用户名: 密码: 验证码:
Mg-Y-Sm-Zr系镁合金组织性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
WE系列的WE43和WE54镁合金由于其优异的室温力学性能、高温抗蠕变性能和耐腐蚀性能在航天航空和汽车工业中得到越来越广泛的应用。WE系列合金的主要成分为Mg-Y-Nd-Zr,其中Zr为晶粒细化剂。而该系列合金主要通过稀土元素Y和Nd的时效析出强化提高合金性能。在镁合金中Sm具有比Nd更高的固溶强化和析出强化效果。但是关于Sm元素在镁合金中应用的研究很少,对Sm元素在镁合金中的强化机理还不清楚。因此,本文用Sm元素代替WE系列镁合金中的Nd元素,设计出Mg-4Y-xSm-0.5Zr(x=1,4,8)系列镁合金,系统研究了Sm元素对该系列镁合金组织结构、室温和高温力学性能的影响规律。并在此基础上重点研究了Mg-4Y-4Sm-0.5Zr合金的热处理和挤压成形工艺,研究Mg-4Y-4Sm-0.5Zr合金在热处理和挤压成形过程中的时效析出相变化和强化机制。文章最后还研究了挤压态Mg-4Y-4Sm-0.5Zr合金的高温压缩和压缩蠕变变形行为,对比分析了合金不同温度和不同应变速率下的高温压缩变形机制。
     实验设计Mg-4Y-1Sm-0.5Zr、Mg-4Y-4Sm-0.5Zr和Mg-4Y-8Sm-0.5Zr三种合金成分,研究了不同Sm含量对Mg-Y-Sm-Zr系镁合金在热处理和挤压成形过程中的组织性能的影响规律。研究结果表明铸态Mg-4Y-xSm-0.5Zr系列镁合金的组织主要为Mg基体+Mg5(Sm,Y)共晶化合物。不同合金中共晶化合物的稀土元素Y、Sm含量虽然稍有差异,但这些共晶化合物都具有与Mg5Sm相同的面心立方晶体结构(a=2.246nm)。另外,在铸态Mg-4Y-xSm-0.5Zr系列镁合金的晶界附近还存在一定量的富集稀土元素Y和Sm的面心立方结构(a=0.5581nm)方块相。经过固溶热处理,铸态Mg-4Y-1Sm-0.5Zr和Mg-4Y-4Sm-0.5Zr合金中的共晶相固溶入基体。而Mg-4Y-8Sm-0.5Zr合金由于Sm元素含量超过其在镁基体中的最大固溶度,固溶不完全,固溶处理后,面心立方晶体结构的Mg5(Sm,Y)共晶化合物转变为体心四方结构的Mg41Sm5,并有很少量Y元素置换Sm元素固溶其中。Mg-4Y-8Sm-0.5Zr合金,由于大量脆性相的存在,塑性低,强度差;Mg-4Y-1Sm-0.5Zr合金塑性好,但是由于Sm元素含量低,强化效果发挥不充分;Mg-4Y-4Sm-0.5Zr合金具有最佳的综合力学性能。
     研究Mg-4Y-4Sm-0.5Zr合金的固溶热处理工艺,结果表明合金在525℃固溶处理8小时后,得到最佳的固溶效果。合金经过固溶热处理,稀土元素Y和Sm完全固溶入基体并且均匀分布,起到一定程度的固溶强化效果,但主要作用还是得到均匀的过饱和固溶体,为随后的时效热处理提供最佳条件。进一步研究合金在不同温度和不同时间条件下的时效热处理工艺,结果表明Mg-4Y-4Sm-0.5Zr合金在200℃欠时效状态(16h),析出相在晶内和晶界上弥散分布,有效强化合金,合金力学性能得到大幅度提高,抗拉强度达到348MPa,屈服强度达到217MPa,延伸率为6.9%,表现出优异的力学性能。析出强化是Mg-4Y-4Sm-0.5Zr合金的主要强化机制。主要通过β′析出相与镁基体之间的应力场强化合金。
     通过对Mg-4Y-4Sm-0.5Zr合金时效析出相的进一步研究表明:合金在不同温度下的时效析出相包括β′相,β1相和β相。合金在200℃时效,晶内只有β′一种相。该相在200℃温度下非常稳定。欠时效状态,β′相在晶内大量弥散均匀析出,有效强化合金,对应合金的最佳力学性能;随时效时间的增加,β′相逐渐合并长大呈盘状沿{2110 }惯习面析出。由于析出相的粗化和弥散度的降低合金力学性能相应有所降低。合金在较高温度250℃时效48小时,晶内沿{1010}惯习面析出盘状面心立方晶体结构(a=0.74nm)的β1相。合金在更高温度300℃时效处理13小时,大量面心立方晶体结构(a=2.223nm)平衡相(β相)在晶内析出。该平衡相的惯习面与β1相相同,形貌也与β1相相似,是由β1相原位转变而来。
     Mg-4Y-4Sm-0.5Zr合金高温(350℃及以上)挤压,挤压过程中发生动态再结晶,晶粒细化,起到显著的细晶强化作用。合金挤压后直接进行时效热处理,通过析出强化进一步提高合金强度,且析出强化效果随挤压温度的升高稍有提高。经过挤压和时效热处理,Mg-4Y-4Sm-0.5Zr合金最高抗拉强度达到400MPa,屈服强度超过300MPa,延伸率达到7%,表现出比WE系列合金更加优异的室温力学性能。析出强化和细晶强化都是合金有效的强化手段。
     文章最后还系统研究了挤压态Mg-4Y-4Sm-0.5Zr合金的高温压缩和压缩蠕变变形行为。合金在450℃,应变速率2.5×10-4s-1条件下高温压缩,应变速率敏感系数m=0.4,压缩变形激活能Q=92.1KJ/mol,压缩过程中合金晶粒长大但基本保持等轴,说明晶界滑移是合金在该条件下压缩的主要变形机制。合金在200℃,180MPa条件下具有较好的抗压缩蠕变性能,计算得到压缩蠕变应力指数n=4.1,蠕变激活能Q=156.7KJ/mol,结合微观组织观察表明,位错攀移是合金在该条件下压缩蠕变变形速率控制机制。
The WE series alloys, based on the Mg-Y-Nd-Zr system, identified as WE54 (5wt.%Y, 3.3wt%RE, 0.5wt.%Zr) and WE43 (4wt.%Y, 3.3wt.%RE, 0.5wt.%Zr) become more and more attractive for aerospace and automotive industries because of their high room temperature mechanical properties, excellent high temperature creep resistance and good corrosion resistance. These alloys are strengthened essentially by precipitation hardening. Samarium belongs to the same subgroup as neodymium, and the maximum solubility of samarium in solid magnesium is higher than neodymium. Therefore it is reasonable to assume that the precipitation hardening effect of Mg-Y-Sm-Zr alloys is higher than that of WE series alloys based on Mg-Y-Nd-Zr system, which may result in a higher strength. But there is little research on strengthening effects and strengthening mechanisms of Mg-Y-Sm-Zr alloys. It is the purpose of present study to investigate the effects of Sm on microstructure and mechanical properties of Mg-Y-Sm-Zr alloys. Then the heat treatments and plastic deformation of Mg-4Y-4Sm-0.5Zr alloy are investigated. And the precipitation sequence and the precipitation strengthening mechanism in Mg-4Y-4Sm-0.5Zr alloy are emphasized. Finally, the high temperature compression and compression creep behavior of extruded Mg-4Y-4Sm-0.5Zr alloy are contrastively studied.
