ordered MesoporousCarbons as Catalytic Materials for Oxygen Reduction Reaction[J], Chemistry ofMaterials,2010,22(7):2178-2180.
    [123] Stephan O., Ajayan P. M., Colliex C., et al., Doping Graphitic and Carbon NanotubeStructures with Boron and Nitrogen[J], Science,1994,266(5191):1683-1685.
    [124] Zhu H. W., Xu C. L., Wu D. H., et al., Direct Synthesis of Long Single-Walled CarbonNanotube Strands[J], Science,2002,296(5569):884-886.
    [125] Rao C. N. R., Sen R., Satishkumar B. C., et al., Large aligned-nanotube bundles fromferrocene pyrolysis[J], Chemical Communications,1998,15):1525-1526.
    [126] Huang Shaoming, Dai Liming, Mau Albert W. H., Patterned Growth and ContactTransfer of Well-Aligned Carbon Nanotube Films[J], The Journal of Physical ChemistryB,1999,103(21):4223-4227.
    [127] Yajie Lei, Rui Zhao, Mingzhen Xu, et al., Production of empty and iron-filledmultiwalled carbon nanotubes from iron-phthalocyanine polymer and theirelectromagnetic properties[J], Journal of Materials Science: Materials in Electronics,2012,23(4):921-927927.
    [128] Xu Z. W., Li H. J., Fu M. S., et al., Nitrogen-doped carbon nanotubes synthesized bypyrolysis of nitrogen-rich metal phthalocyanine derivatives for oxygen reduction[J],Journal of Materials Chemistry,2012,22(35):18230-18236.
    [129] Zhao R., Lei Y. J., Zhan Y. Q., et al., Solid-state pyrolysis of iron phthalocyaninepolymer into iron nanowire inside carbon nanotube and their novel electromagneticproperties[J], Journal of Materials Research,2011,26(18):2369-2372.
    [130] Bajpai Vardhan, Dai Liming, Ohashi Toshiyuki, Large-Scale Synthesis ofPerpendicularly Aligned Helical Carbon Nanotubes[J], Journal of the AmericanChemical Society,2004,126(16):5070-5071.
    [131] Wiggins-Camacho Jaclyn D., Stevenson Keith J., Effect of Nitrogen Concentration onCapacitance, Density of States, Electronic Conductivity, and Morphology of N-DopedCarbon Nanotube Electrodes[J], The Journal of Physical Chemistry C,2009,113(44):19082-19090.
    [132] Wang Xianbao, Liu Yunqi, Zhu Daoben, et al., Controllable Growth, Structure, and LowField Emission of Well-Aligned CNx Nanotubes[J], The Journal of Physical Chemistry B,2002,106(9):2186-2190.
    [133] Kim Nam Seo, Lee Yun Tack, Park Jeunghee, et al., Vertically Aligned CarbonNanotubes Grown by Pyrolysis of Iron, Cobalt, and Nickel Phthalocyanines[J], TheJournal of Physical Chemistry B,2003,107(35):9249-9255.
    [134] Hyun Chul Choi, Seung Yong Bae, Jeunghee Park, et al., Experimental and theoreticalstudies on the structure of N-doped carbon nanotubes: Possibility of intercalatedmolecular N2[J], Applied Physics Letters,2004,85(23):5742-5744.
    [135] Zhi Linjie, Gorelik Tatiana, Friedlein Rainer, et al., Solid-State Pyrolyses of MetalPhthalocyanines: A Simple Approach towards Nitrogen-Doped CNTs and Metal/CarbonNanocables[J], Small,2005,1(8-9):798-801.
    [136] Arechederra Robert L., Artyushkova Kateryna, Atanassov Plamen, et al., Growth ofPhthalocyanine Doped and Undoped Nanotubes Using Mild Synthesis Conditions forDevelopment of Novel Oxygen Reduction Catalysts[J], ACS Applied Materials&Interfaces,2010,2(11):3295-3302.
    [137] Terrones Mauricio, Redlich Philipp, Grobert Nicole, et al., Carbon NitrideNanocomposites: Formation of Aligned CxNy Nanofibers[J], Advanced Materials,1999,11(8):655-658.
    [138] Terrones M., Terrones H., Grobert N., et al., Efficient route to large arrays of CN[sub x]nanofibers by pyrolysis of ferrocene/melamine mixtures[J], Applied Physics Letters,1999,75(25):3932.
    [139] Terrones M., Ajayan P. M., Banhart F., et al., N-doping and coalescence of carbonnanotubes: synthesis and electronic properties[J], Applied Physics A: Materials Science&Processing,2002,74(3):355-361.
    [140] Terrones M., Grobert N., Terrones H., et al., DOPING AND CONNECTING CARBONNANOTUBES[J], Molecular Crystals&Liquid Crystals Science&Technology, SectionA: Molecular Crystals&Liquid Crystals,2002,387(1):51-62.
    [141] Liu J., Webster S., Carroll D. L., Highly aligned coiled nitrogen-doped carbonnanotubes synthesized by injection-assisted chemical vapor deposition[J], AppliedPhysics Letters,2006,88(21):213119.
    [142] Liu Hao, Zhang Yong, Li Ruying, et al., Structural and morphological control of alignednitrogen-doped carbon nanotubes[J], Carbon,2010,48(5):1498-1507.
    [143] Nemes-Incze P., Daroczi N., Sarkozi Z., et al., Synthesis of bamboo-structuredmultiwalled carbon nanotubes by spray pyrolysis method, using a mixture of benzeneand pyridine[J], Journal of Optoelectronics and Advanced Materials,2007,9(5):1525-1529.
    [144] Liu J., Carroll D. L., Cech J., et al., Single-walled carbon nanotubes synthesized by thepyrolysis of pyridine over catalysts[J], Journal of Materials Research,2006,21(11):2835-2840.
