用户名: 密码: 验证码:
Ag-Sn合金氧化机理与Ag-SnO_2材料的高温塑性变形行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电触头是电器设备的关键元件之一,其功能是接通和切断电流。Ag-CdO触头材料由于具有优良的抗电弧侵蚀性、抗熔焊性和较低的接触电阻,广泛用于几伏到上千伏的多种低压电器中,曾被称为万能触点。但是Cd金属蒸气有毒,污染环境,对人体有害。因此,各国都在开展代镉材料的研究。Ag-SnO_2触头材料具有优良的抗电弧侵蚀性和抗熔焊性,是众多无镉触头材料中最有希望替代Ag-CdO的一种。国内外对Ag-SnO_2材料的加工工艺、微量添加剂的应用、电弧作用下材料的组织演变等进行了较广泛的研究。但是,关于Ag-Sn合金的内氧化机理以及如何解决Ag-SnO_2材料加工性能差的研究却比较少。因此,研究Ag-Sn合金内氧化机理以及Ag-SnO_2材料高温塑性变形行为具有重要的理论意义和实用价值。
     本文通过对Ag-Sn、Ag-Sn-Cu-Bi-Ni合金和Ag-Sn-M(M=Sb,La,In)合金粉末氧化动力学和氧化组织的研究,掌握了氧化温度、氧分压以及合金成分对合金氧化行为的影响。通过热压缩实验,研究了Ag-SnO_2-Sb_2O_3材料的高温塑性变形行为并绘制了其热加工图。首次采用内氧化+粉末热挤压工艺制备Ag-SnO_2-Sb_2O_3触头材料,并与内氧化+热锻工艺制备的Ag-SnO_2-Sb_2O_3触头材料进行比较,分析了热加工工艺对材料组织与性能的影响。得到了以下一些结论:
     (1)通过对Ag-2.99at.%Sn合金内氧化动力学的研究,首次推导出了Wagner氧化理论方程中,氧在Ag中溶解度(N_O~S)与氧分压(P_(O_2))及温度(T)间的关系式:此外,不同氧分压下,Ag-2.99at.%Sn合金的氧化速率(k)与温度的关系为:不同温度下,Ag-2.99at.%Sn合金的氧化速率与氧分压的关系为:
     (2)Ag-2.99at.%Sn合金内氧化后,氧化前沿(氧化区和未氧化区间的界面)平直,生成的氧化物颗粒弥散分布在Ag基体上;低温氧化(600-700℃)时,氧化物主要在晶界析出,高温氧化(800-850℃)时,氧化物主要在晶粒内部析出;氧分压越高,氧化物粒子尺寸越细。Ag-4.76at.%Sn合金氧化后,氧化前沿呈波浪形;在空气中氧化时,氧化物主要在晶界析出,在0.3MPa和0.9MPa氧压下氧化时,氧化层内形成了很多氧化带。随着氧化层往合金内部推进,氧化层内分布的氧化物颗粒尺寸和颗粒间距变大。
     (3)Ag-6.46Sn-1.3Cu-0.27Bi-0.17Ni(wt.%)合金内氧化是一个反应扩散控制过程。主要包括:氧在合金表面的吸附和分解;氧化物颗粒的形核和氧化带的形成;Cu的扩散和CuO颗粒的形核。合金冷轧后直接进行内氧化与合金冷轧经再结晶退火后再内氧化不同,前者氧化前沿比较平直;氧化层内形成了很多内氧化带;氧化层中氧化物颗粒尺寸和硬度随氧化层厚度的增加而增大。而后者氧化前沿呈不规则锯齿状,氧化层中氧化物颗粒尺寸、硬度和氧化物颗粒断裂应力均大于前者。由于冷轧提高了合金中的位错密度,增加了氧在合金中的扩散通道,所以前者的氧化速率(5.69×10~(-9)cm~2/sec)要大于后者的氧化速率(2.39×10~(-9)cm~2/sec)。
     (4)元素La、In比Sb更能改善Ag-Sn合金粉末的氧化特性。Ag-Sn-Sb合金粉末的氧化过程是氧原子向合金粉末内部扩散,同时有部分溶质元素(Sn和Sb)向外扩散的扩散反应过程。Ag-Sn-In合金粉末的氧化过程是氧原子向合金粉末内部扩散,而溶质元素(Sn和In)原位生成氧化物的扩散反应过程。元素La在Ag-Sn合金中都是原位形核生成氧化物。当La为0.44wt.%时,Sn在浓度梯度的驱动下向外扩散并与向内扩散的氧发生反应形成氧化物;当La含量为1.28wt.%和3.4wt.%时,Sn则原位氧化生成氧化物。
     (5)Ag-SnO_2-Sb_2O_3材料热压缩时,随着应变速率的增加,流变应力不断增加;低应变速率的流变曲线比较光滑,而高应变速率的流变曲线为小锯齿状。根据Ag-SnO_2-Sb_2O_3材料高温压缩实验求出的相关材料常数,建立了峰值屈服应力与应变速率以及温度之间的本构方程:
     (6)基于热加工图的基本原理,采用高温压缩实验数据分别绘制了Ag-6.92SnO_2-3.69Sb_2O_3和Ag-9.12SnO_2-1.46Sb_2O_3材料在应变为0.03、0.2、0.4、0.6和0.9时的热加工图,并在部分失稳条件下的样品中观察到了绝热剪切带、局部流变失稳带、楔形裂纹、颗粒断裂以及颗粒与基体界面形成空隙等失稳现象。通过加工图和相应显微组织的分析,确定了Ag-6.92SnO_2-3.69Sb_2O_3材料可加工的温度范围为: 720℃-840℃,应变速率范围为0.01s~(-1)-0.1s~(-1);Ag-9.12SnO_2-1.46Sb_2O_3材料可加工的温度范围为:790℃-845℃,应变速率范围为0.01s~(-1)-0.18s~(-1)。
     (7)用内氧化+粉末热挤压工艺制备的Ag-6.32SnO_2-3.69Sb_2O_3和Ag-9.12SnO_2-1.46Sb_2O_3材料的相对密度分别是99.55%和99.89%,硬度分别是93HB和85HB,电导率分别是71IACS%和69IACS%。而用内氧化+热锻工艺制备的Ag-6.32SnO_2-3.69Sb_2O_3和Ag-9.12SnO_2-1.46Sb_2O_3材料的相对密度分别是98.89%和99.35%,硬度分别是84.3HB和74.8HB,电导率分别是61IACS%和66IACS%。由于粉末热锻保留了材料烧结坯中粉末颗粒的完整形态,而粉末热挤压既能破坏烧结坯中粉末颗粒的完整形态,又能获得流线型组织。因此,用内氧化+粉末热挤压工艺制备的Ag-SnO_2-Sb_2O_3触头材料组织和性能都要优于内氧化+热锻工艺。
Electrical contact is one of the key parts of the electric apparatus, which function is making and breaking current. Ag-CdO contact materials have excellent resistance of electrical arc and welding and low electric contact resistance, which are widely used in many types of low-voltage apparatus from several to thousands of voltages and once considered as universal contacts. However, the steam of Cd metal is poisonous, which pollutes the environment and damages the human health. Consequently, many countries have developing the materials to substitute for the Ag-CdO materials. Ag-SnO_2 contact materials have excellent electric arc resistance and good welding resistance. Nowadays Ag-SnO_2 electrical contact materials are the optimum candidate for replacing the toxic Ag-CdO electrical contact materials. Lots of work has been done on the processing technic, application of micro-additive and microstructure variation of Ag-SnO_2 during the action of electric arc. However, there is a little report on the oxidation mechanism of Ag-Sn alloy and how to resolve the problem on bad process ability of Ag-SnO_2 materials. So the investigation on the oxidation mechanism of Ag-Sn alloy and high temperature plastic deformation behaviour of Ag-SnO_2 materials has an important theoretical significance and use value.