     Thermo-mechanical treatments containing solution, artificial ageing and extrusion are carried out on Mg-4Y-xSm-0.5Zr (x=1, 4, 8) alloys. Effects of samarium on microstructure and mechanical properties of Mg-Y-Sm-Zr alloys during thermo-mechanical treatments are investigated. The microstructure of as-cast alloys involves Mg solid solution + eutectic compounds. The eutectic phase has the same fcc crystal structure (a=2.246nm) and similar composition to Mg5Sm. But some Y elements are dissolved in it. And there are also some small RE-enriched quadrate phases which have the fcc crystal structure (a=0.5581nm) in the as-cast Mg-Y-Sm-Zr alloys. The eutectic phases in Mg-4Y-1Sm-0.5Zr and Mg-4Y-4Sm-0.5Zr alloys are solutionized into the Mg-matrix after solutionized at 525℃for 8h. There is still large amount of the second phases remained at grain boundaries in the solutionized Mg-4Y-8Sm-0.5Zr alloy for the incomplete dissolution of the samarium. The fcc crystal structure Mg5(Sm,Y) eutectic phase is transformed to the body-centred tetragonal crystal structure Mg41Sm5 phase with little Y element dissolved in it. The strength and elongation of Mg-4Y-8Sm-0.5Zr alloy are low because of the large amount undissolved fragile compounds; the precipitation strengthening effect of Mg-4Y-1Sm-0.5Zr alloy is not evident because of the low Sm content; as a result, the Mg-4Y-4Sm-0.5Zr alloy has the best mechanical properties.
     The eutectic phases in Mg-4Y-4Sm-0.5Zr alloy dissolve into the matrix and the alloying elements Y and Sm homogenously distributes through out the grains after solutionized at 525℃for 8h. Elongation (EL) greatly increase for the dissolution of eutectic phase and homogenous distribution of alloying elements, and ultimate tensile strength (UTS) increases a little for the solution strengthening effect of Y and Sm. The alloy peak-aged at 225℃has the highest EL. But the UTS and yield strength (YS) are relatively low. The alloy peak-aged at 175℃has the highest hardness, but the ageing time is long, and the UTS, YS and EL are not the highest. And the highest UTS and YS are reached when the alloy peak-aged at 200℃. Very fine scale precipitates form inside the grains and along the grain boundaries when under-aged at 200℃for 16h, resulting of the highest UTS and EL. With increasing the ageing time, The EL of alloy greatly decreases for increasing amount and coalescence of the precipitates along the grain boundaries, and the UTS decreases respectively. The optimal ageing parameter 200℃for 16 hours is chosen for Mg-4Y-4Sm-0.5Zr alloy. The precipitation strengthening of the alloying elements Y and Sm is the main strengthening mechanism in this Mg-4Y-4Sm-0.5Zr alloy. The mechanical properties of the alloy greatly increase after the solution-plus-ageing heat treatment.The UTS of 348MPa, YS of 217MPa and EL of 6.9% are attained after this solution-plus-ageing heat treatment.
     The precipitation sequence containingβ′,β1 andβis determined in the Mg-4Y-4Sm-0.5Zr alloy during ageing at different temperatures. Theβ′precipitates are formed within grains when the alloy is aged at 200℃for up to 3000h. This intermediate phase is thermally stable at 200℃, and there is no phase transformation occurred at this temperature. The globular shapeβ′precipitates are formed in the under aged state, which is corresponding to the highest strength of the alloy. The precipitates coalesce, and the plate shapeβ′precipitates are formed lying in the {2110 } habit planes with increasing ageing time. Theβ1 precipitates are formed within the grains when the alloy is aged at 250℃for 48h. These plate shapeβ1 precipitates with fcc crystal structure (a=0.74nm) lie in the {1010 } habit planes and in contact withβ′precipitates. Large numbers of plate shape equilibriumβphases with fcc crystal structure (a=2.223nm) precipitate along the {1010 } habit planes when the alloy is aged at 300℃for 13h. These equilibriumβprecipitates are transformed in situ from theβ1 precipitates.
     The grains of Mg-4Y-4Sm-0.5Zr alloy are evidently refined for the occurrence of DRX (dynamic re-crystallization) during high temperature (350℃and above) extrusion process. The mechanical properties of the alloy greatly increase due to the grain refining strengthening effect. The ageing heat treatment can directly carry out on the extruded alloy, and the precipitation strengthening effect in extruded alloy is a little increased with increasing extrusion temperatures. The UTS of 400MPa, YS of more than 300MPa and EL of 7% are attained after thermo-mechanical treatments.
     The high temperature compression and compression creep behavior of extruded Mg-4Y-4Sm-0.5Zr alloy are investigated. The strain rate sensitivity m is 0.4 and the activation energy Q is 92.1KJmol-1 when the alloy compressed at a strain rate of 2.5x10-4s-1 and at a temperature of 450℃, indicating that grain boundary sliding (GBS) is the main compression mechanism. The extruded Mg-4Y-4Sm-0.5Zr alloy has good creep resistance at temperature 200℃and at stress 180MPa. The creep activation energy Q is 156.7KJ/mol and the stress exponent n is 4.1 indicating that dislocation climb is the main creep rate controlling mechanism.