    [145] Zhu S. B., Sun S. X., Zhou W. W., et al., The preparation of nitrogen-doped carbonnanotubes from pyridine[J], Acta Physico-Chimica Sinica,2004,20(11):1320-1323.
    [146] Sen R., Satishkumar B. C., Govindaraj S., et al., Nitrogen-containing carbonnanotubes[J], Journal of Materials Chemistry,1997,7(12):2335-2337.
    [147] Hao Yan, Qingwen Li, Jin Zhang, et al., The effect of hydrogen on the formation ofnitrogen-doped carbon nanotubes via catalytic pyrolysis of acetonitrile[J], ChemicalPhysics Letters,2003,380(3-4):347-351.
    [148] He Maoshuai, Zhou Shuang, Zhang Jin, et al., CVD Growth of N-Doped CarbonNanotubes on Silicon Substrates and Its Mechanism[J], The Journal of PhysicalChemistry B,2005,109(19):9275-9279.
    [149] Lim S. H., Elim H. I., Gao X. Y., et al., Electronic and optical properties ofnitrogen-doped multiwalled carbon nanotubes[J], Physical Review B,2006,73(4):045402.
    [150] Allen Brett L., Kichambare Padmakar D., Star Alexander, Synthesis, Characterization,and Manipulation of Nitrogen-Doped Carbon Nanotube Cups[J], Acs Nano,2008,2(9):1914-1920.
    [151] Allen Brett L., Keddie Matthew B., Star Alexander, Controlling the volumetricparameters of nitrogen-doped carbon nanotube cups[J], Nanoscale,2010,2(7):1105-1108.
    [152] Tang Yifan, Allen Brett L., Kauffman Douglas R., et al., Electrocatalytic Activity ofNitrogen-Doped Carbon Nanotube Cups[J], Journal of the American Chemical Society,2009,131(37):13200-13201.
    [153] M. Glerup M. Castignolles, M. Holzinger, G. Hug, A. Loiseau and P. Bernier Synthesisof highly nitrogen-doped multi-walled carbon nanotubes [J], Chem. Commun,2003,20(2542-2543
    [154] Lv Ruitao, Cui Tongxiang, Jun Mun-Suk, et al., Open-Ended, N-Doped CarbonNanotube–Graphene Hybrid Nanostructures as High-Performance Catalyst Support[J],Advanced Functional Materials,2011,21(5):999-1006.
    [155] Koós Antal A., Dowling Michael, Jurkschat Kerstin, et al., Effect of the experimentalparameters on the structure of nitrogen-doped carbon nanotubes produced by aerosolchemical vapour deposition[J], Carbon,2009,47(1):30-37.
    [156] Li Ya-Li, Hou Feng, Yang Zheng-Tao, et al., The growth of N-doped carbon nanotubearrays on sintered Al2O3substrates[J], Materials Science and Engineering: B,2009,158(1-3):69-74.
    [157] Nxumalo Edward N., Letsoalo Phatu J., Cele Leskey M., et al., The influence ofnitrogen sources on nitrogen doped multi-walled carbon nanotubes[J], Journal ofOrganometallic Chemistry,2010,695(24):2596-2602.
    [158] Wei-Qiang Han, Kohler-Redlich Philipp, Seeger Torsten, et al., Aligned CN[sub x]nanotubes by pyrolysis of ferrocene/C[sub60] under NH[sub3] atmosphere[J], AppliedPhysics Letters,2000,77(12):1807-1880.
    [159] Minea T. M., Bouchet-Fabre B., Lazar S., et al., Angular and Local SpectroscopicAnalysis to Probe the Vertical Alignment of N-doped Well-separated CarbonNanotubes[J], The Journal of Physical Chemistry B,2006,110(32):15659-15662.
    [160] Srivastava Sanjay K., Vankar V. D., Sridhar Rao D. V., et al., Enhanced field emissioncharacteristics of nitrogen-doped carbon nanotube films grown by microwave plasmaenhanced chemical vapor deposition process[J], Thin Solid Films,2006,515(4):1851-1856.
    [161] Srivastava Sanjay K., Shukla A. K., Vankar V. D., et al., Growth, structure and fieldemission characteristics of petal like carbon nano-structured thin films[J], Thin SolidFilms,2005,492(1-2):124-130.
    [162] Lee Duck Hyun, Lee Won Jong, Kim Sang Ouk, Highly Efficient Vertical Growth ofWall-Number-Selected, N-Doped Carbon Nanotube Arrays[J], Nano Letters,2009,9(4):1427-1432.
    [163] Kundu Shankhamala, Xia Wei, Busser Wilma, et al., The formation ofnitrogen-containing functional groups on carbon nanotube surfaces: a quantitative XPSand TPD study[J], Physical Chemistry Chemical Physics,2010,12(17):4351-4359.
    [164] Liu Zi-Wu, Peng Feng, Wang Hong-Juan, et al., Phosphorus-Doped Graphite Layerswith High Electrocatalytic Activity for the O2Reduction in an Alkaline Medium[J],Angewandte Chemie,2011,123(14):3315-3319.
    [165] Liu Ziwu, Peng Feng, Wang Hongjuan, et al., Novel phosphorus-doped multiwallednanotubes with high electrocatalytic activity for O2reduction in alkaline medium[J],Catalysis Communications,2011,16(1):35-38.
    [166] Cruz-Silva Eduardo, Cullen David A., Gu Lin, et al., Heterodoped Nanotubes: Theory,Synthesis, and Characterization of Phosphorus Nitrogen Doped Multiwalled CarbonNanotubes[J], Acs Nano,2008,2(3):441-448.
    [167] Campos-Delgado Jessica, Maciel Indhira O., Cullen David A., et al., Chemical VaporDeposition Synthesis of N-, P-, and Si-Doped Single-Walled Carbon Nanotubes[J], AcsNano,2010,4(3):1696-1702.