     Oxidation kinetic and microstructure of Ag-Sn alloy, Ag-Sn-Cu-Bi -Ni alloy and Ag-Sn-M (M=Sb, La, In) alloy powders were investigated and the effect of oxidation temperature, oxygen partial pressure and alloy composition on the oxidation behavior of these alloy were discussed in the present paper. High temperature deformation behaviors of Ag-SnO_2-Sb_2O_3 materials were studied through hot pressing experiment and the processing maps were plotted. In addition, Ag-SnO_2-Sb_2O_3 contact materials were prepared firstly using by internal oxidation+powders hot extrusion technology, which is compared with the Ag-SnO_2-Sb_2O_3 contact materials fabricated by internal oxidation + hot forging technology. The effect of processing technic on microstructure and properties of materials is discussed.
     The results obtained are as follows:
     (1) According to the investigation on the oxidation kinetics of Ag-2.99at.%Sn alloy, the relationship between the solubility of oxygen in silver ( N_O~S ) and the oxygen partial pressure ( P_(O_2) ) , temperature (T) is firstly deduced, which is as follow: In different temperature and oxygen partial pressure, the solubility of oxygen in silver can be easily calculated according to the above equation. In addition, at different oxygen pressure, the relationship between the oxidation rate and temperature is as follow:At different temperature, the relationship between the oxidation rate and oxygen partial pressure is as follow:
     (2) The oxidation front (interface between the oxidation zone and the oxidation-free zone) is flat like a line and the oxide particles uniformly and dispersedly distribute on the silver matrix after the Ag-2.99at.%Sn alloy internal oxidation. At the low temperature (600-700℃) oxidation case, the oxide particles mainly precipitate on the grain-boundaries; at the high temperature (800-850℃) oxidation case, the oxide particles mainly precipitate inside the grain. The higher oxygen partial pressure, the finer oxide particle size. While the oxidation front is undulation after the Ag-4.76at.%Sn alloy oxidation. The oxide particles mainly precipitate on the grain-boundaries when the Ag-4.76at.%Sn alloy is oxidized in air. When the oxygen partial pressure is 0.3MPa and 0.9MPa, many oxide bands are observed in the internal oxidation layer. The oxide particles size and inter-particle spacing become larger with the distance from surface.
     (3) The internal oxidation of Ag-6.46Sn-1.3Cu-0.27Bi-0.17Ni (wt.%) alloy is a process controlled by reaction diffusion. It mainly include: oxygen adsorption and decomposition on the alloy surface; nucleation of oxide particle and formation of oxide bands; diffusion of copper and nucleation of CuO. The internal oxidation of the cold rolled alloy and the recrystallization annealing alloy is different. The former oxidation front is flat and there are many oxide bands in the internal oxidation front. The oxide particle size and hardness become larger with the oxidation depth increasing. But the latter oxidation front is zigzag and the oxide particle size, hardness and the fracture stress of oxide particles are larger than that of the former. Because cold rolling increase the density of dislocation in alloy and the diffused channel of oxygen, the former oxidation rate (5.69×cm~2/sec) is larger than the later oxidation rate (2.39×cm~2/sec) .
     (4) Element La and In is more effective than element Sb for improving the oxidation character of Ag-Sn alloy powders. Oxygen atoms diffuse from surface to inner and part of solute atoms (Sn and Sb) diffuse from inner to surface during the oxidation of Ag-Sn-Sb alloy powders. Oxygen atoms diffuse from surface to inner and solute atoms (Sn and In) form oxides in situ during the oxidation of Ag-Sn-In alloy powders. La_2O_3 forms in situ during the oxidation of Ag-Sn-La alloy powders. When the La content is 0.44wt.% in the Ag-Sn-La alloy powders, Sn atoms will diffuse from inner to surface and react with the oxygen and form oxides. When the La content is 1.28wt.% and 3.4wt.%, all the Sn atoms will form oxide in situ.
     (5) With the increasing of strain rate, the stresses of Ag-SnO_2-Sb_2O_3 materials compressed in high temperature are increased. In low strain rate (0.01s~(-1)and0.1s~(-1)), the flow curves are smooth, but in high strain rate(1s~(-1) and 10s~(-1)), those are fluctuate. According to the relative material parameters obtained from the compression experiment, the deformation constitutive equations of Ag-SnO_2-Sb_2O_3 materials describing the relationship of yield stress peak value, strain rate and temperature are given as follows:
     (6) Based on the principle of thermal processing map, high temperature compressed deformation datas were used to obtain the processing maps of Ag-6.92SnO_2-3.69Sb_2O_3 and Ag-9.12SnO_2-1.46Sb_2O_3 materials under the true strain of 0.03, 0.2, 0.4, 0.6 and 0.9. The adiabatic shear bands, flow localization, wedge crack, particle breakage and voids formed at oxide particle were observed on some damage samples. Ag-6.92SnO_2-3.69Sb_2O_3 materials processing temperature range is 720℃-840℃and strain rate range is 0.01s~(-1)-0.1s~(-1). Ag-9.12SnO_2-1.46Sb_2O_3 materials processing temperature range is 790℃-845℃and strain rate range is 0.01 s~(-1)-0.18s~(-1).