引文
[1]李大全,王渠东,丁文江,稀土在变形镁合金中的应用,轻合金加工技术,2006,37(12),5-8
    [2]周海涛,Mg-6Al-1Zn合金高温变形行为及管材挤压研究,[博士论文],上海,上海交通大学,2004
    [3]陈振华,镁合金,北京,化学工业出版社,2004
    [4]余琨,黎文献,李松瑞等,含稀土镁合金的研究与开发,特种铸造及有色合金,2001,(1),41-44
    [5]郭旭涛,李培杰,刘树勋等,稀土耐热镁合金发展现状及展望,铸造,2002,(2),68-71
    [6]梁维中,吉泽升,左锋等,耐热镁合金的研究现状及发展趋势,特种铸造及有色合金,2003,(2),39-42
    [7]王渠东,吕宜振,曾小勤等,稀土在铸造镁合金中的应用,特种铸造及有色合金,1999,(1),40-43
    [8]刘光华,稀土材料与应用技术,北京,化学工业出版社,2005
    [9] F. von Buch, J. Lietzau, B.L. Mordike et al. Development of Mg-Sc-Mn alloys, Mater. Sci. and Eng A, 1999, (263), 1-7
    [10] B.L. Mordike, Development of highly creep resistant magnesium alloys, Journal of Materials Processing Technology, 2001, (117), 391-394
    [11]闫蕴琪,张廷杰,邓炬等,耐热镁合金的研究现状与发展方向,稀有金属材料与工程,2004,(6),561-565
    [12] L.L. Rokhlin, Magnesium alloys containing rare-earth metals, London and New York, Taylor and Francis, 2003
    [13] A. Saccone, S. Delfino, G. Borzone et al. The Samarium-Magnesium system: a phase diagram, Journal of the Less-Common Metals, 1989, (154), 47-60
    [14]谢燮揆译,王祝堂校,塑性变形对Mg-3.6%Sm合金机械性能和组织的影响,轻金属,1995,(10),61-62
    [15] Kazumasa Sugiyana, Kenichi Yasuda, Yasuyoshi Horikawa et al. Crystal structure of u7-MgZnSm, Journal of alloys and compounds, 1999, 285, 172-178
    [16] Ya Zhang, Xiaoqin Zeng, Liufa Liu et al. Effects of yttrium on microstructure and mechanical properties of hot-extruded Mg-Zn-Y-Zr alloys, Materials Science and Engineering A, 2004, 373(1-2), 320-327
    [17] L.L. Rokhlin, N.I. Nikitina, T.V. Dobatkina, Solid-state phase equilibria in the Mg corner of the Mg-Gd-Sm phase diagram, journal of alloys and compounds, 1996, 239, 209-213
    [18] L.L. Rokhlin, T.V. Dobatkina, N.I. Nikitina, Constitution and properties of the ternary magnesium alloys containing two rare-earth metals of different subgroups, Materials Science Forum, 2003, 419-422, 291-296
    [19]申泽骥,李玉胜,冯志军等,新型铸造镁合金开发现状,铸造,2003,52,153-156
    [20]陈远望,国外镁金属研究现状,世界有色金属,2003,2,46-49
    [21] Polmear I.J, Recent developments in light alloys, Trans. JM. 1996, 37, 21-31
    [22] S.KAMADO, Y.KOJIMA, R.NINOMIYA et al. Ageing Characteristics and High Temperature Tensile Properties of Magnesium Alloys Containing Heavy Rare Earth Elements, In: G.W. Lorimer(Ed.), Proceedings of the 3rd International Magnesium Conference, Manchester, UK, 1996, 327-342
    [23] Michiaki Yamasaki, Tsutomu Anan, Shintaro et al. Mechanical properties of warm-extruded Mg-Zn-Gd alloy with coherent 14H long periodic stacking ordered structure precipitate, Scripta Materialia, 2005, 53, 799-803
    [24] T. Itoi, T. Seimiya, Y. Kawamura et al. Long period stacking structures observed in Mg97Zn1Y2 alloy, Scripta Materialia, 2004, 51, 107-111
    [25]刘正,张奎,曾小勤,镁基轻质合金理论基础及应用,机械工业出版社,2002
    [26]张津,章宗和,镁合金及应用,化学工业出版社,2004
    [27]《有色金属及其热处理》编写组,有色金属及其热处理,国际工业出版社,1981
    [28]布鲁克斯,有色合金的热处理、组织与性能,冶金工业出版社,1988
    [29]上海市机械工程学会热处理分科学会,有色金属热处理,上海科学技术文献出版社,1983
    [30]张宝昌,有色金属及其热处理,西北工业大学出版社,1993
    [31] P. Lukac, Strengthening and softening in some magnesium base alloys, Proc. Of Third International Magnesium Conference, April 10-12, 1996, Manchester, Ed. G.W. Lorimer, The Institute of Materials, 1997, 381-390
    [32] A. Akhtar, E. Teghtsoonian, Solid Solution Strengthening of Magnesium Single Crystals, Acta Metall, 1969, 17(11), 1339-1349
    [33]美国金属学会,金属手册性能与选择:有色合金及纯金属,第九版第二卷,机械工业出版社,1994
    [34]李震夏,世界有色金属材料成分与性能手册,冶金工业出版社,1992
    [35]同名编写组,轻金属材料加工手册(上册),冶金工业出版社,1979
    [36]同名编写组,轻金属材料加工手册(下册),冶金工业出版社,1979
    [37]陆树荪,顾开导,郑来苏,有色铸造合金及熔炼,国防工业出版社,1983
    [38] A.J. Ardell, Precipitation hardening, Metall. Trans. A, 1985, 16A, 2131-2165
    [39] B.L. Mordike, T.Ebert, Magnesium: properties-applications-potential, Mater. Sci. Eng. A, 2001, 302, 37-45
    [40] F.R. Nabarro. The statistical problem of hardening, J. Less Common Met., 1972, 28(2), 257-276
    [41] A. Kelly, R.B. Nicholson, Precipitation hardening, Progr. Mater. Sci., 1963, 10, 153
    [42] J. Friedel, Les Dislocations, Paris, Gauthiers-Villars, 1956, 205
    [43] J. Friedel, Dislocations, Oxford, Pergamon Press, 1964, 255
    [44] R.L. Fleischer, W.R. Hibbard, Symposium on the Relation between the Structureand Mechanical Properties of Metals, London, Her Majesty’s Stationery Office, 1963, 261
    [45] E. Orowan, Symp. On Internal Stress in Metals and Alloys, Session III Discussion, London, Institute of Metals, 1948, 451
    [46] U.F. Kocks, A Statistical Theory of Flow Stress and Work-Hardening, Phil. Mag. 1966, 13, 541-566
    [47] A.J.E. Foreman, M.J. Markin, Dislocation movement through random arrays of obstacles, Phil. Mag., 1966, 14, 911-924
    [48] J.W. Morris, D.H. Klahn, Thermally activated dislocation glide through a random array of point obstacles: computer simulation, J. appl. Phys., 1974, 45, 2027-2038
    [49] K. Hanson, J.W. Morris. Limiting Configuration in Dislocation glide through a Random Array of Point Obstacles, J. appl. Phys., 1975, 46, 983-990
    [50] L.L. Rokhlin, Investigation of the decomposition of a supersaturated solid solution in magnesium samarium alloys, Fiz. Metal. Metalloved, 1982, 54, 315-319
    [51] C. Antion, P. Donnadieu, F. Perrard et al., Hardening precipitation in a Mg-4Y-3RE alloy, Acta Materialia, 2003, 51, 5335-5348