    [168] Liu Jian, Liu Hao, Zhang Yong, et al., Synthesis and characterization ofphosphorus–nitrogen doped multiwalled carbon nanotubes[J], Carbon,2011,49(15):5014-5021.
    [169] Sen Rahul, Satishkumar B. C., Govindaraj A., et al., B-C-N, C-N and B-N nanotubesproduced by the pyrolysis of precursor molecules over Co catalysts[J], Chemical PhysicsLetters,1998,287(5-6):671-676.
    [170] Sharma R. B., Late D. J., Joag D. S., et al., Field emission properties of boron andnitrogen doped carbon nanotubes[J], Chemical Physics Letters,2006,428(1-3):102-108.
    [171] Mcguire K., Gothard N., Gai P. L., et al., Synthesis and Raman characterization ofboron-doped single-walled carbon nanotubes[J], Carbon,2005,43(2):219-227.
    [172] Panchakarla L. S., Govindaraj A., Rao C. N. R., Nitrogen-and Boron-DopedDouble-Walled Carbon Nanotubes[J], Acs Nano,2007,1(5):494-500.
    [173] Wang Z., Yu C. H., Ba D. C., et al., Influence of the gas composition on the synthesis ofboron-doped carbon nanotubes by ECR-CVD[J], Vacuum,2007,81(5):579-582.
    [174] Mondal Kartick C., Strydom André M., Tetana Zikhona, et al., Boron-doped carbonmicrospheres[J], Materials Chemistry and Physics,2009,114(2-3):973-977.
    [175] Mondal Kartick C., Strydom Andre M., Erasmus Rudolph M., et al., Physical propertiesof CVD boron-doped multiwalled carbon nanotubes[J], Materials Chemistry and Physics,2008,111(2-3):386-390.
    [176] Mondal Kartick C., Coville Neil J., Witcomb Michael J., et al., Boron mediatedsynthesis of multiwalled carbon nanotubes by chemical vapor deposition[J], ChemicalPhysics Letters,2007,437(1-3):87-91.
    [177] Numao Shigenori, Bandow Shunji, Iijima Sumio, Control of the Innermost TubeDiameters in Multiwalled Carbon Nanotubes by the Vaporization of Boron-ContainingCarbon Rod in RF Plasma[J], The Journal of Physical Chemistry C,2007,111(12):4543-4548.
    [178] Ayala P., Rümmeli M. H., Gemming T., et al., CVD growth of single-walled B-dopedcarbon nanotubes[J], physica status solidi (b),2008,245(10):1935-1938.
    [179] Ayala Paola, Plank Wolfgang,¨Neis Alexander Gru, et al., A one step approach toB-doped single-walled carbon nanotubes[J], Journal of Materials Chemistry,2008,18(5676–5681.
    [180] Burgess James S., Acharya Chethan K., Lizarazo Jair, et al., Boron-doped carbonpowders formed at1000°C and one atmosphere[J], Carbon,2008,46(13):1711-1717.
    [181] Kwon Taeri, Nishihara Hirotomo, Itoi Hiroyuki, et al., Enhancement Mechanism ofElectrochemical Capacitance in Nitrogen-/Boron-Doped Carbons with Uniform StraightNanochannels[J], Langmuir,2009,25(19):11961-11968.
    [182] Ceragioli H J, Et Al., Synthesis and characterization of boron-doped carbonnanotubes[J], Journal of Physics: Conference Series,2008,100(5):052029.
    [183] Ishii S., Okutsu T., Ueda S., et al., Transport properties of multi-walled carbonnanotubes grown by boron addition method[J], physica status solidi (c),2008,5(1):31-34.
    [184] Handuja Sangeeta, Srivastava P., Vankar V., Structural Modification in CarbonNanotubes by Boron Incorporation[J], Nanoscale Research Letters,2009,4(8):789-793.
    [185] Liu X. M., Romero H. E., Gutierrez H. R., et al., Transparent Boron-Doped CarbonNanotube Films[J], Nano Letters,2008,8(9):2613-2619.
    [186] Trasobares S., Ste′Phan O., Colliex C., et al., Compartmentalized CNxnanotubes:Chemistry, morphology, and growth[J], Journal of Chemical Physics,2002,116(20):8966.
    [187] Yang Junbing, Liu Di-Jia, Kariuki Nancy N., et al., Aligned carbon nanotubes withbuilt-in FeN4active sites for electrocatalytic reduction of oxygen[J], ChemicalCommunications,2008,3):329-331.
    [188] Lee Duck Hyun, Lee Won Jun, Lee Won Jong, et al., Theory, Synthesis, and OxygenReduction Catalysis of Fe-Porphyrin-Like Carbon Nanotube[J], Physical Review Letters,2011,106(17):175502.
    [189] Kundu Shankhamala, Nagaiah Tharamani Chikka, Xia Wei, et al., ElectrocatalyticActivity and Stability of Nitrogen-Containing Carbon Nanotubes in the OxygenReduction Reaction[J], The Journal of Physical Chemistry C,2009,113(32):14302-14310.
    [190] Niwa Hideharu, Horiba Koji, Harada Yoshihisa, et al., X-ray absorption analysis ofnitrogen contribution to oxygen reduction reaction in carbon alloy cathode catalysts forpolymer electrolyte fuel cells[J], Journal of Power Sources,2009,187(1):93-97.
    [191] Yu Dingshan, Zhang Qiang, Dai Liming, Highly Efficient Metal-Free Growth ofNitrogen-Doped Single-Walled Carbon Nanotubes on Plasma-Etched Substrates forOxygen Reduction[J], Journal of the American Chemical Society,2010,132(43):15127-15129.
    [192] Ikeda Takashi, Boero Mauro, Huang Sheng-Feng, et al., Carbon Alloy Catalysts: ActiveSites for Oxygen Reduction Reaction[J], The Journal of Physical Chemistry C,2008,112(38):14706-14709.