     (7) Ag-6.32SnO_2-3.69Sb_2O_3 and Ag-9.12SnO_2-1.46Sb_2O_3 materials are prepared by internal oxidation+powder hot extrusion technology. Their relative density is 99.55% and 99.89%, hardness is 93HB and 85HB, electrical conductivity is 71IACS % and 69IACS % . At the same time, Ag-6.32SnO_2-3.69Sb_2O_3 and Ag-9.12SnO_2-1.46Sb_2O_3 materials are prepared by internal oxidation+hot forging technology. Their relative density is 98.89% and 99.35%, hardness is 84.3HB and 74.8HB, electrical conductivity is 61IACS% and 66IACS%. Because the hot forging technology retains the intact shape of powders, but the powder hot extrusion technology can not only destroy the intact shape but also get streamline structure. So the microstructure and properties of Ag-SnO_2-Sb_2O_3 materials fabricated by internal oxidation+ powder hot extrusion technology is better than that by internal oxidation+ hot forging technology.
引文
[1] 堵永国,龙雁,张家春.触头材料的热导率[J].电工合金,1996,(2):15-21
    [2] 荣命哲,刘朝阳,陈德桂等.小容量控制电器用新型AgNi基触头材料的开发和研究[J].中国电机工程学报,1999,19(1):62-66
    [3] 万江文,荣命哲,王其平.电弧对银金属氧化触头的熔炼和侵蚀特性[J].西安交通大学学报,1998,3(4):12-17
    [4] M.Z.Rong, Q.P.Wang. Surface dynamics and it's reaction to the effect of breaking arc for AgMeO contact[C]. In: Proceed of the 16~(th) ICEC, Loughborough, U.K.1992,389-394
    [5] K.Sawa, M.Hasegawa. Recent researches and new trends of electrical contacts[C].IEICE Trans.on Electronic,2000,83(9):1363-1376
    [6] 蒋鹤磷,祁更新.银合金及银复合材料的技术发展[J].贵金属,2000,21(3):56-63
    [7] Y.S.Shen, A historic review of Ag-MeO materials electric contacts[C]. Proc. 31th Holm Conf. Elec. Contacts, 1986: 71-76
    [8] M.Huxk, Kraus, R.Michai et al. Guildelines for the use of Ag-SnO_2 contact materials in switching devices for low-voltage power engineering [C]. Proc, 36~(th) holm and 15~(th) int conf, Electric contact phenomena, 1990:133-138
    [9] B. Gengenbach, U.Mayer, R. Michal. Investigation on the Switching Behavior of Ag-SnO_2 Materials in Commercial Contactors[J]. IEEE Transactions on Components and Packing Technology, 1985,8(1):58-64
    [10] T.J. Schoepf, S.Member, V.Behrens et al. Development of silver zinc oxide for general-purpose relays[J]. IEEE Transactions on Components and Packing Technology, 2002,25( 4):656-663
    [11] F.Hauner. Ag-Fe and Ag-FeO contact materials for low voltage switchgear[C].Proc. 19~(th) ICEC, Nuremberg,Germany, 1998:317-323
    [12] J.Wang. Study on a new contact material Ag-SnO_2-La_2O_3-Bi_2O_3 [C]. Proc. 46~(th) Holm Conf. Elec. Contacts, 2001: 94-97
    [13] 龚家聪,钞喜瑞.Ag-SiO_2系电接点材料[J].贵金属,1991,12(1):57-60
    [14] R.Michai, K.E. Saeger. Metallrugical aspects of silver-based contact materials for air-break switching devices for power engineering[J]. IEEE Trans, CHMT,1989(12):71-81
    [15] P.Wingert, S.Allen, R.Becington. Effect of graphite particle size and processing on the performance of silver-graphite contacts[J]. IEEE Trans,CHMT,1992,15(2):154-159
    [16] 龚家聪.国外银基粉冶电接点材料的研究近况[J].贵金属,1988,9(4):58-62
    [17] P.Winger, R.Bevington, G.Hom. The effect of graphite addition on the performance of silver-nickel contacts[J]. IEEE Trans, CHMT,1991,14(3):95-100
    [18] A.Keil, W. A.Merl, E.Vinaricky. Elektrishe Kontakte and ihre Werkstoffe[M].Springer-Verlag, 1984
    [19] W.Merl,C.L.Meyer,E.Ataya.Doduco电触头数据集(胡明忠,译)[M].上海:上海科学技术文献出版社,1983
    [20] 张万胜.电触头材料国外基本情况[J].电工合金,1995,(1):1-14
    [21] 翁桅.我国低压电器用电触头材料的现状和发展趋势[J].低压电器,1995(2):49-52
    [22] R.Michal, K.E.Saeger. Metallurgical aspects of silver-based contact materials for air break switching devices for powder engineering[J]. IEEE Trans CHMT, 1989, (12):71-81
    [23] J.C.Gustafson, H.J.Kim, R.C.Bevington. Arc-erosion studies of matrix -strengthened silver-cadmium oxid[J]. IEEE trans CHMT, 1983,(6):122-129
    [24] Y.S.Shen, L.Gould. A study on manufacturing silver metal oxide contacts from oxidized alloy powders[J]. IEEE Trans CHMT 7,1984,(7):39-46
    [25] C.Brecher, J.C.Gustafson. The effect of additive concentration on material erosion in matrix-strengthened silver-cadmium oxide[J]. IEEE Trans CHMT, 1984,(1):25-32
    [26] M.Lindmayer,W.Bohm. Effect of alkali on the switching behavior of AgCdO[C]. Proc. 10ICEC Phenomena, Budapest 1980, 849-862
    [27] H.J.Kim. Improvement of arc erosion resistance of AgCdO material with the matrix-strengthening additive[C]. 11stICECP, Berlin:1982,212-216
    [28] Y.S.Shen, L.Gould, S. Swarm. DTA and TGA studies of four Ag-MeO electrical contact materials[J]. IEEE Trans CHMT, 1985,( 8):352-358
    [29] W.Bohm. The switching performance of an improved Ag-SnO_2 contact materials [J]. Proc,27~(th) Holm. Conf. On Electrical contacts, Chicago,1981:51-57
    [30] 陈敬超,孙加林.银氧化镉材料的欧盟限制政策与其它银金属氧化物电接触材料的发展[J].电工合金,2002(4):41-44
    [31] N.Tetsuya, S.Osamu, K.Hiroyuki et al. Method for preparing Ag-ZnO electric contact material and electric contact material produced thereby[P]. US 6432157, 2002
    [32] 王绍雄,张家鼎.新型复合触头材料的开发研究[J].上海大学学报,2000,6(1):91-94
    [33] Schroder, K. H. Elekrische Kontakte in der Energietechik Ⅱ[M].1979, 100:1188-1191
    [34] P. B. Joshi, N. S. S. Murti, V. Gadgeel. Preparation on characterization of Ag-ZnO powders for application in electrical contact material[J]. Journal of materials science letters, 1995, (14):1099-1101.