    [52] J.F. Nie, B.C. Muddle, Characterisation of strengthening precipitate phases in a Mg-Y-Nd alloy, Acta mater, 2000, 48, 1691-1703
    [53] J.F. Nie, Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys, Scripta Materialia, 2003, 48, 1009-1015
    [54] J.F. Nie, B.C. Muddle, Precipitation in magnesium alloy WE54 during isothermal ageing at 2500C, Scripta Materialia, 1999, 40, 1089-1094
    [55] J.F. Nie, X.L. Xiao, C.P. Luo et al., Characterisation of precipitate phases in magnesium alloys using electron microdiffraction, Micron, 2001, 32, 857-863
    [56]李德辉,李志成,刘路等,时效对Mg-Y-Nd合金的影响,材料研究学报,2003,17,483-488
    [57] M. Socjusz-Podosek, L. Litynska, Effect of yttrium on structure and mechanical properties of Mg alloys, Materials Chemistry and Physics, 2003, 80, 472-475
    [58] B. Smola, I. Stulikova, Equilibrium and transient phases in Mg-Y-Nd ternary alloys, Journal of alloys and compounds, 2004, 381, L1-L2
    [59] Zhi Cheng Li, Hong Zhang, Lu Liu et al., Growth and morphology ofβphase in an Mg-Y-Nd alloy, Materials Letters, 2004, 58, 3021-3024
    [60] L.L. Rokhlin, T.V. Dobatkina, I.E. Tarytina et al., Peculiarities of the phase relationsin Mg-rich alloys of the Mg-Nd-Y system, Journal of alloys and compounds, 2004, 367, 17-19
    [61] M-X. Zhang, P.M. Kelly, Morphology and crystallography of Mg24Y5 precipitate in Mg-Y alloy, Scripta Materialia, 2003, 48, 379-384
    [62] P.J. Apps, H. Karimzadeh, J.F. King et al., Phase compositions in magnesium-rare earth alloys containing yttrium, gadolinium or dysprosium, Scripta Materialia, 2003, 48, 475-481
    [63] P.J. Apps, H. Karimzadeh, J.F. King et al., Precipitation reactions in Magnesium-rare earth alloys containing Yttrium, Gadolinium or Dysprosium, Scripta Materialia, 2003, 48, 1023-1028
    [64] Dehui Li, Jie Dong, Xiaoqin Zeng et al., Characterization of precipitate phases in a Mg-Dy-Gd-Nd alloy, Journal of Alloys and Compounds, 2007, 439(1-2), 254-257
    [65] D.H. Li, J. Dong, X.Q. Zeng et al., Characterization ofβ″precipitate phase in a Mg-Dy-Gd-Nd alloy, Materials Characterization, 2007, 58(10), 1025-1028
    [66] S.M. He, X.Q. Zeng, L.M. Peng et al., Microstructure and strengthening mechanism of high strength Mg-10Gd-2Y-0.5Zr alloy, Journal of Alloys and Compounds, 2007, 427(1-2), 316-323
    [67] X.Gao, S.M. He, X.Q. Zeng et al., Microstructure evolution in a Mg-15Gd-0.5Zr alloy during isothermal aging at 2500C, Materials Science and Engineering A, 2006, 431(1-2), 322-327
    [68] K.Y. Zheng, J. Dong, X.Q. Zeng et al., Effect of precipitation aging on the fracture behavior of Mg-11Gd-2Nd-0.4Zr cast alloy, Materials Characterization, 2007, in press
    [69] K.Y. Zheng, J. Dong, X.Q. Zeng et al., Effect of thermo-mechanical treatment on the microstructure and mechanical properties of a Mg-6Gd-2Nd-0.5Zr alloy, Materials Science and Engineering A, 2007, 454-455, 314-321
    [70] Fu Penghuai, Peng Liming, Jiang Haiyan et al., Fracture behavior and mechanical properties of Mg-4Y-2Nd-1Gd-0.4Zr alloy at room temperature, Materials Science and Engineering A, 2007, in press
    [71] Fu Penghuai, Peng Liming, Jiang Haiyan et al., Effects of heat treatments on the microstructures and mechanical properties of Mg-3Gd-0.2Zn-0.4Zr alloy, Materials Science and Engineering A, 2007, in press
    [72]陈振华,变形镁合金,北京,化学工业出版社,2005
    [73] Takeshi Mohri, Mamoru Mabuchi, Naobumi Satio et al., Microstructure and mechanical properties of a Mg-4Y-3RE alloy processed by thermo-mechanical treatment, Materials Science and Engineering A , 1998, 257, 287-294
    [74] Yoshihito Kawamura, Kentaro Hayashi, Akihisa Inoue et al., Rapidly Solidified Powder Metallurgy Mg97Zn1Y2 alloys with Excellent Tensile Yield Strength above 600MPa, Materials Transactions, 2001,42(7), 1172-1176
    [75]刘勤,金属的超塑性,上海,上海交通大学出版社,1989
    [76] T. Mohri, M. Mabuchi, M. Nakamura et al., Microstructural evolution and superplasticity of rolled Mg-9Al-1Zn, Materials Science and Engineering A, 2000, 290, 139-144
    [77] Y.H. Wei, Q.D. Wang, Y.P. Zhu et al., Superplasticity and grain boundary sliding in rolled AZ91 magnesium alloy at high strain rates, Materials Science and Engineering A, 2003, 360, 107-115
    [78] C.J. Lee, J.C. Huang, Cavitation characteristics in AZ31 Mg alloys during LTSP or HSRSP, Acta Materialia, 2004, 52, 3111-3122
    [79] S.W. Chung, K. Higashi, W.J. Kim, Superplastic gas pressure forming of fine-grained AZ61 magnesium alloy sheet, Materials Science and Engineering A, 2004, 372, 15-20
    [80] H. Watanabe, T. Mukai, M. Kohzu et al., Effect of temperature and grain size on the dominant diffusion process for superplastic flow in an AZ61 magnesium alloy, Acta mater, 1999, 47, 3753
    [81] V.N. Chuvildeev, T.G. Nieh, M.Yu. Gryaznov et al., Superplasticity and internal friction in microcrystalline AZ91 and ZK60 magnesium alloys processed by equal-channel angular pressing, Journal of Alloys and Compounds, 2004, 378, 253-257
    [82] Hiroyuki Watanabe, Toshiji Mukai, Koichi Ishikawa et al., Realization of high-strain-rate superplasticity at low temperatures in a Mg-Zn-Zr alloy, Materials Science and Engineering A, 2001, 307, 119-128