    [193] Hu Xingbang, Wu Youting, Li Haoran, et al., Adsorption and Activation of O2onNitrogen-Doped Carbon Nanotubes[J], The Journal of Physical Chemistry C,2010,114(21):9603-9607.
    [194] Alexeyeva N., Shulga E., Kisand V., et al., Electroreduction of oxygen onnitrogen-doped carbon nanotube modified glassy carbon electrodes in acid and alkalinesolutions[J], Journal of Electroanalytical Chemistry,2010,648(2):169-175.
    [195] Yang Lijun, Jiang Shujuan, Zhao Yu, et al., Boron-Doped Carbon Nanotubes asMetal-Free Electrocatalysts for the Oxygen Reduction Reaction[J], Angewandte ChemieInternational Edition,2011,50(31):7132-7135.
    [196] Yang, Xu, Tomita Akira, et al., The Template Synthesis of Double Coaxial CarbonNanotubes with Nitrogen-Doped and Boron-Doped Multiwalls[J], Journal of theAmerican Chemical Society,2005,127(25):8956-8957.
    [197] Wang Shuangyin, Iyyamperumal Eswaramoorthi, Roy Ajit, et al., Vertically AlignedBCN Nanotubes as Efficient Metal-Free Electrocatalysts for the Oxygen ReductionReaction: A Synergetic Effect by Co-Doping with Boron and Nitrogen[J], AngewandteChemie International Edition,2011,50(49):11756-11760.
    [198] Murata N., Haruyama J., Reppert J., et al., Superconductivity in Thin Films ofBoron-Doped Carbon Nanotubes[J], Physical Review Letters,2008,101(2):027002.
    [199] Matsudaira M., Haruyama J., Sugiura H., et al., Pressure-induced superconductivity andphonon frequency in paperlike thin films of boron-doped carbon nanotubes[J], PhysicalReview B,2010,82(4):045402.
    [200] Xu Xuan, Jiang Shujuan, Hu Zheng, et al., Nitrogen-Doped Carbon Nanotubes: HighElectrocatalytic Activity toward the Oxidation of Hydrogen Peroxide and Its Applicationfor Biosensing[J], Acs Nano,2010,4(7):4292-4298.
    [201] Geng Dongsheng, Liu Hao, Chen Yougui, et al., Non-noble metal oxygen reductionelectrocatalysts based on carbon nanotubes with controlled nitrogen contents[J], Journalof Power Sources,2011,196(4):1795-1801.
    [202] Jin Chen, Nagaiah Tharamani Chikka, Xia Wei, et al., Metal-free andelectrocatalytically active nitrogen-doped carbon nanotubes synthesized by coating withpolyaniline[J], Nanoscale,2010,2(6):981-987.
    [203] Sharifi Tiva, Hu Guangzhi, Jia Xueen, et al., Formation of Active Sites for OxygenReduction Reactions by Transformation of Nitrogen Functionalities in Nitrogen-DopedCarbon Nanotubes[J], Acs Nano,2012,6(10):8904-8912.
    [204] Wang Zhijian, Jia Rongrong, Zheng Jianfeng, et al., Nitrogen-Promoted Self-Assemblyof N-Doped Carbon Nanotubes and Their Intrinsic Catalysis for Oxygen Reduction inFuel Cells[J], Acs Nano,2011,5(3):1677-1684.
    [205] Von Deak Dieter, Biddinger Elizabeth J., Luthman Katherine A., et al., The effect ofphosphorus in nitrogen-containing carbon nanostructures on oxygen reduction in PEMfuel cells[J], Carbon,2010,48(12):3637-3639.
    [206] Sinitskii Alexander, Dimiev Ayrat, Kosynkin Dmitry V., et al., Graphene NanoribbonDevices Produced by Oxidative Unzipping of Carbon Nanotubes[J], Acs Nano,2010,4(9):5405-5413.
    [207] Hirsch Andreas, Unzipping Carbon Nanotubes: A Peeling Method for the Formation ofGraphene Nanoribbons[J], Angewandte Chemie International Edition,2009,48(36):6594-6596.
    [208] Janowska Izabela, Ersen Ovidiu, Jacob Timo, et al., Catalytic unzipping of carbonnanotubes to few-layer graphene sheets under microwaves irradiation[J], AppliedCatalysis A: General,2009,371(1-2):22-30.
    [209] Cataldo Franco, Compagnini Giuseppe, Patané Giacomo, et al., Graphene nanoribbonsproduced by the oxidative unzipping of single-wall carbon nanotubes[J], Carbon,2010,48(9):2596-2602.
    [210] Kumar Prashant, Panchakarla L. S., Rao C. N. R., Laser-induced unzipping of carbonnanotubes to yield graphene nanoribbons[J], Nanoscale,2011,3(5):2127-2129.
    [211] Li Yanguang, Zhou Wu, Wang Hailiang, et al., An oxygen reduction electrocatalystbased on carbon nanotube-graphene complexes[J], Nat Nano,2012, advance onlinepublication(
    [212] Kosynkin Dmitry V., Higginbotham Amanda L., Sinitskii Alexander, et al., Longitudinalunzipping of carbon nanotubes to form graphene nanoribbons[J], Nature,2009,458(7240):872-876.
    [213] Wu Zhong-Shuai, Ren Wencai, Gao Libo, et al., Synthesis of high-quality graphenewith a pre-determined number of layers[J], Carbon,2009,47(2):493-499.
    [214] Cao Xiehong, Shi Yumeng, Shi Wenhui, et al., Preparation of Novel3D GrapheneNetworks for Supercapacitor Applications[J], Small,2011,7(22):3163-3168.