    [35] P.Verma,O.P.Pandey, A.Verma. Influence of metal oxides on the arc erosion behaviour of silver metal oxides electrical contact materials[J]. J.Mater.Sci.Technol,2004,20(1):49-51
    [36] S.C. Dfv, O. Basak, O. N. Mohanty. Development of cadmium-free silver metal-oxide contact materials[J]. Journal of materials science, 1993, (28):6540-6544
    [37] P.B.Joshia, P.S. Krishnan, R.H. Patel, et al. Effect of lithium addition on density and oxide-phase morphology of Ag-ZnO electrical contact materials[J]. Materials Letters, 1997, (33): 137-141
    [38] P.B.Joshia, P.S. Krishnan, R.H. Patel,et al. Improved P/M silver zinc oxide electrical contacts[J]. The international journal of powder metallurgy, 1998,34(4):63-74
    [39] J.S.Thomas,V.Behrens. Development of silver zinc oxide for general- purpose relays[J]. IEEE Trans. on components and packaging Technologies, 2002, 25 (4):656-662
    [40] 北京粉末冶金研究所,苏联粉末冶金材料性能手册[M].北京:机械工业出版社,1984
    [41] B.J.Prakash, G.R.Marathe, A.Partap et al. Dispersion-strengthened Cu/Ag by reactive milling[J]. International journal of powder metallurgy, 2004,40(3):67-72
    [42] 张齐勋,谢健全.粉末冶金银-氧化铜触头材料[J].中国有色金属学报,1996,6(2):121-124
    [43] 甘卫平,周兆峰,林炳等.粉末内氧化法制备AgCuO(10)触头材料工艺研究[J].材料导报,2005,(19):308-313
    [44] 闫杏丽,陈敬超,周晓龙等.反应合成法制备银氧化铜电触头材料的组织与性能[J].贵金属,2004,25(4):22-25
    [45] 闫杏丽,陈敬超,于杰等.合金内氧法在制备银氧化铜(Ag-CuO)电触头材料中的应用[J].电工材料,2003,(2):28-31
    [46] 周晓龙,陈敬超,曹建春等.反应合成制备Ag/CuO电触头材料及其组织性能[J].机械工程材料,2005,29(11):49-51
    [47] 王继周,徐永昌,石路.稀土贵金属触头材料的进展[J].有色矿冶,1995,(5):35-39
    [48] 王元荪.银重稀土金属氧化物电工触点材料及其制备工艺[J].电工材料,2004,(3):45-46
    [49] 张秀云.银稀土氧化物触头材料的研制与应用[J].机床电器,1994,(1):32-33
    [50] 王景芹,陆俭国,温鸣等.银-稀土氧化物触头材料的性能[J].稀有金属材料与工程,2001,30(3):205-207
    [51] 吴春萍,易丹青,陈敬超等,银稀土氧化物触头材料的组织与性能[J].中南大学学报,2007,38(2):232-237
    [52] 吴春萍,陈敬超,鲜春桥等.银稀土合金的氧化研究[J].贵金属,2005,26(3):34-38
    [53] C.P.Wu, D.O.Yi, J.C.Chen.et al. Internal oxidation of thermodynamics and microstructures of Ag-Y alloy[J]. Transactions of nonferrous metals society of China, 2007,(17):262-266
    [54] 宁远涛.贵金属-稀土合金的结构、性能和新材料研究[J].贵金属,1994,(15):61-71
    [55] T.Ohira, R.Kichickon, K.Hoshino; et al. Ag-cerium oxide electrical contact material excellent in deposition resistance and consumption resistance [P]. JP9111368, 1997,4,28.
    [56] S.Kang,C.Brecher,P.Womgert.Erosion resistant Ag-SnO_2 electrical contact material [P]. US4904317,1990,2,27.