    [83] Hiroyuki Watanabe, Toshiji Mukai, Koichi Ishikawa et al., Low temperature superplasticity of a fine-grained ZK60 magnesium alloy processed by equal-channel-angular extrusion, Scripta Materialia, 2002, 46, 851-856
    [84] T.G. Nieh, A.J. Schwartz, J. Wadsworth, Superplasticity in a 17 vol.% SiC particulate-reinforced ZK60A magnesium composite (ZK60/SiC/17p), Materials Scienceand Engineering A, 1996, 208, 30-36
    [85] W.J. Kim, S.W.Chung, C.S. Chung et al., Superplasticity in thin magnesium alloy sheets and deformation mechanism maps for magnesium alloys at elevated temperatures, Acta mater., 2001, 49, 3337-3345
    [86] Ya. Unigobski, Z. Keren, A. Eliezer et al., Creep behavior of pure magnesium and Mg-Al alloys in active environments, Materials Science and Engineering A, 2005, 398, 188-197
    [87] M. Regev, E. Aghion, A. Rosen, Creep studies of AZ91D pressure die casting, Materials Science and Engineering A, 1997, 234-236, 123-126
    [88] M. Regev, E. Aghion, A. Rosen et al., Creep studies of coarse-grained AZ91D magnesium castings, Materials Science and Engineering A, 1998, 252, 6-16
    [89] F.U. Enikeev, Determination of the value of the threshold stress for superplastic flow, Materials Science and Engineering A, 2000, 276, 22-31
    [90] Jing Bai, Yangshan Sun, Feng Xue et al., Effect of Al contents on microstructures, tensile and creep properties of Mg-Al-Sr-Ca alloy, Journal of Alloys and Compounds, 2007, 437(1-2), 247-253
    [91] J.F. Nie, X. Gao, S.M. Zhu, Enhanced age hardening response and creep resistance of Mg-Gd alloys containing Zn, Scripta Materialia, 2005, 53, 1049-1053
    [92] Huang Deming, Chen Yungui, Tang Yongbai et al., Indentation creep behavior of AE42 and Ca-containing AE41 alloys, Materials Letters, 2007, 61(4-5), 1015-1019
    [93] I.P. Moreno, T.K. Nandy, J.W. Jones et al., Microstructural stability and creep of rare-earth containing magnesium alloys, Scripta Materialia, 2003, 48, 1029-1034
    [94] S. Ji, Ma Qian, Z. Fan, The creep behavior of rheo-diecast AZ91D (Mg-9Al-1Zn) alloy, materials Science and Engineering A, 2006, 434, 7-12
    [95]沙桂英,徐永波,韩恩厚,铸造Mg-RE合金的显微结构及其蠕变行为,材料研究学报,2003,17,603-608
    [96]关绍康,王迎新,高温镁合金的研究进展及其在汽车工业中的应用,机械工程材料,2003,27,1-4
    [97]刘海峰,候骏,刘耀辉等,压铸镁合金高温蠕变研究现状及进展,2002,51,330-334
    [98]平修二,金属材料的高温强度理论.设计,北京,科学出版社,1983
    [99] Mihriban O. Pekguleryuz, A. Arslan Kaya, Creep resistant magnesium alloys forpowertrain applications, Advanced Engineering Materials, 2003, 5, 866-878
    [100] B.L. Mordike, Creep-resistant magnesium alloys, Materials Science and Engineering A, 2002, 324, 103-112
    [101] Hidetoshi Somekawa, Kinji Hirai, Hiroyuki Watanabe et al., Dislocation creep behavior in Mg-Al-Zn alloys, Materials Science and Engineering A, 2005, 407, 53-61
    [102] A.A. Luo, Recent magnesium alloy development for elevated temperature application, International Materials Reviews, 2004, 49, 13-30
    [103] Alan A. Luo, Michael P. Balogh, Bob R. Powell, Creep and microstructure of Magnesium-Aluminum-Calcium Based Alloys, Metallurgical and Materials Transactions A, 2002, 33, 567-574
    [104] S. Spigarelli, M. Cabibbo, E. Evangelista et al., Analysis of the creep behavior of a thixoformed AZ91 magnesium alloy, Materials Science and Engineering A, 2000, 289, 172-181
    [105] B. Smola, I. Stulikova, J. Pelcova et al., Significance of stable and metastable phases in high temperature creep resistant magnesium-rare earth base alloys, Journal of Alloys and Compounds, 2004, 378, 196-201
    [106] J.G. Wang, L.M. Hsiung, T.G. Nieh et al., Creep of a heat treated Mg-4Y-3RE alloy, Materials Science and Engineering A, 2001, 315, 81-88
    [107] Mayumi Suzuki, Hiroyuki Sato, Kouichi Maruyama et al., Creep behavior and deformation microstructures of Mg-Y alloys at 550K, Materials Science and Engineering A, 1998, 252, 248-255
    [108] Mayumi Suzuki, Hiroyuki Sato, Kouichi Maruyama et al., Creep deformation behavior and dislocation substructures of Mg-Y binary alloys, Materials Science and Engineering A, 2001, 319-321, 751-755
    [1]何上明,Mg-Gd-Y-Zr(-Ca)合金的微观组织演变、性能和断裂行为研究,[博士论文],上海,上海交通大学,2007
    [2]袁广银,铋和锑对镁铝合金显微组织和力学性能的影响,[博士论文],南京,东南大学,1999
    [3]赵鹏,Mg-Al-Sr/Ca耐热镁合金组织、性能及其蠕变行为的研究,[博士论文],上海,上海交通大学,2007
    [1] B.L. Mordike, T.Ebert, Magnesium: properties-applications-potential, Mater. Sci. Eng. A, 2001, 302, 37-45
    [2] T.G. Nieh, A.J. Schwartz, J. Wadsworth, Superplasticity in a 17 vol.% SiC particulate-reinforced ZK60A magnesium composite (ZK60/SiC/17p), Materials Science and Engineering A, 1996, 208, 30-36
    [3] J.G. Wang, L.M. Hsiung, T.G. Nieh et al., Creep of a heat treated Mg-4Y-3RE alloy, Materials Science and Engineering A, 2001, 315, 81-88
    [4] Zhi Cheng Li, Hong Zhang, Lu Liu et al., Growth and morphology ofβphase in an Mg-Y-Nd alloy, Materials Letters, 2004, 58, 3021-3024
    [5] L.L. Rokhlin, T.V. Dobatkina, N.I. Nikitina, Constitution and properties of the ternary magnesium alloys containing two rare-earth metals of different subgroups, Materials Science Forum, 2003, 419-422, 291-296
    [6] Takeshi Mohri, Mamoru Mabuchi, Naobumi Satio et al., Microstructure and mechanical properties of a Mg-4Y-3RE alloy processed by thermo-mechanical treatment, Materials Science and Engineering A , 1998, 257, 287-294