    [215] Feng Leiyu, Chen Yinguang, Chen Lang, Easy-to-Operate and Low-TemperatureSynthesis of Gram-Scale Nitrogen-Doped Graphene and Its Application as CathodeCatalyst in Microbial Fuel Cells[J], Acs Nano,2011,5(12):9611-9618.
    [216] Parvez Khaled, Yang Shubin, Hernandez Yenny, et al., Nitrogen-Doped Graphene andIts Iron-Based Composite As Efficient Electrocatalysts for Oxygen ReductionReaction[J], Acs Nano,2012,6(11):9541-9550.
    [217] Wu Gang, Mack Nathan H., Gao Wei, et al., Nitrogen-Doped Graphene-Rich CatalystsDerived from Heteroatom Polymers for Oxygen Reduction in Nonaqueous Lithium–O2Battery Cathodes[J], Acs Nano,2012,6(11):9764-9776.
    [218] Qu Liangti, Liu Yong, Baek Jong-Beom, et al., Nitrogen-Doped Graphene as EfficientMetal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells[J], Acs Nano,2010,4(3):1321-1326.
    [219] Jiang Rongzhong, Tran Dat T., Mcclure Joshua, et al., Heat-treated hemin supported ongraphene nanoplatelets for the oxygen reduction reaction[J], ElectrochemistryCommunications,2012,19(0):73-76.
    [220] Byon Hye Ryung, Suntivich Jin, Shao-Horn Yang, Graphene-Based Non-Noble-MetalCatalysts for Oxygen Reduction Reaction in Acid[J], Chemistry of Materials,2011,23(15):3421-3428.
    [221] Sheng Zhen-Huan, Shao Lin, Chen Jing-Jing, et al., Catalyst-Free Synthesis ofNitrogen-Doped Graphene via Thermal Annealing Graphite Oxide with Melamine andIts Excellent Electrocatalysis[J], Acs Nano,2011,5(6):4350-4358.
    [222] Lin Ziyin, Waller Gordon, Liu Yan, et al., Facile Synthesis of Nitrogen-DopedGraphene via Pyrolysis of Graphene Oxide and Urea, and its Electrocatalytic Activitytoward the Oxygen-Reduction Reaction[J], Advanced Energy Materials,2012,2(7):884-888.
    [223] Yang Shubin, Feng Xinliang, Wang Xinchen, et al., Graphene-Based Carbon NitrideNanosheets as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reactions[J],Angewandte Chemie International Edition,2011,50(23):5339-5343.
    [224] Zhao Yang, Hu Chuangang, Hu Yue, et al., A Versatile, Ultralight, Nitrogen-DopedGraphene Framework[J], Angewandte Chemie International Edition,2012,51(45):11371-11375.
    [225] Wang Shuangyin, Yu Dingshan, Dai Liming, et al., Polyelectrolyte-FunctionalizedGraphene as Metal-Free Electrocatalysts for Oxygen Reduction[J], Acs Nano,2011,5(8):6202-6209.
    [226] Chen Fei, Liu Peng, Zhao Qiaoqiao, Well-defined graphene/polyaniline flakecomposites for high performance supercapacitors[J], Electrochimica Acta,2012,76(0):62-68.
    [227] Jahan Maryam, Bao Qiaoliang, Loh Kian Ping, Electrocatalytically ActiveGraphene–Porphyrin MOF Composite for Oxygen Reduction Reaction[J], Journal of theAmerican Chemical Society,2012,134(15):6707-6713.
    [228] Yang Zhi, Yao Zhen, Li Guifa, et al., Sulfur-Doped Graphene as an Efficient Metal-freeCathode Catalyst for Oxygen Reduction[J], Acs Nano,2011,6(1):205-211.
    [229] Yang Shubin, Zhi Linjie, Tang Kun, et al., Efficient Synthesis of Heteroatom (N orS)-Doped Graphene Based on Ultrathin Graphene Oxide-Porous Silica Sheets forOxygen Reduction Reactions[J], Advanced Functional Materials,2012,22(17):3634-3640.
    [230] Liang Ji, Jiao Yan, Jaroniec Mietek, et al., Sulfur and Nitrogen Dual-DopedMesoporous Graphene Electrocatalyst for Oxygen Reduction with SynergisticallyEnhanced Performance[J], Angewandte Chemie International Edition,2012,51(46):11496-11500.
    [231] Panchakarla L. S., Subrahmanyam K. S., Saha S. K., et al., Synthesis, Structure, andProperties of Boron-and Nitrogen-Doped Graphene[J], Advanced Materials,2009,21(46):4726-4730.
    [232] Wang Shuangyin, Zhang Lipeng, Xia Zhenhai, et al., BCN Graphene as EfficientMetal-Free Electrocatalyst for the Oxygen Reduction Reaction[J], Angewandte ChemieInternational Edition,2012,51(17):4209-4212.
    [233] Wu Zhong-Shuai, Yang Shubin, Sun Yi, et al.,3D Nitrogen-Doped GrapheneAerogel-Supported Fe3O4Nanoparticles as Efficient Electrocatalysts for the OxygenReduction Reaction[J], Journal of the American Chemical Society,2012.
    [234] Liang Yongye, Wang Hailiang, Zhou Jigang, et al., Covalent Hybrid of SpinelManganese-Cobalt Oxide and Graphene as Advanced Oxygen ReductionElectrocatalysts[J], Journal of the American Chemical Society,2012,123(7):3517-3523.
    [235] Sidik Reyimjan A., Anderson Alfred B., Subramanian Nalini P., et al., O2Reduction onGraphite and Nitrogen-Doped Graphite: Experiment and Theory[J], The Journal ofPhysical Chemistry B,2006,110(4):1787-1793.
    [236] Liang Ji, Zheng Yao, Chen Jun, et al., Facile Oxygen Reduction on aThree-Dimensionally Ordered Macroporous Graphitic C3N4/Carbon CompositeElectrocatalyst[J], Angewandte Chemie International Edition,2012,51(16):3892-3896.