    [57] 张为军,堵永国,胡君遂.AgREO触头材料耐电弧侵蚀性能研究[J].电工合金,2000,(3):11-14
    [58] 荣命哲.银金属氧化物触头材料表面动力学特性的研究[J].中国电机工程学报,1993,13(6):271-277
    [59] W. Bohm, N. Behrens, M. Lindmayer. The switching performance of an improved silver-tin oxide contact material[C]. Proceedings of the 27th' Holm Conference, 1981,51-57
    [60] H.A.Francisco, M.Myers. The effect of various silver tin oxide materials on contact performance under motor load (a.c.)[C]. Proceedings of the Forty-Third IEEE Holm Conference on 20-22 Oct. 1997,254-263
    [61] N. Behrens, W. Bohm. Switching performance of different Ag/SnO_2 contact materials made by powder metallurgy[C]. 11. ITK, Berlin 1982, 203-207
    [62] G.Witter, Z.A.Chen, Comparison of silver tin indium oxide contact materials using a new model switch that simulates operation of an automotive relay[C]. Proceedings of the 50th IEEE Holm Conference on Electrical Contacts and the 22nd International Conference on Electrical Contacts, 2004, 382-387
    [63] C.H. Lee. Silver tin oxide thirty-ninth IEEE holm conference on contact erosion in automotive relays[C]. Proceedings of the 27-29 Sept. 1993, 61-67
    [64] 宁江天.AgSnO_2电触头材料的韧化机制研究[J].电工材料,2003,(4):9-12
    [65] B.Gengenbach. Investigation on the switching behavior of AgSnO_2 materials in a commercial contactor [C].12~(th) ICECP, Chicago: 1984, 24-247
    [66] A.Shibata. Silvermetal oxide by internal oxidation process[C]. 7th ICECP, Paris 1974,215-220
    [67] F. Hauner, D. Jeannot, K. McNeilly,et al. Avanced Ag/SnO_2 contact materials for the replacement of Ag/CdO in high current contactors[C]. 46~(th) Holm Conference,2000,225-263
    [68] 荣命哲,万江文.含微量添加剂的AgSnO_2触头材料电弧侵蚀机理[J].西安交通大学学报,1997,31(11):1-7
    [69] P.Braumann, A.Koffler. The influence of manufacturing process, metal oxide content, and additives on the switching behaviour of Ag/SnO_2 in relays[C].Proceedings of the 50~(th) IEEE Holm Conference on Electrical Contacts and the 22nd International Conference on Electrical Contacts, 2004, 90-97
    [70] M.Myers, H.Harman. Optimization of silver tin oxide chemistry to enhance electrical performance in a.c. Application[C]. Proceedings of the 44~(th) IEEE Holm Conference on Electrical Contacts. 1998, 19-201
    [71] C.Bourda, M.Didier Jeannot, J.Pinard, et al. Properties and effects of doping agents used in AgSnO_2 contact materials[C]. ICEC, 1992, 377-382
    [72] D. Weber, C. Lambert, B. Le Bouguenec, et al. Influence of additives on sintering and electrical behaviour of silver/tin oxide materials[C]. 14th ICECP, Paris 1980, 411-416
    [73] M.Z.Rong,Q.P.Wang. Effects of additives on the AgSnO_2 contacts erosion behavior[C]. Proceed of the 39~(th) IEEE Holm Conference on Electrical Contacts, 1993,33-36
    [74] W.Bohm. Material for electrical contacts. [P] US 4410491, 1982.
    [75] P.C.Wingert, C.H.Lxung.The development of silver-based cadmium-free contact materials[J]. IEEE Traps. on CHMT, ,1989,12(1): 16-20
    [76] 王宝珠,王景芹,吕玉申.添加物Bi_2O_3对触头材料AgSnO_2的显微组织影响[J].电工合金,2000,(3):7-10
    [77] S.Horst. Sintered compound material for electrical contacts and method for its production[P]. US 4551301,1985
    [78] 凌国平,刘远廷.控制银-氧化锡电触头材料添加剂分布均匀性的方法[P].中国专利,CN 1641813A.2005
    [79] 王家真,王亚平,杨志愁等.CuO添加剂对AgSnO_2润湿性与界面特性的影响[J].稀有金属材料与工程,2005,34(3):405-408
    [80] C.Leung, E.Streicher, D.Fitzgerald. Welding behavior of Ag/SnO_2 contact material with microstructure and additive modifactions[C]. Proc. 50th IEEE Holm Conf, 2004,64-69
    [81] C. Lambert, D. Weber, S. Coupez et al. A new doped silver tin oxide material with improved electrical behavior[C]. Proc. 34th Holm conf. Electrical Contacts. 1989,69-78
    [82] J.Guerlet,P.Weber, D.Coupez. Material based on silver and tin oxide for production of electrical contacts[P]. US Patent No 5207842.May 4,1993.
    [83] 堵永国.一种全新的AgSnO_2触点材料的设计与制备[J].电工合金,2000,(1):15-22
    [84] 李玉桐.掺杂金属氧化物银-二氧化锡电触头材料及其制备方法[P].中国专利,CN1425782A,2003
    [85] F,.Heringhaus, P.Braumann, D.Ruhlicke, et al. On the improvement of dispersion in Ag-SnO_2-based contact materials[C]. 20th ICEC, Stockholm, Sweden,2000:199-204
    [86] D.Jeannot, J. Pinard, P. Ramoni and E. M. Jost. Physical and chemical properties of metal oxide additions to Ag-SnO_2 contact materials and predictions of electrical performance[J]. IEEE Trans CPMT-A ,1994,17(1): 17-23
    [87] V.Behrens, T.Honig, A.Kraus, et al. An advanced silver/tin oxide contact material[J]. IEEE Trans CHMT. Part A 1994, (17): 24-31
    [88] R.Michal, K.E.Saeger. Metallurgical aspects of silver-based contact materials for air break switching devices for powder engineering[J]. IEEE Trans CHMT, 1989,
    [89] 荣命哲.触头理论[M].北京:机械工业出版社,2005
    [90] W.Blame, P.Braumann. Welding tendency, contact resistance and erosion of contact materials in motor vehicle relays[C]. Proc.l5th ICEC Montreal, 1990,79-84
    [91] M.Huck. The switching behavior of silver metal oxide in power relay[C]. Proc.14th ICEC, 1988,355-360