    [7] L.L. Rokhlin, T.V. Dobatkina, I.E. Tarytina et al., Peculiarities of the phase relations in Mg-rich alloys of the Mg-Nd-Y system, Journal of alloys and compounds, 2004, 367, 17-19
    [8] J.F. Nie, B.C. Muddle, Precipitation in magnesium alloy WE54 during isothermal ageing at 2500C, Scripta Materialia, 1999, 40, 1089-1094
    [9] J.F. Nie, X.L. Xiao, C.P. Luo et al., Characterisation of precipitate phases in magnesium alloys using electron microdiffraction, Micron, 2001, 32, 857-863
    [10] B. Smola, I. Stulikova, Equilibrium and transient phases in Mg-Y-Nd ternary alloys, Journal of alloys and compounds, 2004, 381, L1-L2
    [11] D.H. Ping, K. Hono, J.F. Nie, Atom probe characterization of plate like precipitations in a Mg-RE-Zn-Zr casting alloy, Scripta Mater., 2003, 48(8), 1017-1022
    [12] J.F. Nie, B.C. Muddle, Characterisation of strengthening precipitate phases in a Mg-Y-Nd alloy, Acta mater, 2000, 48, 1691-1703
    [13] K. Nakashima, H. Iwasaki, T. Moriet al., Mechanical properties of a powder metallurgically processed Mg-5Y-6Re alloy, Mater. Sci. Eng. A, 2000, 293(1-2), 15-18
    [14] L.L. Rokhlin, Magnesium alloys containing rare-earth metals, London and New York, Taylor and Francis, 2003
    [15] D. Li, Q. Wang, W. Ding, Effects of heat treatments on Microstructure and mechanical properties of Mg-4Y-4Sm-0.5Zr alloy, Mater. Sci. Eng. A, 2007, 448, 165-170
    [1] L.L. Rokhlin, T.V. Dobatkina, N.I. Nikitina, Constitution and properties of the ternary magnesium alloys containing two rare-earth metals of different subgroups, Materials Science Forum, 2003, 419-422, 291-296
    [2] Takeshi Mohri, Mamoru Mabuchi, Naobumi Satio et al., Microstructure and mechanical properties of a Mg-4Y-3RE alloy processed by thermo-mechanical treatment, Materials Science and Engineering A , 1998, 257, 287-294
    [3] J.F. Nie, B.C. Muddle, Precipitation in magnesium alloy WE54 during isothermal ageing at 2500C, Scripta Materialia, 1999, 40, 1089-1094
    [4] Zhi Cheng Li, Hong Zhang, Lu Liu et al., Growth and morphology ofβphase in an Mg-Y-Nd alloy, Materials Letters, 2004, 58, 3021-3024
    [5]《有色金属及其热处理》编写组,有色金属及其热处理,国际工业出版社,1981
    [6]布鲁克斯,有色合金的热处理、组织与性能,冶金工业出版社,1988
    [7]上海市机械工程学会热处理分科学会,有色金属热处理,上海科学技术文献出版社,1983
    [8]张宝昌,有色金属及其热处理,西北工业大学出版社,1993
    [9]陈振华,镁合金,北京,化学工业出版社,2004
    [10]刘正,张奎,曾小勤,镁基轻质合金理论基础及应用,机械工业出版社,2002
    [11]张津,章宗和,镁合金及应用,化学工业出版社,2004
    [12] J.F. Nie, B.C. Muddle, Characterisation of strengthening precipitate phases in a Mg-Y-Nd alloy, Acta mater, 2000, 48, 1691-1703
    [13] C. Antion, P. Donnadieu, F. Perrard et al., Hardening precipitation in a Mg-4Y-3RE alloy, Acta Materialia, 2003, 51, 5335-5348
    [14] Dehui Li, Jie Dong, Xiaoqin Zeng et al., Characterization of precipitate phases in a Mg-Dy-Gd-Nd alloy, Journal of Alloys and Compounds, 2007, 439(1-2), 254-257
    [15] G.W. Lorimer, P.J. Apps, H. Karimzadeh et al., Improving the performance of Mg-rare earth alloys by the use of Gd or Dy additions, Mater. Sci. Forum, 2003, 419-422, 279-284
    [16] S.KAMADO, Y.KOJIMA, R.NINOMIYA et al. Ageing Characteristics and HighTemperature Tensile Properties of Magnesium Alloys Containing Heavy Rare Earth Elements, In: G.W. Lorimer(Ed.), Proceedings of the 3rd International Magnesium Conference, Manchester, UK, 1996, 327-342
    [17] P.J. Apps, H. Karimzadeh, J.F. King et al., Precipitation reactions in Magnesium-rare earth alloys containing Yttrium, Gadolinium or Dysprosium, Scripta Materialia, 2003, 48, 1023-1028
    [18] L.L. Rokhlin, T.V. Dobatkina, I.E. Tarytina et al., Peculiarities of the phase relations in Mg-rich alloys of the Mg-Nd-Y system, Journal of alloys and compounds, 2004, 367, 17-19
    [19] J.F. Nie, X.L. Xiao, C.P. Luo et al., Characterisation of precipitate phases in magnesium alloys using electron microdiffraction, Micron, 2001, 32, 857-863
    [20] B. Smola, I. Stulikova, Equilibrium and transient phases in Mg-Y-Nd ternary alloys, Journal of alloys and compounds, 2004, 381, L1-L2
    [21] J.G.. Wang, L.M. Hsiung, T.G. Nieh et al., Creep of a heat treated Mg–4Y–3RE alloy, Mater. Sci. Eng. A, 2001, 315(1-2), 81-88
    [22] D.H. Ping, K. Hono, J.F. Nie, Atom probe characterization of plate-like precipitates in a Mg–RE–Zn–Zr casting alloy, Scripta Mater., 2003, 48(8), 1017-1022
    [23] http://www.magnesium-elektron.com/data/downloads/DS466WE43.pdf
    [24] http://www.magnesium-elektron.com/data/downloads/DS466WE54.pdf
    [25] J.F. Nie, Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys, Scripta Materialia, 2003, 48, 1009-1015
    [1]王渠东,吕宜振,曾小勤等,稀土在铸造镁合金中的应用,特种铸造及有色合金,1999,(1),40-43
    [2]沙桂英,徐永波,韩恩厚,铸造Mg-RE合金的显微结构及其蠕变行为,材料研究学报,2003,17,603-608
    [3]张诗昌,段汉桥,蔡启舟等,主要合金元素对镁合金组织和性能的影响,铸造,2001,50(6),310-315
    [4]郭旭涛,李培杰,刘树勋等,稀土耐热镁合金发展现状及展望,铸造,2002,51(2),68-71
    [5]梁维中,吉泽升,左锋等,耐热镁合金的研究现状及发展趋势,特种铸造及有色合金,2003,(2),39-42
    [6]郭学锋,魏建锋,张忠明,镁合金与超高强度镁合金,铸造技术,2002,23(3),133-136
    [7]师瑞霞,尹衍升,谭训彦,镁合金的研究进展,山东冶金,2003,25(2),53-56
    [8]余琨,黎文献,李松瑞等,含稀土镁合金的研究与开发,特种铸造及有色合金,2001,(1),41-44
    [9]陈远望,国外镁金属研究现状,世界有色金属,2003,2,46
    [10]王渠东,曾小勤,吕宜振等,高温铸造镁合金的研究与应用,材料导报,2000,14(3),21-23
    [11]关绍康,王迎新,高温镁合金的研究进展及其在汽车工业中的应用,机械工程材料,2003,27,1-4
    [12]罗治平,张少卿,隗国等,低Zn、高RE含量Mg-Zn-Zr-RE合金的相组成,航空学报,1994,15(7),860-865