    [237] Liu Ruili, Wu Dongqing, Feng Xinliang, et al., Nitrogen-Doped Ordered MesoporousGraphitic Arrays with High Electrocatalytic Activity for Oxygen Reduction[J],Angewandte Chemie International Edition,2010,49(14):2565-2569.
    [238] Lefevre Michel, Proietti Eric, Jaouen Frederic, et al., Iron-Based Catalysts withImproved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells[J], Science,2009,324(5923):71-74.
    [239] Proietti Eric, Ruggeri Stephane, Dodelet Jean-Pol, Fe-Based Electrocatalysts forOxygen Reduction in PEMFCs Using Ballmilled Graphite Powder as a CarbonSupport[J], Journal of The Electrochemical Society,2008,155(4): B340-B348.
    [240] Proietti Eric, Jaouen Frédéric, Lefèvre Michel, et al., Iron-based cathode catalyst withenhanced power density in polymer electrolyte membrane fuel cells[J], Nat Commun,2011,2(416.
    [241] Winther-Jensen Bjorn, Winther-Jensen Orawan, Forsyth Maria, et al., High Rates ofOxygen Reduction over a Vapor Phase-Polymerized PEDOT Electrode[J], Science,2008,321(5889):671-674.
    [242] Wu Gang, Nelson Mark, Ma Shuguo, et al., Synthesis of nitrogen-doped onion-likecarbon and its use in carbon-based CoFe binary non-precious-metal catalysts foroxygen-reduction[J], Carbon,2011,49(12):3972-3982.
    [243] Wu Gang, Johnston Christina M., Mack Nathan H., et al.,Synthesis-structure-performance correlation for polyaniline-Me-C non-precious metalcathode catalysts for oxygen reduction in fuel cells[J], Journal of Materials Chemistry,2011,21(30):11392-11405.
    [244] Jaouen Frederic, Proietti Eric, Lefevre Michel, et al., Recent advances in non-preciousmetal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells[J], Energy&Environmental Science,2011,4(1):114-130.
    [245] Ozaki Jun-Ichi, Kimura Naofumi, Anahara Tomonori, et al., Preparation and oxygenreduction activity of BN-doped carbons[J], Carbon,2007,45(9):1847-1853.
    [246] Zhang J., Sasaki K., Sutter E., et al., Stabilization of Platinum Oxygen-ReductionElectrocatalysts Using Gold Clusters[J], Science,2007,315(5809):220-222.
    [247] Xiong Wei, Du Feng, Liu Yong, et al.,3-D Carbon Nanotube Structures Used as HighPerformance Catalyst for Oxygen Reduction Reaction[J], Journal of the AmericanChemical Society,2010,132(45):15839-15841.
    [248] Huang Sheng-Feng, Terakura Kiyoyuki, Ozaki Taisuke, et al., First-principlescalculation of the electronic properties of graphene clusters doped with nitrogen andboron: Analysis of catalytic activity for the oxygen reduction reaction[J], PhysicalReview B,2009,80(23):235410.
    [249] Brown Billyde, Parker Charles B., Stoner Brian R., et al., Growth of vertically alignedbamboo-like carbon nanotubes from ammonia/methane precursors using a platinumcatalyst[J], Carbon,2011,49(1):266-274.
    [250] Chai Y., Zhang Q. F., Wu J. L., A simple way to CNx/carbon nanotube intramolecularjunctions and branches[J], Carbon,2006,44(4):687-691.
    [251] Khavrus Vyacheslav O., Leonhardt Albrecht, Hampel Silke, et al., Single-step synthesisof metal-coated well-aligned CNx nanotubes using an aerosol-technique[J], Carbon,2007,45(15):2889-2896.
    [252] Koós Antal A., Dillon Frank, Obraztsova Ekaterina A., et al., Comparison of structuralchanges in nitrogen and boron-doped multi-walled carbon nanotubes[J], Carbon,2010,48(11):3033-3041.
    [253] Maldonado Stephen, Morin Stephen, Stevenson Keith J., Structure, composition, andchemical reactivity of carbon nanotubes by selective nitrogen doping[J], Carbon,2006,44(8):1429-1437.
    [254] Xu Eryang, Wei Jinquan, Wang Kunlin, et al., Doped carbon nanotube array with agradient of nitrogen concentration[J], Carbon,2010,48(11):3097-3102.
    [255] Shang Yan, Zhao Jing-Xiang, Wu Hong, et al., Chemical functionalization ofpyridine-like and porphyrin-like nitrogen-doped carbon (CNx) nanotubes with transitionmetal (TM) atoms: a theoretical study[J], Theoretical Chemistry Accounts: Theory,Computation, and Modeling (Theoretica Chimica Acta),2010,127(5):727-733.
    [256] Sun Chia-Liang, Wang Houng-Wei, Hayashi Michitoshi, et al., Atomic-ScaleDeformation in N-Doped Carbon Nanotubes[J], Journal of the American ChemicalSociety,2006,128(26):8368-8369.
    [257] Ando Tomoyuki, Izhar Shamsul, Tominaga Hiroyuki, et al., Ammonia-treatedcarbon-supported cobalt tungsten as fuel cell cathode catalyst[J], Electrochimica Acta,2010,55(8):2614-2621.
    [258] Dembinska Beata, Kulesza Pawel J., Multi-walled carbon nanotube-supported tungstenoxide-containing multifunctional hybrid electrocatalytic system for oxygen reduction inacid medium[J], Electrochimica Acta,2009,54(20):4682-4687.
    [259] Lee Kunchan, Ishihara Akimitsu, Mitsushima Shigenori, et al., Stability andelectrocatalytic activity for oxygen reduction in WC+Ta catalyst[J], ElectrochimicaActa,2004,49(21):3479-3485.