    [92] P.Braumann. Investigation of contact materials for switching devices in motor vehicles[C]. Proc. 14th ICEC, 1988:423-428
    [93] V.Behrens, T. Honig, A.Kraus, et al. Performance of different types of silver tin oxide in regard to applications in automotive relays[C]. Proc. 42th Holm conf. elec. contacts, 199,217-222
    [94] C.Leung,E.Streicher,D.Fitzgerald. Welding behavior of Ag/SnO_2 contact material with microstructure and additive modifications[C]. Proceedings of the 50th IEEE Holm Conference on Electrical Contacts and the 22nd International Conference on Electrical Contacts, 2004,64-69
    [95] D.McDonnell,J.Gardener,G.Gondusky. Comparison of the switching behavior of silver metal oxide contact materials[C]. Holm 1993, 37-43
    [96] 李英民,薛纪文.Ag/SnO_2电触头材料的研究进展[J].电工材料,2003,(2):20-27
    [97] 凌国平,王尚军,孟亮.杂质对化学镀AgSnO_2粉末烧结体组织及性能的影响[J].稀有金属材料及工程,2005,34(6):886-890
    [98] J.Z.Wang, Y.P.Wang, Z.M.Yang, et al. Effect of CuO additive on the wettability and interface behavior of silver/tin oxide[J]. Rare metal materials and engineering,2005,34 (3): 405-408
    [99] E.Streicher, C.Leung, R.Bevington,et al. Press-sinter-repress Ag-SnO_2 contacts with lithium and copper sintering additives for contactor applications[J]. IEEE.AMI DODUCO, 2001,27-34
    [100] 大森豊明.触头材料手册(梁宇青,刘代琦,译)[M].北京:机械工业出版社,1978
    [101] 刘辉,覃向忠.银复合氧化锡触头材料及其制备工艺[P].中国专利:200610020688.5,2004
    [102] 王俊勃,杨敏鸽,陈立成等.化学共沉淀制备纳米稀土共混AgSnO_2触头合金及其工艺[P].中国专利:200410073547.0,2004
    [103] 王俊勃,杨敏鸽,李英民等.纳米SnO_2/Fe_2O_3共混掺杂银基触头合金及其制备工艺[P].中国专利:200310122263.1,2003
    [104] 阁景贤,由森.银混合稀土金属氧化物触头材料[P].中国专利:CN86107774A,1988
    [105] 王景芹,温鸣,王海涛等.低压开关电器用银基稀土合金触头材料及其制备方法[P].中国专利:200410094083.1,2004
    [106] 陈延学,王成建,梅良模等.银基压敏复合陶瓷触头材料[P].中国专利:03138995.3,2004
    [107] 谢明,曹曙光,陈力等.银锡氧化物电工触头材料及其制备方法[P].中国专利:200410079614.X,2004
    [108] 陈少贤,陈克.银/镍/稀土氧化物/碳触头及其生产方法[P].中国专利:200410049494.9,2004
    [109] 郑翼,李松林,高后秀等.制备亚微米银-二氧化锡电触头材料的制备方法[P].中国专利:200410019869.7,2004
    [110] 陈敬超,孙加林,周晓龙等.一种银氧化铜触头材料的制备方法[P].中国专利:03134913.7,2004
    [111] 王亚平,天涛,卢柯.一种银金属氧化物电触头材料的制备方法[P].中国专利:02132791.2,2004
    [112] 柴田昭.内氧化银-锡系合金电触头材料及其制造方法[P].中国专利:86103279,1991
    [113] 陈达峰.一种银氧化锡材料的制备方法[P].中国专利:03114863.8,2003
    [114] 李玉桐,李群英,吕克泰等.掺杂金属氧化物银-二氧化锡电触头材料及其制备方法[P].中国专利:03100430.X,2003
    [115] 堵永国,林炳,白书秋等.低电阻率Ag/SnO_2电工触头材料及其制备[P].中国专利:93110497.1,1994
    [116] 郑翼,高后秀,李松林等.银纳米氧化锡电触头及其制备方法[P].中国专利:02146696.3,2005
    [117] N.Tetsuya,S.Osamu,K.Hiroyuki,et,al. Method for producing Ag-ZnO electric contact material and electric contact material produced thereby[P].TW517095B, 2003
    [118] O.Toshiyuki, R.H.Koji, et,al. Production of fine wire for Ag-oxide electrical contact[P].JP9111364,1997
    [119] O.Toshiyuki, R.Kichkon H.Koji, et,al. Ag-tin oxide-molybdenum trioxide electrical contact material excellent in deposition resistance and consumption resistance[P]. JP9111371,1997
    [120] O.Toshiyuki, R.Kichkon H.Koji, et,al. Ag-magnesium oxide electrical contact material excellent in deposition resistance and consumption resistance[P].JP9111368,1997
    [121] O.Toshiyuki, H.Koji, K.Toru. Production of fine wire for producing Ag-tin oxide-base electrical contact [P]. JP8283882,1996
    [122] S.Akira, Internal oxidized Ag-Sn-In system alloy electrical contact composite [P]. US4672008,1987
    [123] S.Akira, Integrated Ag-SnO_2 alloy electrical contact materials [P]. US4243413,1981
    [124] S.Akira, Production of Ag oxide electrical contact material [P]. JP63286539,1988
    [125] H.Koji, K.Toru. Ag-oxide electrical contact material excellent in arc resistance[P]. JP7166267,1995
    [126] T.Yasukazu, I.Shoji, T.Yasufumi. Internally oxidized electrical contact material of Ag-Sn alloy[P]. JP6136473,1994
    [127] T.Seiichi, H.Teruo, M.Yida. Internally oxidized Ag-Sn-In alloy electrical contact materials and manufacturing method [P]. EP0508746,1992
    [128] T.Seiichi,H.Teruo,M.Yida. Ag-SnO_2 electrical contact materials[P]. US5147728,1992
    [129] W.Philp, C.Brecher, K.Han, et,al. Electrical coantct material fo Ag, SnO_2, GeO_2 and In_2O_3[P]. EP0318892,1989
    [130] K.Shinhoo,B.Charles, W.Philip. Erosion resistant Ag-SnO_2 electrical contact material[P]. US4904317,1990
    [131] D.Koichi. Manufacture of Ag-oxide type electrical contact point materil[P]. JP61281859,1986
    [132] S.Akira. Internally oxidized Ag-Sn-Bi alloy electrical contact materials[P]. US4514238,1985
    [133] S.Akira. Composite electrical contact point material made of Ag-SnO_2 alloy[P]. JP62250135,1987
    [134] S.Akira. Electrical contact material made of internally oxidized Ag alloy[P]. JP6013197,1985
    [135] S.Akira. Electrical contact material made of internally oxidized Ag-Sn alloy and its manufacture[P]. JP58213846,1983
    [136] S.Akira.Ag-metal oxides electrical contact materials[P]. US4479892, 1984
    [137] S.Akira. Ag-metal oxides electrical contact material containing internally oxidized indium oxides and /or tin oxides[P]. KR8301156,1983