    [13] Thomas Fickenscher, Rainer Pottgen, Synthesis and crystal structures of REAgMg (RE=La, Ce, Nd, Eu, Gd, Tb, Ho, Tm and Yb), Journal of Solid State Chemistry, 2001, 161, 67-72
    [14] B. Smola, I. Stulikova, J. Pelcova et al., Significance of stable and metastable phases in high temperature creep resistant magnesium-rare earth base alloys, Journal of Alloys and Compounds, 2004, 378, 196-201
    [15] D. Weiss, A.A. Kaya, E. Aghion, D. Eliezer, Microstructure and creep properties of a cast Mg-1.7%wt rare earth-0.3%wt Mn alloy, Journal of materials science, 2002, 37, 5371-5379
    [16]郭旭涛,李培杰,增大本,Mg-Y合金的电子理论研究,中国稀土学报,2003,21(6),672-676
    [17] Sorin Ignat, Pierre Sallamand, Dominique Grevey et al., Magnesium alloys (WE43 and ZE41) characterization for laser applications, Applied Surface Science, 2004, 233, 382-391
    [18] C. Sanchez, G. Nussbaum, P. Azavant et al., Elevated temperature behaviour of rapidly solidified magnesium alloys containing rare earths, Materials Science and Engineering A, 1996, 221, 48-57
    [19] N.V. Ravi Kumar, J.J. Blandin, M. Suery et al., Effect of alloying elements on the ignition resistance of magnesium alloys, Scripta Materialia, 2003, 49, 225-230
    [20] F. von Buch, J. Lietzau, B.L. Mordike et al., Development of Mg-Sc-Mn alloys, Materials Science and Engineering A, 1999, 263, 1-7
    [21] B.L. Mordike, Development of highly creep resistant magnesium alloys, Journal of Materials Processing Technology, 2001, 117, 391-394
    [22] B.L. Mordike, Creep-resistant magnesium alloys, Materials Science and Engineering A, 2002, 324, 103-112
    [23] D.H. Ping, K. Hono, J.F. Nie, Atom probe characterization of plate-like precipitates in a Mg-RE-Zn-Zr casting alloy, Scripta Materialia, 2003, 48, 1017-1022
    [24] Mayumi Suzuki, Hiroyuki Sato, Kouichi Maruyama et al., Creep behavior and deformation microstructures of Mg-Y alloys at 550K, Materials Science and Engineering A, 1998, 252, 248-255
    [25] J.G. Wang, L.M. Hsiung, T.G. Nieh et al., Creep of a heat treated Mg-4Y-3RE alloy, Materials Science and Engineering A, 2001, 315, 81-88
    [26]沙桂英,韩恩厚,徐永波等,Mg-Y-Nd合金的蠕变行为及其微观机制,金属学报,2003,39(10),1025-1030
    [27] J.F. Nie, X.L. Xiao, C.P. Luo et al., Characterisation of precipitate phases in magnesium alloys using electron microdiffraction, Micron, 2001, 32, 857-863
    [28] J.F. Nie, B.C. Muddle, Characterisation of strengthening precipitate phases in a Mg-Y-Nd alloy, Acta Mater., 2000, 48, 1691-1703
    [29] J.F. Nie, Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys, Scripta Materialia, 2003, 48, 1009-1015
    [30] B. Smola, I. Stulikova, Equilibrium and transient phases in Mg-Y-Nd ternary alloys, Journal of Alloys and Compounds, 2004, 381, L1-L2 Letter
    [31] Zhi Cheng Li, Hong Zhang, Lu Liu et al., Growth and morphology ofβphase in an Mg-Y-Nd alloy, Materials Letters, 2004, 58, 3021-3024
    [32] C. Antion, P. Donnadieu, F. Perrard et al., Hardening precipitation in a Mg-4Y-3RE alloy, Acta Materialia, 2003, 51, 5335-5348
    [33] K. Nakashima, H. Iwasaki, T. Mori et al., Mechanical properties of a powder metallurgically processed Mg-5Y-6RE alloy, Materials Science and Engineering A, 2000, 293, 15-18
    [34] M.X. Zhang, P.M. Kelly, Morphology and crystallography of Mg24Y5 precipitate in Mg-Y alloy, Scripta Materialia, 2003, 48, 379-384
    [35] J.F. Nie, B.C. Muddle, Precipitation in magnesium alloy WE54 during isothermal ageing at 2500C, Scripta Materialia, 1999, 40, 1089-1094
    [36] L.L. Rokhlin, N.I. Nikitina, Recovery after ageing of Mg-Y and Mg-Gd alloys, Journal of Alloys and Compounds, 1998, 279, 166-170
    [37] S.M. Zhu, J.F. Nie, Serrated flow and tensile properties of a Mg-Y-Nd alloy, Scripta Materialia, 2004, 50, 51-55
    [38] Ya Zhang, Xiaoqin Zeng, Liufa Liu et al., Effects of yttrium on microstructure and mechanical properties of hot extruded Mg-Zn-Y-Zr alloys, Materials Science and Engineering A, 2004, 373, 320-327
    [39] Kun Yu, Wenxian Li, Jun Zhao et al., Plastic deformation behaviors of a Mg-Ce-Zn-Zr alloy, Scripta Materialia, 2003, 48, 1319-1323
    [40] Takeshi Mohri, Mamoru Mabuchi, Naobumi Satio et al., Microstructure and mechanical properties of a Mg-4Y-3RE alloy processed by thermo-mechanical treatment, Materials Science and Engineering A, 1998, 257, 287-294
    [41] S.KAMADO, Y.KOJIMA, R.NINOMIYA et al. Ageing Characteristics and High Temperature Tensile Properties of Magnesium Alloys Containing Heavy Rare Earth Elements, In: G.W. Lorimer(Ed.), Proceedings of the 3rd International Magnesium Conference, Manchester, UK, 1996, 327-342
    [42]余琨,黎文献,李松瑞,变形镁合金材料的研究进展,轻合金加工技术,2001,29(7),6-11
    [43]傅定发,张辉,夏伟军等,细晶镁合金的制备方法,轻合金加工技术,2004,32(2),41-43
    [44]张士宏,王忠堂,许淅等,镁合金的塑性加工技术,金属成形工艺,2000,20(5),1-4
    [45]高仑,镁合金成形技术的开发与应用,轻合金加工技术,2004,32(3),5-12
    [46]陈振华,夏伟军,严红革等,镁合金材料的塑性变形理论及其技术,化工进展,2004,23(2),127-135
    [47]余琨,黎文献,王日初等,变形镁合金的研究、开发及应用,中国有色金属学报,2003,13(2),277-288
    [48] http://www.magnesium-elektron.com/data/downloads/ DS480WroughtWE43.pdf
    [49] http://www.magnesium-elektron.com/data/downloads/ DS480WroughtWE54.pdf
    [1] T. Mohri, M. Mabuchi, M. Nakamura et al., Microstructural evolution and superplasticity of rolled Mg-9Al-1Zn, Materials Science and Engineering A, 2000, 290, 139-144