    [260] Lewera Adam, Miecznikowski Krzysztof, Hunger Ralf, et al., Electronic-levelinteractions of tungsten oxide with unsupported Se/Ru electrocatalytic nanoparticles[J],Electrochimica Acta,2010,55(26):7603-7609.
    [261] Suntivich Jin, Gasteiger Hubert A., Yabuuchi Naoaki, et al., Design principles foroxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–airbatteries[J], Nat Chem,2011,3(7):546-550.
    [262] Jeyabharathi C., Venkateshkumar P., Rao M. Sankara, et al., Nitrogen-doped carbonblack as methanol tolerant electrocatalyst for oxygen reduction reaction in directmethanol fuel cells[J], Electrochimica Acta,2012,74(0):171-175.
    [263] Yang Dae-Soo, Park Jinsol, Bhattacharjya Dhrubajyoti, et al., Phosphorus-DopedOrdered Mesoporous Carbons with Dif-ferent Lengths as Efficient Metal-FreeElectrocatalysts for Oxygen Reduction Reaction in Alkaline Media[J], Journal of theAmerican Chemical Society,2012.
    [264] Zheng Yao, Jiao Yan, Chen Jun, et al., Nanoporous Graphitic-C3N4@CarbonMetal-Free Electrocatalysts for Highly Efficient Oxygen Reduction[J], Journal of theAmerican Chemical Society,2011,133(50):20116-20119.
    [265] Yang Wen, Fellinger Tim-Patrick, Antonietti Markus, Efficient Metal-Free OxygenReduction in Alkaline Medium on High-Surface-Area Mesoporous Nitrogen-DopedCarbons Made from Ionic Liquids and Nucleobases[J], Journal of the AmericanChemical Society,2010,133(2):206-209.
    [266] Ozaki Jun-Ichi, Tanifuji Shin-Ichi, Furuichi Atsuya, et al., Enhancement of oxygenreduction activity of nanoshell carbons by introducing nitrogen atoms from metalphthalocyanines[J], Electrochimica Acta,2010,55(6):1864-1871.
    [267] Zhong Mingjiang, Kim Eun Kyung, Mcgann John P., et al., Electrochemically ActiveNitrogen-Enriched Nanocarbons with Well-Defined Morphology Synthesized byPyrolysis of Self-Assembled Block Copolymer[J], Journal of the American ChemicalSociety,2012,134(36):14846-14857.
    [268] Chen Siguo, Wei Zidong, Qi Xueqiang, et al., Nanostructured Polyaniline-DecoratedPt/C@PANI Core–Shell Catalyst with Enhanced Durability and Activity[J], Journal ofthe American Chemical Society,2012,134(32):13252-13255.
    [269] Choi Hyun-Jung, Jeon In-Yup, Kang Sang-Wook, et al., Electrochemical activity of apolyaniline/polyaniline-grafted multiwalled carbon nanotube mixture produced by asimple suspension polymerization[J], Electrochimica Acta,2011,56(27):10023-10031.
    [270] Mikhaylova A. A., Tusseeva E. K., Mayorova N. A., et al., Single-walled carbonnanotubes and their composites with polyaniline. Structure, catalytic and capacitiveproperties as applied to fuel cells and supercapacitors[J], Electrochimica Acta,2011,56(10):3656-3665.
    [271] Wu Gang, Zelenay Piotr, Polyaniline-derived Non-Precious Catalyst for the PolymerElectrolyte Fuel Cell Cathode[J], ECS Meeting Abstracts,2008,802(11):774-774.
    [272] Matter Paul H., Zhang Ling, Ozkan Umit S., The role of nanostructure innitrogen-containing carbon catalysts for the oxygen reduction reaction[J], Journal ofCatalysis,2006,239(1):83-96.
    [273] Jiang T., Brisard G. M., Determination of the kinetic parameters of oxygen reduction oncopper using a rotating ring single crystal disk assembly (RRDCu(hkl)E)[J],Electrochimica Acta,2007,52(13):4487-4496.
    [274] Zhao Yong, Watanabe Kazuya, Hashimoto Kazuhito, Self-Supporting OxygenReduction Electrocatalysts Made from a Nitrogen-Rich Network Polymer[J], Journal ofthe American Chemical Society,2012,134(48):19528-19531.
    [275] Zhang Sanliang, Li Yueming, Pan Ning, Graphene based supercapacitor fabricated byvacuum filtration deposition[J], Journal of Power Sources,2012,206(0):476-482.
    [276] Yang Shubin, Feng Xinliang, Müllen Klaus, Sandwich-Like, Graphene-Based TitaniaNanosheets with High Surface Area for Fast Lithium Storage[J], Advanced Materials,2011,23(31):3575-3579.
    [277] Qin Z., Li Z. J., Zhang M., et al., Sn nanoparticles grown on graphene for enhancedelectrochemical properties[J], Journal of Power Sources,2012,217(0):303-308.
    [278] Cao Yuan-Cheng, Xu Chenxi, Wu Xu, et al., A poly (ethylene oxide)/graphene oxideelectrolyte membrane for low temperature polymer fuel cells[J], Journal of PowerSources,2011,196(20):8377-8382.
    [279] Xiao Li, Damien Jacqueline, Luo Jiayan, et al., Crumpled graphene particles formicrobial fuel cell electrodes[J], Journal of Power Sources,2012,208(0):187-192.
    [280] Zhang Yezhen, Mo Guangquan, Li Xuwen, et al., Iron tetrasulfophthalocyaninefunctionalized graphene as a platinum-free cathodic catalyst for efficient oxygenreduction in microbial fuel cells[J], Journal of Power Sources,2012,197(0):93-96.
    [281] Hou Junxian, Liu Zhongliang, Zhang Peiyuan, A new method for fabrication ofgraphene/polyaniline nanocomplex modified microbial fuel cell anodes[J], Journal ofPower Sources,2013,224(0):139-144.