    [138] S.Akira. A composite electrical contact material of Ag-Sn oxides alloy[P]. KR8301155,1983
    [139] S.Akira.Electrical contact materials to internally oxidized Ag-Sn-Bi alloy[P]. CA1190770,1985
    [140] S.Akira. Electrical contact materials of internally oxidized Ag-Sn-Bi alloy[P]. CA1133285,1982
    [141] S.Akira. Composite electrical contact material comprising Ag and intermetallic compounds[P]. US3880777,1975
    [142] S.Koichi, Ag oxide electrical contact material[P]. JP63286542,1988
    [143] O.Kubaschewski, Dr.Phil.Habil. Oxidation of metals and alloys[M]. London: Butterworths,1962
    [144] D.L.Douglass,Z.Baizhao, F.Gesmundo, Internal-oxide-band formation during oxidation of Ag-Mg alloy[J]. Oxidation of metals, 1992,38(5):365-384
    [145] J.Takada, Y.Tomii, N.Yoshida, et al. Internal oxidation of dilute silver alloys[J]. Oxidation of metals, 1992,37(l/2):13-22
    [146] L.Charrin,A.Combe, J.Cabane. Oxide particlss in Ag-Mg alloys formed by internal oxidation[J]. Oxidation of metals. 1992,37(1/2):65-80
    [147] L.Charrin,A.Combe, F.Cabane et al, Evidence for the formation of substoichiometric species during internal oxidation of Ag-Mg alloys[J]. Oxidation of metals. 1993,40(5/6):483-505
    [148] S.Guruswamy,S.M.Park, J.P.Hirth et al, Internal oxidation of Ag-In alloys:stress relief and the influence of imposed strain[J]. Oxidation of metals, 1986,26(l/2):77-100
    [149] A.Combe, J.Cabane, Mechanism of internal oxidation in silver alloys[J]. Oxidation of metals,1984 ,21(l/2):21-37
    [150] N.L.Pravoverov, V.L.Kalikhman, V.V.Korotkova. Internal oxidation of Ag-Zn alloys[J]. Protection of Metals, 1990, 25 (3): 363-367
    [151] H.Kimata, S.Nishi. Effects of internal oxidation on contact resistance of Ag-Be alloys[J]. Journal of the Japan Institute of Metals.1972,36(9):846-852
    [152] Hidemi Kimata, Seiki Nishi. A strudy on the internal oxidation of Ag-Be alloys[J]. Journal of the Japan Institute of Metals. 1971,35(6):615-622
    [153] H.Kimata, S.Nishi. Hardness change of Ag-Be alloys by interanl oxidation[J]. Journal of the Japan Institute of Metals. 1971,35(6):623-627
    [154] T.Igarsshi, M.Osada. Internal oxidation of Ag-Ni two phase alloys with fibrous structure[J]. Journal of the Japan Institute of Metals.l980,44(12):1377-1384
    [155] L.Kosec, J.Roth, M.Bizjak, et al. Internal oxidation of an Ag-1.3at.%Te alloy[J]. Oxidation of metals, 2001, 56(5/6):395-414
    [156] J.Roth, L.Kosec, P.Skraba, et al. Internal oxidation of a Ag-1.3at.%Se alloy-Part Ⅰ : Composition and appearance of oxidation products[J]. Oxidation of metals, 2004, 62(3/4):273-291
    [157] J.Roth, L.Kosec, I. Anzel. Internal oxidation of a Ag-1.3at.%Se alloy-Part Ⅱ:Kinetics of internal oxidation[J]. Oxidation of metals, 2004, 62(3/4):293-308
    [158] 王硕.银锡合金内氧化问题的探讨[J].电工合金,1996,(1):11-14
    [159] 林文松,方宁象,林柄.Bi对Ag-Sn合金粉末内氧化机制的影响[J].粉末冶金技术,2002,20(4):200-204
    [160] 温金海,林柄.仲钨酸铵对Ag-Sn合金粉末的氧化作用[J].电工材料,2002,(4):14-18
    [161] 刘承峰.银合金内氧化动力学分析[J].电工合金,1997,(1):1-9
    [162] 邓忠明,吕贤勇,郑福前等.某些金属元素对Ag-Sn合金内氧化速度的影响[J].贵金属,2001,22(1):8-11
    [163] 江珍雅,陈敬超.AgSn合金粉末非抛物线性内氧化研究[J].贵金属,2006,27(2):22-26
    [164] J.W.Lee, H.C.Lee. Effect of Tellurium addition on the internal oxidation of Ag-Sn alloys[J]. Scripta mater, 2000, (42): 169-173
    [165] A.Verma, T. R. Anantharaman. Effect of indium concentration on the internal oxidation of a silver-tin alloy[J]. Bull.Mater.Sci. 1991,14(1): 1-10
    [166] A. Verma, T.R.Anantharaman. Internal oxidation of rapidly solidified silver-tin-indium alloy powders[J]. Journal of materials of science, 1992,(27): 5623-5628.
    [167] T.Igarashi,Y.Amano and Y.Kodama. Behavior of solute elements and oxygen during internal oxidation of Ag-In-Sn alloys[J]. Journal of the Japan Institute of Metals, 1980,44(5):501-508
    [168] T.Igarashi,Y.Amano and Y.Kodama. The precipitation behavior of oxides during internal oxidation of Ag-In-Sn alloys[J]. Journal of the Japan Institute of Metals, 1980,44(4): 378-386
    [169] T.Igarashi,M.Osada, Internal oxidation kinetics of Ag-Cd-Sn alloys[J]. Journal of the Japan Institute of Metals, 1980,44(11):1224-1230
    [170] T.Igarashi,M.Shibata,M.Osada, Precipitation behavior of oxides during internal oxidation of Ag-Cd-Sn alloy[J]. Journal of the Japan Institute of Metals, 1980, 44(11):1217-1223
    [171] M.Brunccko, I.Anzel, A.Kneissl. In-situ monitoring of internal oxidation of dilute alloys[J]. Corrosion science, 2007, (19): 1228-1244
    [172] Y.S.Shen , J.Gardner, P.Latteri, et al. ASM Handbook[M]. V7,Powder metallurgy electrical contact maerials. Material Park: ASM internaltional member/customer service center, 1998,1021-1030
    [173] 李铁藩.金属高温氧化和热腐蚀[M].北京:化学工业出版社,2003
    [174] 余永宁.金属学原理[M].北京:冶金工业出版社,2007
    [175] 李美栓.金属的高温腐蚀[M].北京:冶金工业出版社,2001
    [176] 师昌绪,李恒德,周廉.材料科学与工程手册[M].北京:化学工艺出版社,2004
    [177] R.A.Rapp, D.F.Frmatige, J.V.Armatige. The formation of passivating internal In_2O_3 bands in silver-indium alloys. Acta metallurgica, 1964( 12):505-513.