    [2] Y.H. Wei, Q.D. Wang, Y.P. Zhu et al., Superplasticity and grain boundary sliding in rolled AZ91 magnesium alloy at high strain rates, Materials Science and Engineering A,2003, 360, 107-115
    [3] Hiroyuki Watanabe, Toshiji Mukai, Koichi Ishikawa et al., Realization of high-strain-rate superplasticity at low temperatures in a Mg-Zn-Zr alloy, Materials Science and Engineering A, 2001, 307, 119-128
    [4] Hiroyuki Watanabe, Toshiji Mukai, Koichi Ishikawa et al., Low temperature superplasticity of a fine-grained ZK60 magnesium alloy processed by equal-channel-angular extrusion, Scripta Materialia, 2002, 46, 851-856
    [5] Takeshi Mohri, Mamoru Mabuchi, Naobumi Satio et al., Microstructure and mechanical properties of a Mg-4Y-3RE alloy processed by thermo-mechanical treatment, Materials Science and Engineering A , 1998, 257, 287-294
    [6] C.J. Lee, J.C. Huang, Cavitation characteristics in AZ31 Mg alloys during LTSP or HSRSP, Acta Materialia, 2004, 52, 3111-3122
    [7] V.N. Chuvildeev, T.G. Nieh, M.Yu. Gryaznov et al., Superplasticity and internal friction in microcrystalline AZ91 and ZK60 magnesium alloys processed by equal-channel angular pressing, Journal of Alloys and Compounds, 2004, 378, 253-257
    [8] S.W. Chung, K. Higashi, W.J. Kim, Superplastic gas pressure forming of fine-grained AZ61 magnesium alloy sheet, Materials Science and Engineering A, 2004, 372, 15-20
    [9] T.G. Nieh, A.J. Schwartz, J. Wadsworth, Superplasticity in a 17 vol.% SiC particulate-reinforced ZK60A magnesium composite (ZK60/SiC/17p), Materials Science and Engineering A, 1996, 208, 30-36
    [10] W.J. Kim, S.W.Chung, C.S. Chung et al., Superplasticity in thin magnesium alloy sheets and deformation mechanism maps for magnesium alloys at elevated temperatures, Acta mater., 2001, 49, 3337-3345
    [11] H. Watanabe, T. Mukai, M. Kohzu et al., Effect of temperature and grain size on the dominant diffusion process for superplastic flow in an AZ61 magnesium alloy, Acta mater, 1999, 47, 3753
    [12] S. Ji, Ma Qian, Z. Fan, The creep behavior of rheo-diecast AZ91D (Mg-9Al-1Zn) alloy, materials Science and Engineering A, 2006, 434, 7-12
    [13]郭旭涛,李培杰,刘树勋等,稀土耐热镁合金发展现状及展望,铸造,2002,(2),68-71
    [14]申泽骥,李玉胜,冯志军等,新型铸造镁合金开发现状,铸造,2003,52,153-156
    [15]陈远望,国外镁金属研究现状,世界有色金属,2003,2,46-49
    [16]沙桂英,徐永波,韩恩厚,铸造Mg-RE合金的显微结构及其蠕变行为,材料研究学报,2003,17,603-608
    [17]关绍康,王迎新,高温镁合金的研究进展及其在汽车工业中的应用,机械工程材料,2003,27,1-4
    [18]闫蕴琪,张廷杰,邓炬等,耐热镁合金的研究现状与发展方向,稀有金属材料与工程,2004,(6),561-565
    [19]刘海峰,候骏,刘耀辉等,压铸镁合金高温蠕变研究现状及进展,2002,51,330-334
    [20]梁维中,吉泽升,左锋等,耐热镁合金的研究现状及发展趋势,特种铸造及有色合金,2003,(2),39-42
    [21] Alan A. Luo, Michael P. Balogh, Bob R. Powell, Creep and microstructure of Magnesium-Aluminum-Calcium Based Alloys, Metallurgical and Materials Transactions A, 2002, 33, 567-574
    [22] A.A. Luo, Recent magnesium alloy development for elevated temperature application, International Materials Reviews, 2004, 49, 13-30
    [23] Mihriban O. Pekguleryuz, A. Arslan Kaya, Creep resistant magnesium alloys for powertrain applications, Advanced Engineering Materials, 2003, 5, 866-878
    [24]平修二,金属材料的高温强度理论.设计,北京,科学出版社,1983
    [25] Hidetoshi Somekawa, Kinji Hirai, Hiroyuki Watanabe et al., Dislocation creep behavior in Mg-Al-Zn alloys, Materials Science and Engineering A, 2005, 407, 53-61
    [26]刘勤,金属的超塑性,上海,上海交通大学出版社,1989
    [27] Mayumi Suzuki, Hiroyuki Sato, Kouichi Maruyama et al., Creep behavior and deformation microstructures of Mg-Y alloys at 550K, Materials Science and Engineering A, 1998, 252, 248-255
    [28] Mayumi Suzuki, Hiroyuki Sato, Kouichi Maruyama et al., Creep deformation behavior and dislocation substructures of Mg-Y binary alloys, Materials Science and Engineering A, 2001, 319-321, 751-755
    [29] J.G. Wang, L.M. Hsiung, T.G. Nieh et al., Creep of a heat treated Mg-4Y-3RE alloy, Materials Science and Engineering A, 2001, 315, 81-88
    [30] B.L. Mordike, Creep-resistant magnesium alloys, Materials Science andEngineering A, 2002, 324, 103-112
    [31] B.L. Mordike, Development of highly creep resistant magnesium alloys, Journal of Materials Processing Technology, 2001, (117), 391-394
    [32] B. Smola, I. Stulikova, J. Pelcova et al., Significance of stable and metastable phases in high temperature creep resistant magnesium-rare earth base alloys, Journal of Alloys and Compounds, 2004, 378, 196-201
    [33] P. Zhang, Creep behavior of the die-cast Mg-Al alloy AS21, Scripta Materialia, 2005, 52, 277-282
    [34] S. Spigarelli, M. Cabibbo, E. Evangelista et al., Analysis of the creep behavior of a thixoformed AZ91 magnesium alloy, Materials Science and Engineering A, 2000, 289, 172-181
    [35] O.A. Ruano, O.D. Sherby, J. Wadsworth et al., Diffusional creep and diffusion controlled dislocation creep and their relation to denuded zones in Mg-ZrH2 materials, Scripta Materialia, 1998, 38, 1307-1314
    [36] B.Q. Han, D.C. Dunand, Creep of magnesium strengthened with high volume fractions of yttria dispersoids, Materials Science and Engineering A, 2000, 300, 235-244
    [37] F. von Buch, J. Lietzau, B.L. Mordike et al., Development of Mg-Sc-Mn alloys, Materials Science and Engineering A, 1999, 263, 1-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700