    [282] Liu Chien-Liang, Chang Kuo-Hsing, Hu Chi-Chang, et al., Microwave-assistedhydrothermal synthesis of Mn3O4/reduced graphene oxide composites for high powersupercapacitors[J], Journal of Power Sources,2012,217(0):184-192.
    [283] Zhang Dacheng, Zhang Xiong, Chen Yao, et al., Enhanced capacitance and ratecapability of graphene/polypyrrole composite as electrode material for supercapacitors[J],Journal of Power Sources,2011,196(14):5990-5996.
    [284] Perera Sanjaya D., Mariano Ruperto G., Nijem Nour, et al., Alkaline deoxygenatedgraphene oxide for supercapacitor applications: An effective green alternative forchemically reduced graphene[J], Journal of Power Sources,2012,215(0):1-10.
    [285] Meier Josef C., Galeano Carolina, Katsounaros Ioannis, et al., Degradation Mechanismsof Pt/C Fuel Cell Catalysts under Simulated Start–Stop Conditions[J], ACS Catalysis,2012,2(5):832-843.
    [286] Swider-Lyons Karen E., Campbell Stephen A., Physical Chemistry Research TowardProton Exchange Membrane Fuel Cell Advancement[J], The Journal of PhysicalChemistry Letters,2013,4(3):393-401.
    [287] Wang Jia X., Inada Hiromi, Wu Lijun, et al., Oxygen Reduction on Well-DefinedCore Shell Nanocatalysts: Particle Size, Facet, and Pt Shell Thickness Effects[J],Journal of the American Chemical Society,2009,131(47):17298-17302.
    [288] Lim Byungkwon, Jiang Majiong, Camargo Pedro H. C., et al., Pd-Pt BimetallicNanodendrites with High Activity for Oxygen Reduction[J], Science,2009,324(5932):1302-1305.
    [289] Chen Zhongwei, Higgins Drew, Yu Aiping, et al., A review on non-precious metalelectrocatalysts for PEM fuel cells[J], Energy&Environmental Science,2011,4(9):3167-3192.
    [290] Wu Jiajia, Zhang Dun, Wang Yi, et al., Catalytic activity of graphene–cobalt hydroxidecomposite for oxygen reduction reaction in alkaline media[J], Journal of Power Sources,2012,198(0):122-126.
    [291] Wen Qing, Wang Shaoyun, Yan Jun, et al., MnO2–graphene hybrid as an alternativecathodic catalyst to platinum in microbial fuel cells[J], Journal of Power Sources,2012,216(0):187-191.
    [292] Mo Zaiyong, Peng Hongliang, Liang Huagen, et al., Vesicular nitrogen doped carbonmaterial derived from Fe2O3templated polyaniline as improved non-platinum fuel cellcathode catalyst[J], Electrochimica Acta,2013,99(0):30-37.
    [293] Singh Ravindra Nath, Awasthi Rahul, Graphene support for enhanced electrocatalyticactivity of Pd for alcohol oxidation[J], Catalysis Science&Technology,2011,1(5):778-783.
    [294] Boudeville Yves, Figueras Fran ois, Forissier Michel, et al., Correlations between X-rayphotoelectron spectroscopy data and catalytic properties in selective oxidation on Sb Sn O catalysts[J], Journal of Catalysis,1979,58(1):52-60.
    [295] Scofield J. H., Hartree-Slater subshell photoionization cross-sections at1254and1487eV[J], Journal of Electron Spectroscopy and Related Phenomena,1976,8(2):129-137.
    [296] Jeon In-Yup, Choi Hyun-Jung, Jung Sun-Min, et al., Large-Scale Production ofEdge-Selectively Functionalized Graphene Nanoplatelets via Ball Milling and Their Useas Metal-Free Electrocatalysts for Oxygen Reduction Reaction[J], Journal of theAmerican Chemical Society,2012,135(4):1386-1393.
    [297] Shi Qiaofang, Mu Shaolin, Preparation of Pt/poly(pyrogallol)/graphene electrode and itselectrocatalytic activity for methanol oxidation[J], Journal of Power Sources,2012,203(0):48-56.
    [298] Machado Bruno F., Serp Philippe, Graphene-based materials for catalysis[J], CatalysisScience&Technology,2012,2(1):54-75.
    [299] Steele Brian C. H., Heinzel Angelika, Materials for fuel-cell technologies[J], Nature,2001,414(6861):345-352.
    [300] Stamenkovic Vojislav R., Fowler Ben, Mun Bongjin Simon, et al., Improved OxygenReduction Activity on Pt3Ni(111) via Increased Surface Site Availability[J], Science,2007,315(5811):493-497.
    [301] Strasser Peter, Koh Shirlaine, Anniyev Toyli, et al., Lattice-strain control of the activityin dealloyed core–shell fuel cell catalysts[J], Nat Chem,2010,2(6):454-460.
    [302] Gupta S., Tryk D., Bae I., et al., Heat-treated polyacrylonitrile-based catalysts foroxygen electroreduction[J], Journal of Applied Electrochemistry,1989,19(1):19-27.
    [303] Biddinger Elizabethj, Deak Dieter, Ozkan Umits, Nitrogen-Containing CarbonNanostructures as Oxygen-Reduction Catalysts[J], Topics in Catalysis,2009,52(11):1566-1574.
    [304] Zhang Zhiming, Wei Zhixiang, Zhang Lijuan, et al., Polyaniline nanotubes and theirdendrites doped with different naphthalene sulfonic acids[J], Acta Materialia,2005,53(5):1373-1379.
    [305] Markovi N. M., Gasteiger H. A., Grgur B. N., et al., Oxygen reduction reaction onPt(111): effects of bromide[J], Journal of Electroanalytical Chemistry,1999,467(1–2):157-163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700