    [178] T.B.Massalski. Binary alloy phase diagrams[M]. Second edition, The materials information society, volumel, 2001
    [179] 潘金生,仝健民,田民波.材料科学基础[M].北京:清华大学出版社,1998
    [180] 倪孟良.添加剂对AgSnO_2电触头材料组织与性能的影响[D].[硕士学位论文]浙江:浙江大学,2006
    [181] R.A.Rapp , Kinetics, microstructrue and mechanism of internal oxidation, its effect and prevention in high temperature alloy oxidation[J]. Corrsosion, 1965, (21):382-401
    [182] N.Birks,G.H.Meier. Introduction to high temperature oxidation of metals[M]. Edward Arnold. 1983.375-381
    [183] 申玉田,崔春翔,孟凡斌.Cu-Al合金内氧化及Cu氧化行为的热力学分析[J].粉末冶金技术,2001,19(1):28-32
    [184] 叶大伦,胡建华.实用无机物热力学数据手册[M].北京:冶金工业出版社,2002
    [185] 秦国友.定量金相[M].四川:四川科学技术出版社,1987
    [186] C.Wanger. Theoretical analysis of the diffusion processed determining oxidation rates of alloys[J]. J. Electrochem. Soc, 1952, (99)369-380
    [187] 曹明盛.物理冶金基础.北京:冶金工业出版社,1985
    [188] R.E. Reed-Hill, Physical Metallurgy Principles[M], Second ED., D. Van Nostrand Co., New York, 1973, Chapter 5
    [189] G.T.Shoji, K.D.Shigeyasu. Internal oxidation of dilute Ni-Al solid solution alloys[J]. Journal of the Japan Institute of Metals, 1968, 32 (4):334-339
    [190] G.T.Shoji, K.D.Shigeyasu. Structure of internally oxidized dilute nickel alloys containing chromium[J]. Journal of the Japan Institute of Metals, 1967, 31 (7).875-880
    [191] 侯赛彰,刘熙明,周继扣等.银氧化锌触头材料制备的新工艺[J].中国有色金属学报,1995,5(3):112-114
    [192] J.R. Mackert Jr., E.E. Parry, C.W. Fairhurst. Oxide/metal interface morphology related to oxide adherence[J]. The Journal of Prosthetic Dentistry, 1984, 52(4): 610-615
    [193] G.Ganesan,K.Raghukandan,R.Karthikeyan,B.C.Pai. Development of processing maps for 6061 Al/15%SiCp composite material[J]. Materials Science and Engineering A, 2004, (369)230-235.
    [194] S.Ramanathan,R.Karthikeyan, Manoi Gupta. Development of processing maps for Al/SiCp composite using fuzzy logic[J]. Journal of materials processing technology, 2007, (183) 104-110
    [195] P.Cavaliere,E.Cerri,P.Leo. Hot deformation and processing maps of a particulate reinforced 2618/Al_2O_3/20p metal matrix composite[J]. Composites Science and Technology, 2004, (64), 1278-1291.
    [196] E.Cerri,S.pigarelli,E.Evangelista,P.Cavaliere. Hot deformation and processing maps of a particulate-reinforced 6061+20%Al_2O_3 composite[J]. Material Science and Engineering A, 2002, (324)157-161.
    [197] C.Y.Wang,K.Wu,M.Y.Zheng. Hot deformation and processing maps of Al_(18)B_4O_(33)w/ZK60 composite[J]. Materials Science and Engineering A.2008,(477)179-184.
    [198] S.Ramanathan,R.Karthikeyan,G.Ganasen. Development of processing maps for 2124Al/SiCp composites[J]. Materials Science and Engineering A, 2006, (441)321-325.
    [199] 张江涛.颗粒增强金属基复合材料动态力学性能的实验研究与数值模拟[D].博士学位论文,武汉:武汉理工大学,2007.
    [200] 侯红亮,焦满囤,米新兰.多孔材料挤压过程数值模拟[J].华北航天工业学院学报,2000,10(2) 5-10.
    [201] C.M. Sellars and W.J. Mcg. Tegart. La relation entre la resistance et la structure dans la deformation a chaud[J]. Mem. Sci. Rev. Metal., 1966, (63) 731-746
    [202] H.J. McQueen and S. Yue. Hot working characteristics of steels in austenitic state[J]. Journal of Materials Processing Technology, 1995,(53): 293-310
    [203] H. Shi, J. McLaren and C.M. Sellars. Constitutive equations for high temperature flow stress of aluminum alloys[J]. Materials Science and Technology, 1997, (13): 210-216
    [204] C.CChen and J.E.Coyne. Deformation characteristics of Ti-6A1-4V alloy under isothermal forging conditions[J]. Metallurgical-Transactions A,1976,(7): 1931-1941
    [205] C. Zener and J.H. Hollomon. Effect of strain rate upon the plastic flow of steel[J]. J. Appl. Phys., 1944,(15) 22-32
    [206] 王玲,赵浩峰.金属基复合材料及其浸渗制备的理论与实践.北京:冶金工业出版社,2005
    [207] 周继承.增塑粉末挤压成形原理与工艺研究[D].硕士学位论文,长沙:中南工业大学,1999
    [208] M.T.Martyn, P.J.James. The processing of hardmetal components by powder injection molding[J]. International Journal of Refractory Metals & Hard Materials, 1993,12: 61-69
    [209] T.Sheppard, A.Greasley. Densification and pressure requirements during the extrusion of air atomized tin bronze powders[J]. Powder Metallurgy, 1997,1: 26 -35
    [210] T.Sheppard. Extrusion of AA 2024 alloy[J]. Materials Sci and Tech, 1993, 9:430-440
    [211] 赵志业.金属塑性变形与轧制理论[M].北京:冶金工业出版社,1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700